metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­cobalt(II)]-μ-4,4′-bi­pyridine-κ2N:N′] bis­­(perchlorate) 4,4′-bi­pyridine disolvate dihydrate]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 23 October 2008; accepted 28 October 2008; online 31 October 2008)

In the title compound, {[Co(C10H8N2)(H2O)4](ClO4)2·2C10H8N2·2H2O}n, slightly distorted octa­hedrally coordinated CoII ions situated on inversion centers are linked into polycationic chains through 4,4′-bipyridine tethering ligands. These are connected into supra­molecular layers by hydrogen bonding involving aqua ligands, perchlorate anions and uncoordinated water mol­ecules. A twofold inter­penetrated primitive cubic supra­molecular network is formed by the inter­action of pseudo-layers by hydrogen bonding between aqua ligands and unligated 4,4′-bipyridine mol­ecules.

Related literature

For a review of coordination polymers containing 4,4′-bipyridine, see: Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8N2)(H2O)4](ClO4)2·2C10H8N2·2H2O

  • Mr = 834.48

  • Triclinic, [P \overline 1]

  • a = 8.9590 (17) Å

  • b = 10.846 (2) Å

  • c = 11.433 (2) Å

  • α = 64.290 (2)°

  • β = 71.747 (2)°

  • γ = 66.848 (2)°

  • V = 906.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 173 (2) K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.793, Tmax = 0.845

  • 10254 measured reflections

  • 4087 independent reflections

  • 3754 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.085

  • S = 1.06

  • 4087 reflections

  • 259 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O1W 0.856 (15) 1.886 (16) 2.7406 (19) 176 (2)
O1—H1B⋯N7i 0.852 (15) 1.943 (16) 2.7744 (18) 165 (2)
O1W—H1WA⋯O3ii 0.868 (16) 2.079 (17) 2.924 (2) 164 (2)
O1W—H1WB⋯O6 0.881 (16) 2.192 (16) 3.070 (3) 174 (2)
O2—H2A⋯N6iii 0.883 (15) 1.826 (15) 2.7058 (19) 174.1 (19)
O2—H2B⋯O3iv 0.849 (15) 2.212 (17) 2.957 (2) 146.5 (18)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) x+1, y, z; (iv) x+1, y-1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal Maker (Palmer, 2007[Palmer, D. (2007). Crystal Maker. Bicester, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The dipodal tethering ligand 4,4'-bipyridine has proven extremely advantageous for the construction of coordination polymer solids (Yaghi et al., 1998). In an attempt to prepare a divalent cobalt coordination polymer incorporating both 2-methylglutarate and 4,4'-bipyridine, yellow block crystals of the title compound were obtained.

The asymmetric unit of the title compound contains a cobalt atom on a crystallographic inversion center, two aqua ligands, one-half of a 4,4'-bipyridine ligand, one uncoordinated perchlorate anion, one unligated 4,4'-bipyridine molecule and one water molecule of crystallization (Figure 1).

Tethering 4,4'-bipyridine ligands connect the CoII ions into one-dimensional cationic {[Co(H2O)4(C10H8N2)]n2n+ chain motifs that are oriented parallel to the c crystal direction. The Co···Co through-ligand contact distance is 11.433 (2) Å. These chains are connected into pseudolayer patterns by hydrogen-bonding mechanisms involving the aqua ligands, perchlorate anions, and water molecules of crystallization (Figure 2), which lie parallel to the (1 1 0) crystal planes. Unligated 4,4'-bipyridine molecules project axially into and out of the apertures in each pseudolayer.

In turn, the pseudolayers stack in an AB arrangement, and interact with their next nearest neighbors by hydrogen-bonding donation from aqua ligands to the uncoordinated 4,4'-bipyridine molecules to form the three-dimensional structure of the title compound (Figure 3). As a result a twofold interpenetrated primitive cubic supramolecular network can be invoked (Figure 4).

Related literature top

For a review of coordination polymers containing 4,4'-bipyridine, see: Yaghi et al. (1998).

Experimental top

All chemicals were obtained commercially. Cobalt perchlorate hexahydrate (135 mg, 0.37 mmol), 2-methylglutaric acid (59 mg, 0.37 mmol) and 4,4'-bipyridine (116 mg, 0.74 mmol) were placed into 10 ml H2O in a 23 ml Teflon-lined Parr acid digestion bomb. The bomb was heated at 120° C for 48 h and was then allowed to cool to 25° C. Yellow-orange crystals of the title compound were obtained along with a reddish amorphous solid.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). All H atoms bound to O atoms were found via Fourier difference map, restrained with O—H = 0.89 Å o, and refined with Uiso=1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as gray sticks. Color codes: dark blue Co, light blue N, red O, orange O within unligated water molecule, black C, green Cl.
[Figure 2] Fig. 2. A single supramolecular layer in the title compound, featuring one-dimensional [Co(H2O)4(4,4-bipyridine)]n chains. Hydrogen bonding is indicated as dashed lines.
[Figure 3] Fig. 3. Packing diagram illustrating the ABAB layer stacking pattern, which forms the 3-D crystal structure of the title compound through hydrogen bonding between ligated water molecules and uncoordinated 4,4'-bipyridine molecules.
[Figure 4] Fig. 4. Schematic perspective of the twofold interpenetrated primitive cubic supramolecular network of the title compound.
catena-Poly[[[tetraaquacobalt(II)]-µ-4,4'-bipyridine-κ2N:N'] perchlorate 4,4'-bipyridine disolvate dihydrate] top
Crystal data top
[Co(C10H8N2)(H2O)4](ClO4)2·2C10H8N2·2H2OZ = 1
Mr = 834.48F(000) = 431
Triclinic, P1Dx = 1.528 Mg m3
a = 8.9590 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.846 (2) ÅCell parameters from 10254 reflections
c = 11.433 (2) Åθ = 2.0–28.2°
α = 64.290 (2)°µ = 0.70 mm1
β = 71.747 (2)°T = 173 K
γ = 66.848 (2)°Block, yellow
V = 906.6 (3) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART 1K
diffractometer
4087 independent reflections
Radiation source: fine-focus sealed tube3754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 28.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.793, Tmax = 0.845k = 1414
10254 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.4101P]
where P = (Fo2 + 2Fc2)/3
4087 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.35 e Å3
9 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Co(C10H8N2)(H2O)4](ClO4)2·2C10H8N2·2H2Oγ = 66.848 (2)°
Mr = 834.48V = 906.6 (3) Å3
Triclinic, P1Z = 1
a = 8.9590 (17) ÅMo Kα radiation
b = 10.846 (2) ŵ = 0.70 mm1
c = 11.433 (2) ÅT = 173 K
α = 64.290 (2)°0.35 × 0.30 × 0.25 mm
β = 71.747 (2)°
Data collection top
Bruker SMART 1K
diffractometer
4087 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3754 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.845Rint = 0.018
10254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0309 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.35 e Å3
4087 reflectionsΔρmin = 0.32 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.50000.02019 (9)
Cl10.08313 (6)0.68822 (5)0.28417 (4)0.03844 (12)
O10.49177 (16)0.21628 (12)0.41627 (11)0.0331 (3)
H1A0.432 (2)0.272 (2)0.4590 (19)0.040*
H1B0.527 (2)0.269 (2)0.3396 (16)0.040*
O1W0.31208 (19)0.40133 (17)0.54939 (15)0.0471 (3)
H1WA0.233 (3)0.366 (2)0.602 (2)0.057*
H1WB0.258 (3)0.4859 (19)0.499 (2)0.057*
O20.75905 (14)0.06554 (13)0.46036 (11)0.0291 (2)
H2A0.818 (2)0.0077 (19)0.4057 (18)0.035*
H2B0.809 (2)0.1404 (17)0.4406 (19)0.035*
O30.0888 (2)0.76945 (18)0.28167 (18)0.0592 (4)
O40.1008 (2)0.53921 (16)0.32135 (15)0.0576 (4)
O50.1756 (2)0.73950 (19)0.15629 (15)0.0586 (4)
O60.1383 (3)0.7065 (2)0.37918 (17)0.0661 (5)
N10.49875 (15)0.00436 (13)0.31409 (11)0.0222 (2)
N60.05017 (19)0.09941 (17)0.28287 (17)0.0413 (4)
N70.3813 (2)0.59027 (15)0.19049 (14)0.0368 (3)
C10.5839 (2)0.06703 (17)0.20323 (14)0.0269 (3)
H10.64380.11630.20980.032*
C20.5878 (2)0.07151 (17)0.07951 (14)0.0263 (3)
H20.64880.12300.00570.032*
C30.49982 (17)0.00143 (15)0.06583 (13)0.0195 (3)
C40.41216 (18)0.07678 (16)0.18123 (14)0.0240 (3)
H40.35280.12840.17770.029*
C50.41367 (19)0.07458 (16)0.30132 (14)0.0246 (3)
H50.35270.12420.37670.030*
C110.0014 (3)0.1789 (2)0.3167 (2)0.0486 (5)
H110.02960.17230.40430.058*
C120.0890 (3)0.2709 (2)0.22857 (18)0.0462 (5)
H120.12110.32310.25760.055*
C130.13149 (19)0.28494 (16)0.09666 (16)0.0292 (3)
C140.0826 (2)0.20049 (19)0.06118 (19)0.0358 (4)
H140.10890.20490.02570.043*
C150.0056 (2)0.1098 (2)0.1566 (2)0.0413 (4)
H150.03550.05300.13150.050*
C160.3327 (3)0.5801 (2)0.06572 (18)0.0414 (4)
H160.35180.64300.04100.050*
C170.2551 (3)0.4816 (2)0.03043 (17)0.0404 (4)
H170.22530.47870.11700.048*
C180.22204 (19)0.38758 (16)0.00284 (15)0.0279 (3)
C190.2767 (3)0.3953 (2)0.13273 (19)0.0515 (5)
H190.26080.33300.16030.062*
C200.3555 (3)0.4965 (2)0.22154 (19)0.0544 (6)
H200.39240.49880.30790.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02731 (15)0.02675 (15)0.01189 (13)0.01560 (11)0.00041 (10)0.00699 (10)
Cl10.0476 (3)0.0431 (2)0.0316 (2)0.0248 (2)0.00596 (17)0.01835 (18)
O10.0526 (7)0.0292 (6)0.0185 (5)0.0218 (5)0.0047 (5)0.0082 (4)
O1W0.0497 (8)0.0490 (8)0.0415 (8)0.0157 (7)0.0008 (6)0.0204 (6)
O20.0291 (6)0.0366 (6)0.0254 (5)0.0162 (5)0.0013 (4)0.0126 (5)
O30.0490 (9)0.0616 (10)0.0690 (11)0.0162 (7)0.0001 (8)0.0324 (8)
O40.0855 (12)0.0422 (8)0.0454 (8)0.0285 (8)0.0030 (8)0.0176 (6)
O50.0724 (10)0.0718 (10)0.0419 (8)0.0498 (9)0.0185 (7)0.0240 (7)
O60.0940 (13)0.0762 (11)0.0512 (10)0.0387 (10)0.0143 (9)0.0300 (9)
N10.0272 (6)0.0290 (6)0.0148 (5)0.0139 (5)0.0012 (4)0.0084 (5)
N60.0317 (7)0.0383 (8)0.0466 (9)0.0179 (6)0.0048 (6)0.0035 (7)
N70.0455 (8)0.0305 (7)0.0288 (7)0.0171 (6)0.0015 (6)0.0062 (6)
C10.0365 (8)0.0369 (8)0.0179 (7)0.0237 (7)0.0007 (6)0.0104 (6)
C20.0355 (8)0.0357 (8)0.0150 (6)0.0230 (7)0.0013 (5)0.0083 (6)
C30.0222 (6)0.0232 (6)0.0149 (6)0.0080 (5)0.0027 (5)0.0077 (5)
C40.0295 (7)0.0316 (7)0.0175 (7)0.0175 (6)0.0021 (5)0.0086 (5)
C50.0311 (7)0.0325 (7)0.0152 (6)0.0188 (6)0.0002 (5)0.0073 (5)
C110.0590 (12)0.0563 (12)0.0314 (9)0.0358 (10)0.0022 (8)0.0037 (8)
C120.0651 (13)0.0516 (11)0.0308 (9)0.0385 (10)0.0033 (8)0.0073 (8)
C130.0276 (7)0.0241 (7)0.0303 (8)0.0082 (6)0.0051 (6)0.0044 (6)
C140.0310 (8)0.0381 (9)0.0398 (9)0.0132 (7)0.0030 (7)0.0147 (7)
C150.0327 (9)0.0415 (10)0.0537 (11)0.0185 (8)0.0027 (8)0.0170 (8)
C160.0592 (12)0.0392 (9)0.0326 (9)0.0292 (9)0.0017 (8)0.0125 (7)
C170.0576 (11)0.0425 (10)0.0258 (8)0.0297 (9)0.0053 (7)0.0119 (7)
C180.0285 (7)0.0231 (7)0.0271 (8)0.0075 (6)0.0041 (6)0.0053 (6)
C190.0893 (16)0.0470 (11)0.0311 (9)0.0427 (11)0.0009 (10)0.0131 (8)
C200.0916 (17)0.0531 (12)0.0263 (9)0.0436 (12)0.0055 (10)0.0123 (8)
Geometric parameters (Å, º) top
Co1—O1i2.0938 (12)C2—C31.3950 (19)
Co1—O12.0938 (12)C2—H20.9300
Co1—O2i2.1024 (12)C3—C41.3948 (19)
Co1—O22.1024 (12)C3—C3ii1.491 (3)
Co1—N12.1500 (12)C4—C51.3878 (19)
Co1—N1i2.1500 (12)C4—H40.9300
Cl1—O51.4251 (15)C5—H50.9300
Cl1—O41.4361 (15)C11—C121.385 (3)
Cl1—O61.4365 (16)C11—H110.9300
Cl1—O31.4450 (17)C12—C131.389 (3)
O1—H1A0.856 (15)C12—H120.9300
O1—H1B0.852 (15)C13—C141.395 (2)
O1W—H1WA0.868 (16)C13—C181.492 (2)
O1W—H1WB0.881 (16)C14—C151.387 (3)
O2—H2A0.883 (15)C14—H140.9300
O2—H2B0.849 (15)C15—H150.9300
N1—C11.3399 (18)C16—C171.385 (2)
N1—C51.3435 (18)C16—H160.9300
N6—C111.333 (3)C17—C181.384 (2)
N6—C151.337 (3)C17—H170.9300
N7—C161.322 (2)C18—C191.386 (3)
N7—C201.328 (3)C19—C201.388 (3)
C1—C21.384 (2)C19—H190.9300
C1—H10.9300C20—H200.9300
O1i—Co1—O1180.000 (1)C4—C3—C2116.62 (12)
O1i—Co1—O2i91.24 (5)C4—C3—C3ii121.98 (15)
O1—Co1—O2i88.76 (5)C2—C3—C3ii121.39 (15)
O1i—Co1—O288.76 (5)C5—C4—C3119.88 (13)
O1—Co1—O291.24 (5)C5—C4—H4120.1
O2i—Co1—O2180.0C3—C4—H4120.1
O1i—Co1—N187.77 (5)N1—C5—C4123.30 (13)
O1—Co1—N192.23 (5)N1—C5—H5118.3
O2i—Co1—N190.66 (4)C4—C5—H5118.3
O2—Co1—N189.34 (4)N6—C11—C12123.61 (19)
O1i—Co1—N1i92.23 (5)N6—C11—H11118.2
O1—Co1—N1i87.77 (5)C12—C11—H11118.2
O2i—Co1—N1i89.34 (4)C11—C12—C13119.77 (18)
O2—Co1—N1i90.66 (4)C11—C12—H12120.1
N1—Co1—N1i180.0C13—C12—H12120.1
O5—Cl1—O4110.45 (9)C12—C13—C14116.80 (16)
O5—Cl1—O6110.12 (11)C12—C13—C18121.64 (16)
O4—Cl1—O6109.46 (11)C14—C13—C18121.55 (15)
O5—Cl1—O3108.74 (11)C15—C14—C13119.38 (17)
O4—Cl1—O3108.86 (11)C15—C14—H14120.3
O6—Cl1—O3109.19 (11)C13—C14—H14120.3
Co1—O1—H1A119.4 (14)N6—C15—C14123.67 (18)
Co1—O1—H1B133.1 (14)N6—C15—H15118.2
H1A—O1—H1B106.9 (18)C14—C15—H15118.2
H1WA—O1W—H1WB102 (2)N7—C16—C17124.13 (17)
Co1—O2—H2A123.8 (13)N7—C16—H16117.9
Co1—O2—H2B118.8 (13)C17—C16—H16117.9
H2A—O2—H2B101.8 (18)C18—C17—C16119.71 (16)
C1—N1—C5116.71 (12)C18—C17—H17120.1
C1—N1—Co1119.99 (9)C16—C17—H17120.1
C5—N1—Co1123.29 (9)C17—C18—C19116.31 (15)
C11—N6—C15116.74 (16)C17—C18—C13121.17 (15)
C16—N7—C20116.24 (15)C19—C18—C13122.51 (16)
N1—C1—C2123.68 (13)C18—C19—C20119.67 (18)
N1—C1—H1118.2C18—C19—H19120.2
C2—C1—H1118.2C20—C19—H19120.2
C1—C2—C3119.79 (13)N7—C20—C19123.85 (18)
C1—C2—H2120.1N7—C20—H20118.1
C3—C2—H2120.1C19—C20—H20118.1
O1i—Co1—N1—C1141.42 (12)N6—C11—C12—C130.8 (4)
O1—Co1—N1—C138.58 (12)C11—C12—C13—C141.6 (3)
O2i—Co1—N1—C1127.37 (12)C11—C12—C13—C18177.17 (18)
O2—Co1—N1—C152.63 (12)C12—C13—C14—C150.7 (3)
O1i—Co1—N1—C539.55 (12)C18—C13—C14—C15178.08 (16)
O1—Co1—N1—C5140.45 (12)C11—N6—C15—C141.9 (3)
O2i—Co1—N1—C551.66 (12)C13—C14—C15—N61.1 (3)
O2—Co1—N1—C5128.34 (12)C20—N7—C16—C171.5 (3)
C5—N1—C1—C20.1 (2)N7—C16—C17—C181.0 (3)
Co1—N1—C1—C2179.04 (13)C16—C17—C18—C192.6 (3)
N1—C1—C2—C30.2 (3)C16—C17—C18—C13177.01 (17)
C1—C2—C3—C40.4 (2)C12—C13—C18—C175.5 (3)
C1—C2—C3—C3ii179.68 (16)C14—C13—C18—C17173.20 (17)
C2—C3—C4—C51.0 (2)C12—C13—C18—C19174.9 (2)
C3ii—C3—C4—C5179.08 (16)C14—C13—C18—C196.4 (3)
C1—N1—C5—C40.6 (2)C17—C18—C19—C201.8 (3)
Co1—N1—C5—C4179.65 (11)C13—C18—C19—C20177.9 (2)
C3—C4—C5—N11.1 (2)C16—N7—C20—C192.5 (4)
C15—N6—C11—C120.9 (3)C18—C19—C20—N70.8 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1W0.86 (2)1.89 (2)2.7406 (19)176 (2)
O1—H1B···N7iii0.85 (2)1.94 (2)2.7744 (18)165 (2)
O1W—H1WA···O3iv0.87 (2)2.08 (2)2.924 (2)164 (2)
O1W—H1WB···O60.88 (2)2.19 (2)3.070 (3)174 (2)
O2—H2A···N6v0.88 (2)1.83 (2)2.7058 (19)174 (2)
O2—H2B···O3vi0.85 (2)2.21 (2)2.957 (2)147 (2)
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x+1, y, z; (vi) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)(H2O)4](ClO4)2·2C10H8N2·2H2O
Mr834.48
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.9590 (17), 10.846 (2), 11.433 (2)
α, β, γ (°)64.290 (2), 71.747 (2), 66.848 (2)
V3)906.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.793, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
10254, 4087, 3754
Rint0.018
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.085, 1.06
No. of reflections4087
No. of parameters259
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.32

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Crystal Maker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1W0.856 (15)1.886 (16)2.7406 (19)176 (2)
O1—H1B···N7i0.852 (15)1.943 (16)2.7744 (18)165 (2)
O1W—H1WA···O3ii0.868 (16)2.079 (17)2.924 (2)164 (2)
O1W—H1WB···O60.881 (16)2.192 (16)3.070 (3)174 (2)
O2—H2A···N6iii0.883 (15)1.826 (15)2.7058 (19)174.1 (19)
O2—H2B···O3iv0.849 (15)2.212 (17)2.957 (2)146.5 (18)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y1, z.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund and Michigan State University for funding this work.

References

First citationBruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPalmer, D. (2007). Crystal Maker. Bicester, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds