metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­pyrazine­platinum(II) bis­­(tetra­fluoro­borate) aceto­nitrile hemisolvate

aDepartment of Chemistry, Austin College, 900 North Grand, Sherman, TX 75090-4400, USA, and bOak Ridge National Laboratory, PO Box 2008 MS6460, Oak Ridge, TN 37831-6460, USA
*Correspondence e-mail: bsmucker@austincollege.edu

(Received 1 September 2008; accepted 15 October 2008; online 22 October 2008)

The improved synthesis and characterization of tetra­pyrazine­platinum(II) bis­(tetra­fluoro­borate) acetonitrile hemisolvate, [Pt(C4H4N2)4](BF4)2·0.5CH3CN, is reported. The unit cell contains a half equivalent of an acetonitrile solvent mol­ecule per tetra­pyrazine­platinum(II) ion. The coordination geometry of the PtII ion is almost square-planar, with the Pt atom residing on an inversion center. The BF4 counter-anion, located at a general position, has an idealized tetra­hedral geometry and an acetonitrile solvent mol­ecule, the methyl group of which is disordered over two equal positions, sits on a twofold rotation axis.

Related literature

For general background, see: Derossi et al. (2007[Derossi, S., Casanova, M., Iengo, E., Zangrando, E., Stener, M. & Alessio, E. (2007). Inorg. Chem. 46, 11243-11253.]); Klika et al. (2007[Klika, K. D., Kivel, H., Ovcharenko, V. V., Nieminen, V., Sillanp, R. & Arpahlati, J. (2007). Dalton Trans. pp. 3966-3970.]); Pearson et al. (1960[Pearson, R. G., Gray, H. B. & Basolo, F. (1960). J. Am. Chem. Soc. 82, 787-792.]); Schweiger et al. (2001[Schweiger, S., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). Angew. Chem. Int. Ed. 40, 3467-3469.]); Wendt et al. (1997[Wendt, O. F., Kaiser, N.-F. K. & Elding, L. I. (1997). J. Chem. Soc. Dalton Trans. pp. 4733-4737.]); Willermann et al. (2006[Willermann, M., Mulcahy, C., Sigel, R. K. O., Cerd, M. M., Freisinger, E., Miguel, P. J. S., Roitzsch, M. & Lippert, B. (2006). Inorg. Chem. 45, 2093-2099.]). For related structures, see: Wei et al. (1989[Wei, C. H., Hingerty, B. E. & Busing, W. R. (1989). Acta Cryst. C45, 26-30.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C4H4N2)4](BF4)2·0.5C2H3N

  • Mr = 709.6

  • Monoclinic, C 2/c

  • a = 13.862 (4) Å

  • b = 10.819 (3) Å

  • c = 17.262 (5) Å

  • β = 91.607 (3)°

  • V = 2587.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.50 mm−1

  • T = 296 (2) K

  • 0.27 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.246, Tmax = 0.352

  • 11212 measured reflections

  • 2736 independent reflections

  • 1846 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.114

  • S = 1.20

  • 2736 reflections

  • 167 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis of the nitrate salt of tetrapyrazineplatinum(II), which has use as a precursor to other platinum compounds, was recently reported in low yield (Klika et al., 2007). In our pursuit of utilizing pyrazine as a bridging ligand to form compounds which add to the growing number of supramolecular metallacycles such as those by Schweiger et al. (2001), Willermann et al. (2006), and Derossi et al. (2007), to name but a few, we sought a more favorable yield for this tetrapyrazineplatinum(II) precursor. We settled on a synthetic method that generates a high yield of tetrapyrazineplatinum(II) tetrafluoroborate following the use of a large excess of pyrazine and nitromethane, a non-coordinating solvent which Pearson et al. (1960) reported as increasing the lability of a ligand bound to PtII.

The structure of the cation of tetrapyrazineplatinum(II) tetrafluoroborate (Figure 1) has a square planar conformation. The PtII ion resides on an inversion center with Pt1—N1 and Pt1—N2 distances of 2.026 (6) and 2.012 (5) Å, respectively. The two unique coordinated pyrazine ligands (N1 C1 C2 C3 C4 N3, N2 C5 C6 C7 C8 N4) are slightly canted relative to the (N1—Pt—N2) plane (dihedral angles between pyrazine planes and N1—Pt1—N2 plane are 84.1 (3)° and 69.3 (3)°, respectively). The canted conformation of the pyrazine ligands around the platinum atom is similar to that of pyridine in the closely-related tetrapyridine platinum(II) chloride trihydrate reported by Wei et al. (1989).

The tetrafluoroborate anion is positioned near three tetrapyrazineplatinum(II) cations and oriented such that every flourine atom is between 2.1 and 2.4Å from a hydrogen atom in the 3 or 5 position of a coordinated pyrazine. (Figure 2).

Related literature top

For related literature, see: Derossi et al. (2007); Klika et al. (2007); Pearson et al. (1960); Schweiger et al. (2001); Wei et al. (1989); Wendt et al. (1997); Willermann et al. (2006). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···; etc. Please revise this section as indicated.

Experimental top

53 mg (0.099 mmol) of [Pt(NCMe)4](BF4)2, (synthesized according to Wendt et al. (1997)) and 344 mg (4.3 mmol) of pyrazine (Aldrich) were dissolved in 11 ml of degassed MeNO2. The schlenk flask was covered in foil and the stirring solution was moderately heated under a nitrogen environment for 18 h. 50 ml of degassed Et2O was added, the solution was cooled in an ice bath, and the resulting white solid was isolated by removal of the liquid via cannula and washing with 2x5mL degassed Et2O. The resulting solid was vacuum dried to give 67 mg (98% yield.) of a white solid. FT—IR (nujol, CsI plates): (cm-1) 1433(s,C—H), 1055 (b,B—F), 520 and 503 (w, Pt—N). 1H NMR (d-MeNO2): 9.00 (m) and 8.79 (m). ESI-M. S. 602 (Pt(C4H4N2)4)(BF4)+), 258 ([Pt(C4H4N2)4]2+).

Pale yellow crystals were grown by liquid diffusion of diethylether into a nitromethane solution containing tetrapyrazineplatinum(II) tetrafluoroborate and excess pyrazine.

Refinement top

The positions of the pyrazine and methyl H atoms were refined using a riding model, in accordance with the HFIX 43 and HFIX 137 instructions of SHELXL97, with pyrazine C—H distances of 0.93 Å, methyl C—H distance of 0.96 Å, and with Uiso(H) values of 1.2Ueq(C) for pyrazine and 1.5Ueq(C) for methyl group in the acetonitrile solvent molecule. The acetonitrile solvate resides on a crystallographic two-fold axis with the methyl H atoms disordered in two position. Each of the methyl H atoms were refined accordingly as half occupied. The largest positive and negative peaks in the final difference map are 1.58 and -0.45 Å, respectively, from the Pt atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of tetrapyrazineplatinum(II) tetrafluoroborate. Unlabelled atoms are generated via inversion through Pt1, symmetry code: -x, -y + 1, -z (50% probability displacement ellipsoids).
[Figure 2] Fig. 2. View of the hydrogen bonding between the tetrafluoroborate anion and the tetrapyrazineplatinum(II) cation (50% probability displacement ellipsoids).
tetrapyrazineplatinum(II) bis(tetrafluoroborate) acetonitrile hemisolvate top
Crystal data top
[Pt(C4H4N2)4](BF4)2·0.5C2H3NF(000) = 1356
Mr = 709.6Dx = 1.821 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8501 reflections
a = 13.862 (4) Åθ = 2.3–27.8°
b = 10.819 (3) ŵ = 5.50 mm1
c = 17.262 (5) ÅT = 296 K
β = 91.607 (3)°Block, pale yellow
V = 2587.8 (13) Å30.27 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1846 reflections with I > 2σ(I)
ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 26.7°, θmin = 2.4°
Tmin = 0.246, Tmax = 0.352h = 1717
11212 measured reflectionsk = 1313
2736 independent reflectionsl = 2121
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0518P)2 + 10.4546P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.012
S = 1.20Δρmax = 1.58 e Å3
2736 reflectionsΔρmin = 0.45 e Å3
167 parameters
Crystal data top
[Pt(C4H4N2)4](BF4)2·0.5C2H3NV = 2587.8 (13) Å3
Mr = 709.6Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.862 (4) ŵ = 5.50 mm1
b = 10.819 (3) ÅT = 296 K
c = 17.262 (5) Å0.27 × 0.21 × 0.19 mm
β = 91.607 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2736 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1846 reflections with I > 2σ(I)
Tmin = 0.246, Tmax = 0.352Rint = 0.039
11212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0518P)2 + 10.4546P]
where P = (Fo2 + 2Fc2)/3
2736 reflectionsΔρmax = 1.58 e Å3
167 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt100.500.04102 (14)
N10.0732 (4)0.5078 (5)0.1031 (4)0.0463 (13)
N20.1147 (4)0.4171 (5)0.0466 (3)0.0435 (13)
N30.1705 (8)0.5173 (9)0.2459 (5)0.090 (3)
N40.2743 (5)0.3006 (7)0.1078 (4)0.0693 (19)
C10.1234 (7)0.6071 (9)0.1267 (5)0.072 (3)
H1A0.12670.67560.09430.087*
C20.1699 (8)0.6096 (12)0.1971 (6)0.092 (3)
H2A0.20310.68110.21130.11*
C30.1246 (7)0.4181 (12)0.2223 (5)0.081 (3)
H3A0.12570.34910.25450.097*
C40.0729 (6)0.4100 (8)0.1496 (5)0.060 (2)
H4A0.040.33830.13520.072*
C50.1983 (6)0.4785 (6)0.0567 (5)0.0509 (19)
H5A0.20270.56150.0430.061*
C60.2764 (6)0.4203 (9)0.0868 (5)0.066 (2)
H6A0.33290.4650.0930.079*
C70.1921 (7)0.2422 (8)0.0975 (5)0.063 (2)
H7A0.18810.15920.11120.076*
C80.1128 (6)0.2975 (7)0.0678 (5)0.058 (2)
H8A0.05660.25180.06220.07*
B10.1048 (10)0.1540 (11)0.4316 (8)0.081 (3)
F10.1311 (10)0.1855 (9)0.5039 (6)0.226 (6)
F20.1324 (7)0.2427 (8)0.3805 (6)0.163 (4)
F30.0102 (6)0.1483 (9)0.4290 (6)0.172 (4)
F40.1480 (6)0.0465 (7)0.4153 (5)0.125 (3)
N1S00.224 (3)0.250.174 (15)*0.5
C1S00.124 (3)0.250.093 (9)*0.5
C2S00.014 (3)0.250.16 (2)*0.5
H2S10.0390.04350.2070.241*0.25
H2S20.02590.04350.29760.241*0.25
H2S30.06490.04350.24540.241*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0407 (2)0.0471 (2)0.0350 (2)0.00181 (19)0.00349 (13)0.00503 (18)
N10.045 (3)0.053 (3)0.041 (3)0.007 (3)0.003 (2)0.006 (3)
N20.045 (3)0.049 (3)0.037 (3)0.004 (3)0.003 (2)0.002 (2)
N30.092 (7)0.128 (9)0.049 (5)0.012 (5)0.026 (4)0.011 (5)
N40.054 (4)0.081 (5)0.073 (5)0.015 (4)0.003 (3)0.014 (4)
C10.082 (6)0.074 (6)0.060 (5)0.027 (5)0.016 (5)0.004 (4)
C20.101 (8)0.111 (9)0.062 (6)0.038 (7)0.028 (6)0.007 (6)
C30.080 (6)0.108 (9)0.053 (5)0.021 (6)0.004 (5)0.013 (6)
C40.063 (5)0.062 (5)0.055 (5)0.006 (4)0.016 (4)0.004 (4)
C50.047 (4)0.047 (5)0.058 (5)0.000 (3)0.001 (3)0.001 (3)
C60.046 (4)0.080 (6)0.072 (6)0.002 (4)0.005 (4)0.001 (5)
C70.074 (6)0.049 (5)0.066 (5)0.016 (4)0.004 (4)0.013 (4)
C80.061 (5)0.052 (4)0.062 (5)0.004 (4)0.000 (4)0.012 (4)
B10.091 (9)0.064 (7)0.088 (9)0.024 (6)0.018 (7)0.003 (6)
F10.329 (15)0.179 (9)0.166 (9)0.089 (9)0.080 (10)0.091 (8)
F20.192 (9)0.109 (6)0.188 (9)0.034 (6)0.032 (7)0.062 (6)
F30.088 (5)0.200 (9)0.227 (11)0.021 (6)0.015 (6)0.031 (7)
F40.172 (8)0.073 (3)0.131 (6)0.050 (5)0.001 (5)0.006 (4)
Geometric parameters (Å, º) top
Pt1—N2i2.012 (5)C4—H4A0.93
Pt1—N22.012 (5)C5—C61.368 (11)
Pt1—N1i2.026 (6)C5—H5A0.93
Pt1—N12.026 (6)C6—H6A0.93
N1—C41.327 (10)C7—C81.364 (11)
N1—C11.337 (10)C7—H7A0.93
N2—C81.345 (9)C8—H8A0.93
N2—C51.352 (9)B1—F31.312 (14)
N3—C31.307 (14)B1—F11.335 (14)
N3—C21.307 (13)B1—F41.342 (12)
N4—C71.319 (11)B1—F21.365 (14)
N4—C61.344 (11)N1S—C1S1.086 (14)
C1—C21.360 (12)C1S—C2S1.492 (10)
C1—H1A0.93C2S—H2S10.96
C2—H2A0.93C2S—H2S20.96
C3—C41.432 (12)C2S—H2S30.96
C3—H3A0.93
N2i—Pt1—N2180.0 (3)N2—C5—C6120.9 (7)
N2i—Pt1—N1i89.3 (2)N2—C5—H5A119.6
N2—Pt1—N1i90.7 (2)C6—C5—H5A119.6
N2i—Pt1—N190.7 (2)N4—C6—C5122.3 (8)
N2—Pt1—N189.3 (2)N4—C6—H6A118.8
N1i—Pt1—N1180.00 (18)C5—C6—H6A118.8
C4—N1—C1117.9 (7)N4—C7—C8123.3 (8)
C4—N1—Pt1119.2 (5)N4—C7—H7A118.4
C1—N1—Pt1123.0 (5)C8—C7—H7A118.4
C8—N2—C5116.6 (6)N2—C8—C7121.0 (8)
C8—N2—Pt1121.9 (5)N2—C8—H8A119.5
C5—N2—Pt1121.5 (5)C7—C8—H8A119.5
C3—N3—C2115.6 (9)F3—B1—F1106.8 (12)
C7—N4—C6115.9 (7)F3—B1—F4113.9 (12)
N1—C1—C2121.1 (9)F1—B1—F4107.8 (10)
N1—C1—H1A119.4F3—B1—F2108.0 (10)
C2—C1—H1A119.4F1—B1—F2110.5 (12)
N3—C2—C1123.8 (10)F4—B1—F2109.8 (11)
N3—C2—H2A118.1N1S—C1S—C2S180.000 (5)
C1—C2—H2A118.1C1S—C2S—H2S1109.5
N3—C3—C4123.4 (10)C1S—C2S—H2S2109.5
N3—C3—H3A118.3H2S1—C2S—H2S2109.5
C4—C3—H3A118.3C1S—C2S—H2S3109.5
N1—C4—C3118.1 (8)H2S1—C2S—H2S3109.5
N1—C4—H4A120.9H2S2—C2S—H2S3109.5
C3—C4—H4A120.9
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pt(C4H4N2)4](BF4)2·0.5C2H3N
Mr709.6
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)13.862 (4), 10.819 (3), 17.262 (5)
β (°) 91.607 (3)
V3)2587.8 (13)
Z4
Radiation typeMo Kα
µ (mm1)5.50
Crystal size (mm)0.27 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.246, 0.352
No. of measured, independent and
observed [I > 2σ(I)] reflections
11212, 2736, 1846
Rint0.039
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.114, 1.20
No. of reflections2736
No. of parameters167
No. of restraints2
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0518P)2 + 10.4546P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.58, 0.45

Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

 

Acknowledgements

This research was funded by a chemistry department grant from the Welch Foundation (grant No. AD-0007). X-ray data were collected at the University of North Texas. We are grateful to Guido F. Verbeck at UNT for the MS measurements.

References

First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerossi, S., Casanova, M., Iengo, E., Zangrando, E., Stener, M. & Alessio, E. (2007). Inorg. Chem. 46, 11243–11253.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKlika, K. D., Kivel, H., Ovcharenko, V. V., Nieminen, V., Sillanp, R. & Arpahlati, J. (2007). Dalton Trans. pp. 3966–3970.  Web of Science CSD CrossRef Google Scholar
First citationPearson, R. G., Gray, H. B. & Basolo, F. (1960). J. Am. Chem. Soc. 82, 787–792.  CrossRef CAS Web of Science Google Scholar
First citationSchweiger, S., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). Angew. Chem. Int. Ed. 40, 3467–3469.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, C. H., Hingerty, B. E. & Busing, W. R. (1989). Acta Cryst. C45, 26–30.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWendt, O. F., Kaiser, N.-F. K. & Elding, L. I. (1997). J. Chem. Soc. Dalton Trans. pp. 4733–4737.  Web of Science CrossRef Google Scholar
First citationWillermann, M., Mulcahy, C., Sigel, R. K. O., Cerd, M. M., Freisinger, E., Miguel, P. J. S., Roitzsch, M. & Lippert, B. (2006). Inorg. Chem. 45, 2093–2099.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds