organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Pyrazin-2-yl)aniline

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 September 2008; accepted 4 October 2008; online 11 October 2008)

The two aromatic rings in the title compound, C10H9N3, are inclined at 15.2 (1)° to each other; this opens up the angle at the amino N atom to 130.4 (1)°. The amino N atom forms a hydrogen bond to the 4-N atom of an adjacent mol­ecule to create a chain motif.

Related literature

For the structure of amino­pyrazine, see: Chao et al. (1976[Chao, M., Schempp, E. & Rosenstein, R. D. (1976). Acta Cryst. B32, 288-290.]). For the structure of 2-pyrazinyl-N-2-nitro­phenyl­aniline; see: Parsons et al. (2006[Parsons, S., Wharton, S., McNab, H., Parkin, A. & Johnstone, R. (2006). Private communication (Deposition No. 610410). CCDC, Union Road, Cambridge, England.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3

  • Mr = 171.20

  • Monoclinic, P 21 /c

  • a = 11.0644 (3) Å

  • b = 7.8423 (3) Å

  • c = 10.8907 (3) Å

  • β = 116.439 (2)°

  • V = 846.15 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 5664 measured reflections

  • 1934 independent reflections

  • 1463 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.03

  • 1934 reflections

  • 122 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.89 (1) 2.12 (1) 2.977 (2) 162 (1)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

There are few structural examples of pyrazine compounds having an amino substituent; these are limited to, for example, aminopyrazine (Chao et al., 1976) and pyrazinyl-N-2-nitrophenylaniline (Parsons et al., 2006). In the title compound (Scheme I, Fig. 1), the two aromatic rings are aligned at 15.2 (1)°; these open up the angle at the amino nitrogen to 130.4 (1) °. The amino nitrogen forms a hydrogen bond to the 4-nitrogen atom of an adjacent molecule to furnish a chain motif.

Related literature top

For the structure of aminopyrazine, see: Chao et al. (1976). For the structure of 2-pyrazinyl-N-2-nitrophenylaniline; see: Parsons et al. (2006).

Experimental top

Chloropyrazine (1 ml, 1.1 mmol) and aniline (1 ml, 1.1 mmol) were heated at 423–433 K for 3 h. The solid was dissolved in water. The compound was extracted with ether. The ether extract was dried over sodium sulfate; evaporation of the solvent gave a colorless crystals among some unidentified dark brown materials.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2U(C). The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N—H 0.88 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C10H9N3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
N-(pyrazin-2-yl)aniline top
Crystal data top
C10H9N3F(000) = 360
Mr = 171.20Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3723 reflections
a = 11.0644 (3) Åθ = 3.3–26.4°
b = 7.8423 (3) ŵ = 0.09 mm1
c = 10.8907 (3) ÅT = 100 K
β = 116.439 (2)°Prism, colourless
V = 846.15 (5) Å30.20 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1463 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 1414
5664 measured reflectionsk = 1010
1934 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.247P]
where P = (Fo2 + 2Fc2)/3
1934 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C10H9N3V = 846.15 (5) Å3
Mr = 171.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0644 (3) ŵ = 0.09 mm1
b = 7.8423 (3) ÅT = 100 K
c = 10.8907 (3) Å0.20 × 0.10 × 0.05 mm
β = 116.439 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1463 reflections with I > 2σ(I)
5664 measured reflectionsRint = 0.033
1934 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
1934 reflectionsΔρmin = 0.23 e Å3
122 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36080 (11)0.49391 (15)0.56127 (12)0.0188 (3)
H10.4485 (9)0.479 (2)0.6153 (13)0.024 (4)*
N20.36741 (11)0.89784 (15)0.72193 (11)0.0205 (3)
N30.18404 (11)0.69151 (16)0.51024 (12)0.0221 (3)
C10.29407 (14)0.36077 (18)0.46992 (13)0.0181 (3)
C20.37632 (14)0.23785 (18)0.45198 (14)0.0201 (3)
H20.47170.24790.50070.024*
C30.32046 (15)0.1019 (2)0.36410 (15)0.0246 (3)
H30.37750.01880.35340.029*
C40.18124 (15)0.0862 (2)0.29138 (15)0.0255 (3)
H40.14270.00580.22930.031*
C50.09930 (14)0.20604 (19)0.31037 (14)0.0235 (3)
H50.00400.19480.26170.028*
C60.15425 (14)0.34292 (18)0.39962 (14)0.0204 (3)
H60.09690.42360.41250.025*
C70.31216 (13)0.64466 (17)0.58462 (13)0.0174 (3)
C80.40342 (13)0.74982 (17)0.69058 (14)0.0184 (3)
H80.49410.71270.74120.022*
C90.23812 (14)0.94629 (19)0.64641 (14)0.0232 (3)
H90.20781.05220.66490.028*
C100.14961 (14)0.84350 (19)0.54274 (15)0.0245 (3)
H100.05940.88200.49140.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0140 (6)0.0182 (6)0.0186 (6)0.0013 (5)0.0023 (5)0.0019 (5)
N20.0201 (6)0.0197 (6)0.0210 (6)0.0006 (5)0.0085 (5)0.0008 (5)
N30.0182 (6)0.0214 (7)0.0220 (6)0.0020 (5)0.0048 (5)0.0008 (5)
C10.0201 (7)0.0171 (7)0.0147 (6)0.0012 (5)0.0057 (5)0.0009 (5)
C20.0176 (7)0.0223 (8)0.0194 (7)0.0005 (6)0.0074 (6)0.0000 (6)
C30.0285 (8)0.0227 (8)0.0257 (8)0.0008 (6)0.0150 (6)0.0045 (6)
C40.0286 (8)0.0236 (8)0.0233 (7)0.0072 (6)0.0108 (6)0.0075 (6)
C50.0197 (7)0.0251 (8)0.0214 (7)0.0047 (6)0.0051 (6)0.0003 (6)
C60.0189 (7)0.0197 (7)0.0194 (7)0.0005 (6)0.0056 (6)0.0008 (6)
C70.0180 (7)0.0175 (7)0.0164 (7)0.0003 (5)0.0073 (5)0.0019 (5)
C80.0155 (6)0.0193 (7)0.0187 (7)0.0006 (5)0.0060 (5)0.0019 (5)
C90.0215 (7)0.0211 (7)0.0250 (7)0.0039 (6)0.0087 (6)0.0015 (6)
C100.0191 (7)0.0237 (8)0.0266 (8)0.0058 (6)0.0065 (6)0.0001 (6)
Geometric parameters (Å, º) top
N1—C71.3689 (17)C3—H30.9500
N1—C11.4039 (17)C4—C51.384 (2)
N1—H10.891 (9)C4—H40.9500
N2—C81.3207 (18)C5—C61.393 (2)
N2—C91.3488 (17)C5—H50.9500
N3—C71.3335 (17)C6—H60.9500
N3—C101.3458 (19)C7—C81.4120 (19)
C1—C61.3944 (18)C8—H80.9500
C1—C21.3978 (19)C9—C101.378 (2)
C2—C31.381 (2)C9—H90.9500
C2—H20.9500C10—H100.9500
C3—C41.389 (2)
C7—N1—C1130.38 (12)C4—C5—H5119.5
C7—N1—H1113.3 (10)C6—C5—H5119.5
C1—N1—H1116.3 (10)C5—C6—C1119.56 (13)
C8—N2—C9116.75 (12)C5—C6—H6120.2
C7—N3—C10115.67 (12)C1—C6—H6120.2
C6—C1—C2119.09 (13)N3—C7—N1121.64 (12)
C6—C1—N1124.65 (13)N3—C7—C8121.03 (12)
C2—C1—N1116.25 (12)N1—C7—C8117.32 (12)
C3—C2—C1120.72 (13)N2—C8—C7122.44 (12)
C3—C2—H2119.6N2—C8—H8118.8
C1—C2—H2119.6C7—C8—H8118.8
C2—C3—C4120.26 (14)N2—C9—C10120.58 (13)
C2—C3—H3119.9N2—C9—H9119.7
C4—C3—H3119.9C10—C9—H9119.7
C5—C4—C3119.26 (14)N3—C10—C9123.53 (13)
C5—C4—H4120.4N3—C10—H10118.2
C3—C4—H4120.4C9—C10—H10118.2
C4—C5—C6121.08 (13)
C7—N1—C1—C612.7 (2)C10—N3—C7—N1179.30 (12)
C7—N1—C1—C2168.41 (13)C10—N3—C7—C80.36 (19)
C6—C1—C2—C31.1 (2)C1—N1—C7—N34.2 (2)
N1—C1—C2—C3179.89 (12)C1—N1—C7—C8176.09 (13)
C1—C2—C3—C40.5 (2)C9—N2—C8—C70.73 (19)
C2—C3—C4—C51.5 (2)N3—C7—C8—N20.3 (2)
C3—C4—C5—C60.9 (2)N1—C7—C8—N2179.99 (12)
C4—C5—C6—C10.7 (2)C8—N2—C9—C100.4 (2)
C2—C1—C6—C51.7 (2)C7—N3—C10—C90.7 (2)
N1—C1—C6—C5179.40 (13)N2—C9—C10—N30.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.89 (1)2.12 (1)2.977 (2)162 (1)
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H9N3
Mr171.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.0644 (3), 7.8423 (3), 10.8907 (3)
β (°) 116.439 (2)
V3)846.15 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5664, 1934, 1463
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.03
No. of reflections1934
No. of parameters122
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.89 (1)2.12 (1)2.977 (2)162 (1)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the University of Malaya for supporting this study (grant Nos. FS 358/2008A and FA 067/2006A).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M., Schempp, E. & Rosenstein, R. D. (1976). Acta Cryst. B32, 288–290.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationParsons, S., Wharton, S., McNab, H., Parkin, A. & Johnstone, R. (2006). Private communication (Deposition No. 610410). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds