organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic modification of 1,2-bis­­(di­phenyl­seleno­phosphino­yl)ethane

aSchool of Chemistry, University College of Science, University of Tehran, Tehran, Iran
*Correspondence e-mail: aabbasi@khayam.ut.ac.ir

(Received 12 October 2008; accepted 28 October 2008; online 31 October 2008)

The complete mol­ecule of the title compound, C26H24P2Se2, is generated by crystallographic 2-fold symmetry, with the rotation axis bisecting the central C—C bond. The dihedral angle between the terminal aromatic rings is 74.1 (1)°.

Related literature

For the synthesis and related compounds, see: Lobana (1992[Lobana, T. S. (1992). In The Chemistry of Organophosphorous Compounds. Chichester: Wiley.]); Lobana et al. (2007[Lobana, T. S., Wang, J. C. & Liu, C. W. (2007). Coord. Chem. Rev. 251, 91-110.]). For the triclinic modification, whose mol­ecule lies on a center-of-inversion, see: Risto et al. (2007[Risto, M., Jahr, E. M., Oilunkaniemi, R. & Laitinen, R. S. (2007). Acta Cryst. E63, o4169.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24P2Se2

  • Mr = 556.31

  • Monoclinic, C 2/c

  • a = 15.828 (2) Å

  • b = 9.2057 (19) Å

  • c = 19.697 (3) Å

  • β = 121.654 (8)°

  • V = 2443.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.17 mm−1

  • T = 295 (2) K

  • 0.20 × 0.12 × 0.11 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2007[Stoe & Cie (2007). X-AREA, X-SHAPE and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.525, Tmax = 0.701

  • 8656 measured reflections

  • 2361 independent reflections

  • 1835 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.068

  • S = 1.15

  • 2361 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

P1—Se1 2.0979 (9)
P1—C1 1.822 (3)
P1—C2 1.809 (3)
P1—C8 1.812 (3)

Data collection: X-AREA (Stoe & Cie, 2007[Stoe & Cie (2007). X-AREA, X-SHAPE and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Organophosphorous derivatives are an important class of ligands due to their potentially applications as selective homogenous catalysis. Among this group, the increasing interest in diphosphines and their calcogenide derivatives arises from their interesting coordination properties, extractive metallurgy and catalytic properties (Lobana, 1992; Lobana, et al. 2007). Therefore, we prompted to synthesis a new derivative of calcogenide organophosphorous ligands in order to investigate its structure.

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The title compound was previously published in triclinic crystal system with two half-molecules in the asymmetric unit, having inversion symmetry for both molecules (Risto, et al. 2007). Here we presents the structure in monoclinic system in which, the asymmetric unit is one half-molecule. Two Diphenylphosphinoselenoyl, (PPh2)Se, are connected through an ethane group. Two phenyl rings (C2—C7 & C8—C13) in the asymmetric are located with dihedral angle of 74.1 (1)o. Weak inter-molecular hydrogen bonds (C10—H10···Se1ii, 3.751 (4) Å) are present between neighboring molecules, assembling the molecules into a three dimensional network.

Related literature top

For the synthesis and related compounds, see: Lobana (1992); Lobana et al. (2007). For the triclinic modification, whose molecule lies on a center-of-inversion, see: Risto et al. (2007).

Experimental top

Diphenylphosphinoethane (dppe) was prepared according to literature (Lobana, 1992). To a mixture of 3.98 g (0.01 mol) dppe in 300 ml of dried chloroform was added 1.58 g (0.02 mol) of red selenium. The reaction mixture was refluxed overnight and filtered the unreacted Se out. The resulting solution was evaporated under reduced pressure. The crystals suitable for crystallography were obtained by recrystallization from chloroform-acetonitrile (1:1).

Refinement top

All H atoms were placed in calculated positions and constrained to ride on their parent atoms (Uiso(H) = 1.2(C)), with C—H = 0.93 and 0.97 Å, for aromatic and methylene, respectively.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2007); cell refinement: X-AREA (Stoe & Cie, 2007); data reduction: X-RED (Stoe & Cie, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with 50% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radii.
1,2-bis(diphenylselenophosphinoyl)ethane top
Crystal data top
C26H24P2Se2F(000) = 1112
Mr = 556.31Dx = 1.513 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8656 reflections
a = 15.828 (2) Åθ = 2.5–29.5°
b = 9.2057 (19) ŵ = 3.17 mm1
c = 19.697 (3) ÅT = 295 K
β = 121.654 (8)°Rod, colorless
V = 2443.0 (7) Å30.20 × 0.12 × 0.11 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
2361 independent reflections
Radiation source: fine-focus sealed tube1835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ oscillation scansθmax = 26.0°, θmin = 2.4°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2007)
h = 1916
Tmin = 0.525, Tmax = 0.701k = 1111
8656 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0166P)2 + 3.9345P]
where P = (Fo2 + 2Fc2)/3
2361 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C26H24P2Se2V = 2443.0 (7) Å3
Mr = 556.31Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.828 (2) ŵ = 3.17 mm1
b = 9.2057 (19) ÅT = 295 K
c = 19.697 (3) Å0.20 × 0.12 × 0.11 mm
β = 121.654 (8)°
Data collection top
Stoe IPDS-II
diffractometer
2361 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2007)
1835 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.701Rint = 0.072
8656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.15Δρmax = 0.49 e Å3
2361 reflectionsΔρmin = 0.41 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.44808 (3)1.02455 (3)0.10565 (2)0.04679 (13)
P10.52862 (6)0.83149 (8)0.15258 (5)0.02995 (18)
C10.5482 (2)0.7912 (4)0.25038 (19)0.0396 (7)
H1A0.57950.69680.26780.048*
H1B0.59280.86300.28840.048*
C20.6516 (2)0.8360 (3)0.16755 (18)0.0333 (7)
C30.6699 (2)0.9256 (3)0.1207 (2)0.0427 (8)
H30.62020.98720.08430.051*
C40.7609 (3)0.9253 (4)0.1271 (2)0.0563 (10)
H40.77200.98560.09460.068*
C50.8346 (3)0.8363 (4)0.1810 (3)0.0600 (11)
H50.89600.83610.18530.072*
C60.8188 (3)0.7477 (5)0.2286 (3)0.0661 (11)
H60.86940.68730.26540.079*
C70.7277 (3)0.7473 (4)0.2225 (2)0.0536 (9)
H70.71740.68710.25540.064*
C80.4663 (2)0.6748 (3)0.09047 (19)0.0350 (7)
C90.5078 (3)0.5379 (4)0.1130 (2)0.0547 (9)
H90.56800.52550.16070.066*
C100.4601 (4)0.4197 (4)0.0649 (3)0.0745 (14)
H100.48870.32800.08020.089*
C110.3726 (4)0.4361 (5)0.0039 (4)0.0806 (16)
H110.34070.35540.03560.097*
C120.3304 (3)0.5698 (5)0.0274 (3)0.0758 (13)
H120.26990.58060.07510.091*
C130.3777 (3)0.6897 (4)0.0197 (2)0.0532 (9)
H130.34920.78120.00330.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0441 (2)0.03445 (18)0.0531 (2)0.00738 (15)0.01948 (17)0.00760 (16)
P10.0314 (4)0.0303 (4)0.0278 (4)0.0010 (3)0.0153 (3)0.0020 (3)
C10.0389 (18)0.0512 (19)0.0291 (16)0.0072 (14)0.0181 (15)0.0059 (14)
C20.0333 (17)0.0365 (16)0.0297 (16)0.0014 (13)0.0161 (14)0.0020 (13)
C30.042 (2)0.0475 (19)0.0397 (19)0.0000 (15)0.0220 (17)0.0029 (15)
C40.060 (3)0.064 (2)0.062 (3)0.0087 (19)0.043 (2)0.0009 (19)
C50.040 (2)0.077 (3)0.070 (3)0.006 (2)0.033 (2)0.009 (2)
C60.038 (2)0.079 (3)0.072 (3)0.017 (2)0.023 (2)0.014 (2)
C70.042 (2)0.063 (2)0.055 (2)0.0097 (17)0.0244 (19)0.0205 (19)
C80.0389 (19)0.0366 (16)0.0392 (19)0.0057 (13)0.0272 (17)0.0034 (14)
C90.069 (3)0.0364 (18)0.065 (3)0.0034 (17)0.040 (2)0.0005 (18)
C100.113 (4)0.034 (2)0.111 (4)0.016 (2)0.083 (4)0.014 (2)
C110.096 (4)0.073 (3)0.108 (4)0.049 (3)0.078 (4)0.053 (3)
C120.058 (3)0.094 (3)0.072 (3)0.028 (2)0.031 (2)0.042 (3)
C130.045 (2)0.060 (2)0.049 (2)0.0064 (17)0.021 (2)0.0139 (18)
Geometric parameters (Å, º) top
Se1—P12.0979 (9)C6—C71.383 (5)
P1—C11.822 (3)C6—H60.9300
P1—C21.809 (3)C7—H70.9300
P1—C81.812 (3)C8—C131.369 (5)
C1—C1i1.517 (6)C8—C91.382 (4)
C1—H1A0.9700C9—C101.378 (6)
C1—H1B0.9700C9—H90.9300
C2—C31.377 (4)C10—C111.344 (7)
C2—C71.386 (5)C10—H100.9300
C3—C41.379 (5)C11—C121.361 (7)
C3—H30.9300C11—H110.9300
C4—C51.364 (5)C12—C131.383 (5)
C4—H40.9300C12—H120.9300
C5—C61.362 (6)C13—H130.9300
C5—H50.9300
C2—P1—C8106.64 (13)C5—C6—C7120.1 (4)
C2—P1—C1105.13 (14)C5—C6—H6120.0
C8—P1—C1106.37 (15)C7—C6—H6120.0
C2—P1—Se1113.91 (10)C6—C7—C2120.4 (3)
C8—P1—Se1112.79 (11)C6—C7—H7119.8
C1—P1—Se1111.41 (11)C2—C7—H7119.8
C1i—C1—P1112.2 (3)C13—C8—C9118.6 (3)
C1i—C1—H1A109.2C13—C8—P1120.7 (2)
P1—C1—H1A109.2C9—C8—P1120.7 (3)
C1i—C1—H1B109.2C10—C9—C8120.2 (4)
P1—C1—H1B109.2C10—C9—H9119.9
H1A—C1—H1B107.9C8—C9—H9119.9
C3—C2—C7118.2 (3)C11—C10—C9120.5 (4)
C3—C2—P1119.4 (2)C11—C10—H10119.8
C7—C2—P1122.3 (2)C9—C10—H10119.8
C2—C3—C4121.1 (3)C10—C11—C12120.4 (4)
C2—C3—H3119.5C10—C11—H11119.8
C4—C3—H3119.5C12—C11—H11119.8
C5—C4—C3119.8 (3)C11—C12—C13119.8 (4)
C5—C4—H4120.1C11—C12—H12120.1
C3—C4—H4120.1C13—C12—H12120.1
C6—C5—C4120.3 (3)C8—C13—C12120.5 (4)
C6—C5—H5119.8C8—C13—H13119.7
C4—C5—H5119.8C12—C13—H13119.7
C2—P1—C1—C1i176.96 (11)P1—C2—C7—C6176.0 (3)
C8—P1—C1—C1i70.17 (14)C2—P1—C8—C13123.7 (3)
Se1—P1—C1—C1i53.12 (12)C1—P1—C8—C13124.5 (3)
C8—P1—C2—C397.9 (3)Se1—P1—C8—C132.1 (3)
C1—P1—C2—C3149.4 (3)C2—P1—C8—C955.5 (3)
Se1—P1—C2—C327.1 (3)C1—P1—C8—C956.3 (3)
C8—P1—C2—C779.1 (3)Se1—P1—C8—C9178.7 (2)
C1—P1—C2—C733.6 (3)C13—C8—C9—C100.2 (5)
Se1—P1—C2—C7155.8 (3)P1—C8—C9—C10179.4 (3)
C7—C2—C3—C41.2 (5)C8—C9—C10—C110.6 (6)
P1—C2—C3—C4176.0 (3)C9—C10—C11—C120.8 (7)
C2—C3—C4—C50.7 (6)C10—C11—C12—C130.1 (7)
C3—C4—C5—C60.0 (6)C9—C8—C13—C120.8 (5)
C4—C5—C6—C70.1 (7)P1—C8—C13—C12180.0 (3)
C5—C6—C7—C20.5 (6)C11—C12—C13—C80.7 (6)
C3—C2—C7—C61.1 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Se1ii0.932.973.751 (4)143
C1—H1B···Se1i0.972.903.533 (3)124
C13—H13···Se10.932.873.410 (4)119
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC26H24P2Se2
Mr556.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)15.828 (2), 9.2057 (19), 19.697 (3)
β (°) 121.654 (8)
V3)2443.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.17
Crystal size (mm)0.20 × 0.12 × 0.11
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2007)
Tmin, Tmax0.525, 0.701
No. of measured, independent and
observed [I > 2σ(I)] reflections
8656, 2361, 1835
Rint0.072
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.068, 1.15
No. of reflections2361
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.41

Computer programs: X-AREA (Stoe & Cie, 2007), X-RED (Stoe & Cie, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Se1—P12.0979 (9)P1—C21.809 (3)
P1—C11.822 (3)P1—C81.812 (3)
 

Acknowledgements

This work was supported by a grant from the University of Tehran.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLobana, T. S. (1992). In The Chemistry of Organophosphorous Compounds. Chichester: Wiley.  Google Scholar
First citationLobana, T. S., Wang, J. C. & Liu, C. W. (2007). Coord. Chem. Rev. 251, 91–110.  Web of Science CrossRef CAS Google Scholar
First citationRisto, M., Jahr, E. M., Oilunkaniemi, R. & Laitinen, R. S. (2007). Acta Cryst. E63, o4169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2007). X-AREA, X-SHAPE and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds