inorganic compounds
Hexaamminecobalt(III) hexacyanidomanganate(III)
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: visserhg.sci@ufs.ac.za
The 3)6][Mn(CN)6], contains one Co and one Mn atom, both lying on threefold inversion axes, and one NH3 and one CN group. The octahedral environments around CoII and MnII are generated by symmetry and show very slight deviations from ideal geometry. A three-dimensional network is created by N—H⋯N hydrogen bonds.
of the title compound, [Co(NHRelated literature
For related structures, see: Buschmann et al. (1999). For the construction of clusters and networks with adjustable magnetic properties, see: Przychodzen et al. (2006); Withers et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808032881/pk2122sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808032881/pk2122Isup2.hkl
Equimolar amounts of K3[Mn(CN)6] and [Co(NH3)6]Cl3 were dissolved in water, added together and allowed to stand. Orange crystals separated out after a few days.
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).Fig. 1. An ellipsoid plot of the title compound (50% probability displacement ellipsoids). |
[Co(NH3)6][Mn(CN)6] | Dx = 1.653 Mg m−3 |
Mr = 372.19 | Mo Kα radiation, λ = 0.71069 Å |
Trigonal, R3 | Cell parameters from 1532 reflections |
Hall symbol: -R 3 | θ = 2.9–28.3° |
a = 10.963 (5) Å | µ = 1.96 mm−1 |
c = 10.779 (5) Å | T = 100 K |
V = 1121.9 (9) Å3 | Cuboid, orange |
Z = 3 | 0.35 × 0.26 × 0.25 mm |
F(000) = 570 |
Bruker SMART APEXII CCD area-detector diffractometer | 497 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.038 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | θmax = 28.3°, θmin = 2.9° |
Tmin = 0.546, Tmax = 0.614 | h = −12→14 |
3602 measured reflections | k = −14→9 |
628 independent reflections | l = −10→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0379P)2 + 3.8029P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.071 | (Δ/σ)max < 0.001 |
S = 0.93 | Δρmax = 0.29 e Å−3 |
628 reflections | Δρmin = −0.43 e Å−3 |
32 parameters |
[Co(NH3)6][Mn(CN)6] | Z = 3 |
Mr = 372.19 | Mo Kα radiation |
Trigonal, R3 | µ = 1.96 mm−1 |
a = 10.963 (5) Å | T = 100 K |
c = 10.779 (5) Å | 0.35 × 0.26 × 0.25 mm |
V = 1121.9 (9) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 628 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 497 reflections with I > 2σ(I) |
Tmin = 0.546, Tmax = 0.614 | Rint = 0.038 |
3602 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.29 e Å−3 |
628 reflections | Δρmin = −0.43 e Å−3 |
32 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0 | 0 | 0 | 0.00732 (17) | |
Mn1 | 0.3333 | 0.6667 | 0.1667 | 0.00607 (17) | |
N1 | −0.02748 (15) | 0.13048 (15) | −0.10659 (13) | 0.0107 (3) | |
H1A | 0.0238 | 0.2179 | −0.0777 | 0.016* | |
H1B | −0.1181 | 0.1061 | −0.1065 | 0.016* | |
H1C | −0.0006 | 0.1264 | −0.1837 | 0.016* | |
C2 | 0.31385 (18) | 0.80238 (18) | 0.06080 (16) | 0.0119 (3) | |
N2 | 0.30018 (17) | 0.87891 (17) | −0.00283 (15) | 0.0184 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0076 (2) | 0.0076 (2) | 0.0067 (3) | 0.00381 (10) | 0 | 0 |
Mn1 | 0.0064 (2) | 0.0064 (2) | 0.0055 (3) | 0.00318 (10) | 0 | 0 |
N1 | 0.0117 (7) | 0.0099 (7) | 0.0111 (7) | 0.0058 (6) | 0.0007 (5) | 0.0010 (5) |
C2 | 0.0108 (8) | 0.0144 (8) | 0.0115 (8) | 0.0070 (7) | 0.0001 (6) | −0.0026 (6) |
N2 | 0.0200 (8) | 0.0248 (9) | 0.0159 (7) | 0.0152 (7) | 0.0014 (6) | 0.0013 (6) |
Co1—N1i | 1.9718 (16) | Mn1—C2vii | 1.9696 (19) |
Co1—N1ii | 1.9718 (16) | Mn1—C2viii | 1.9696 (19) |
Co1—N1iii | 1.9718 (15) | Mn1—C2ix | 1.9696 (19) |
Co1—N1iv | 1.9718 (15) | Mn1—C2x | 1.9696 (19) |
Co1—N1 | 1.9718 (15) | N1—H1A | 0.89 |
Co1—N1v | 1.9718 (15) | N1—H1B | 0.89 |
Mn1—C2vi | 1.9696 (19) | N1—H1C | 0.89 |
Mn1—C2 | 1.9696 (19) | C2—N2 | 1.150 (2) |
N1i—Co1—N1ii | 180.00 (7) | C2—Mn1—C2viii | 89.80 (7) |
N1i—Co1—N1iii | 89.47 (6) | C2vii—Mn1—C2viii | 89.80 (7) |
N1ii—Co1—N1iii | 90.53 (6) | C2vi—Mn1—C2ix | 89.80 (7) |
N1i—Co1—N1iv | 89.47 (6) | C2—Mn1—C2ix | 90.20 (7) |
N1ii—Co1—N1iv | 90.53 (6) | C2vii—Mn1—C2ix | 180 |
N1iii—Co1—N1iv | 89.47 (6) | C2viii—Mn1—C2ix | 90.20 (7) |
N1i—Co1—N1 | 90.53 (6) | C2vi—Mn1—C2x | 89.80 (7) |
N1ii—Co1—N1 | 89.47 (6) | C2—Mn1—C2x | 90.20 (7) |
N1iii—Co1—N1 | 180.00 (10) | C2vii—Mn1—C2x | 90.20 (7) |
N1iv—Co1—N1 | 90.53 (6) | C2viii—Mn1—C2x | 180.00 (7) |
N1i—Co1—N1v | 90.53 (6) | C2ix—Mn1—C2x | 89.80 (7) |
N1ii—Co1—N1v | 89.47 (6) | Co1—N1—H1A | 109.5 |
N1iii—Co1—N1v | 90.53 (6) | Co1—N1—H1B | 109.5 |
N1iv—Co1—N1v | 180.00 (10) | H1A—N1—H1B | 109.5 |
N1—Co1—N1v | 89.47 (6) | Co1—N1—H1C | 109.5 |
C2vi—Mn1—C2 | 180 | H1A—N1—H1C | 109.5 |
C2vi—Mn1—C2vii | 90.20 (7) | H1B—N1—H1C | 109.5 |
C2—Mn1—C2vii | 89.80 (7) | N2—C2—Mn1 | 178.31 (17) |
C2vi—Mn1—C2viii | 90.20 (7) |
Symmetry codes: (i) y, −x+y, −z; (ii) −y, x−y, z; (iii) −x, −y, −z; (iv) x−y, x, −z; (v) −x+y, −x, z; (vi) −x+2/3, −y+4/3, −z+1/3; (vii) −y+1, x−y+1, z; (viii) −x+y, −x+1, z; (ix) y−1/3, −x+y+1/3, −z+1/3; (x) x−y+2/3, x+1/3, −z+1/3. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N2vii | 0.89 | 2.09 | 2.979 (2) | 173 |
Symmetry code: (vii) −y+1, x−y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Co(NH3)6][Mn(CN)6] |
Mr | 372.19 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 100 |
a, c (Å) | 10.963 (5), 10.779 (5) |
V (Å3) | 1121.9 (9) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 1.96 |
Crystal size (mm) | 0.35 × 0.26 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.546, 0.614 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3602, 628, 497 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.071, 0.93 |
No. of reflections | 628 |
No. of parameters | 32 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.43 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N2i | 0.89 | 2.09 | 2.979 (2) | 172.9 |
Symmetry code: (i) −y+1, x−y+1, z. |
Acknowledgements
The University of the Free State is gratefully acknowledged for financial support. Dr A. J. Muller and Mr Leo Kirsten are acknowledged for help with the data collection.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buschmann, W. E., Liable-Sands, L., Rheingold, A. L. & Miller, J. S. (1999). Inorg. Chim. Acta, 284, 175–179. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Przychodzen, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234–2260. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Withers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352–358. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our interest is in the use of cyanometalates as molecular building blocks for potentially constructing clusters and networks with adjustable magnetic properties [Przychodzen et al., (2006), Withers et al., (2005)].
The title compound crystallizes in the trigonal R-3 space group with Z = 3. The main part of the asymmetric unit contains one Co and one Mn atom, both lying on threefold rotational axes.
The octahedral environments around CoII and MnII are generated by symmetry and shows very slight deviation from ideal geometry as illustrated by the C—Mn—C angles of 180.00 (7), 89.80 (7) and 90.20 (7) and N—Co—N angles of 180.00 (7), 89.47 (6) and 90.53 (6) ° respectively.
A three dimensional network is created by hydrogen bonds of the type N—H—N.