inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexaamminecobalt(III) hexa­cyanido­manganate(III)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: visserhg.sci@ufs.ac.za

(Received 10 September 2008; accepted 10 October 2008; online 18 October 2008)

The asymmetric unit of the title compound, [Co(NH3)6][Mn(CN)6], contains one Co and one Mn atom, both lying on threefold inversion axes, and one NH3 and one CN group. The octa­hedral environments around CoII and MnII are generated by symmetry and show very slight deviations from ideal geometry. A three-dimensional network is created by N—H⋯N hydrogen bonds.

Related literature

For related structures, see: Buschmann et al. (1999[Buschmann, W. E., Liable-Sands, L., Rheingold, A. L. & Miller, J. S. (1999). Inorg. Chim. Acta, 284, 175-179.]). For the construction of clusters and networks with adjustable magnetic properties, see: Przychodzen et al. (2006[Przychodzen, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234-2260.]); Withers et al. (2005[Withers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352-358.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NH3)6][Mn(CN)6]

  • Mr = 372.19

  • Trigonal, [R \overline 3]

  • a = 10.963 (5) Å

  • c = 10.779 (5) Å

  • V = 1121.9 (9) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 100 (2) K

  • 0.35 × 0.26 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.546, Tmax = 0.614

  • 3602 measured reflections

  • 628 independent reflections

  • 497 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.071

  • S = 0.93

  • 628 reflections

  • 32 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.89 2.09 2.979 (2) 173
Symmetry code: (i) -y+1, x-y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our interest is in the use of cyanometalates as molecular building blocks for potentially constructing clusters and networks with adjustable magnetic properties [Przychodzen et al., (2006), Withers et al., (2005)].

The title compound crystallizes in the trigonal R-3 space group with Z = 3. The main part of the asymmetric unit contains one Co and one Mn atom, both lying on threefold rotational axes.

The octahedral environments around CoII and MnII are generated by symmetry and shows very slight deviation from ideal geometry as illustrated by the C—Mn—C angles of 180.00 (7), 89.80 (7) and 90.20 (7) and N—Co—N angles of 180.00 (7), 89.47 (6) and 90.53 (6) ° respectively.

A three dimensional network is created by hydrogen bonds of the type N—H—N.

Related literature top

For related structures, see: Buschmann et al. (1999). For the construction of clusters and networks with adjustable magnetic properties, see: Przychodzen et al. (2006); Withers et al. (2005)].

Experimental top

Equimolar amounts of K3[Mn(CN)6] and [Co(NH3)6]Cl3 were dissolved in water, added together and allowed to stand. Orange crystals separated out after a few days.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot of the title compound (50% probability displacement ellipsoids).
Hexaamminecobalt(III) hexacyanidomanganate(III) top
Crystal data top
[Co(NH3)6][Mn(CN)6]Dx = 1.653 Mg m3
Mr = 372.19Mo Kα radiation, λ = 0.71069 Å
Trigonal, R3Cell parameters from 1532 reflections
Hall symbol: -R 3θ = 2.9–28.3°
a = 10.963 (5) ŵ = 1.96 mm1
c = 10.779 (5) ÅT = 100 K
V = 1121.9 (9) Å3Cuboid, orange
Z = 30.35 × 0.26 × 0.25 mm
F(000) = 570
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
497 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.3°, θmin = 2.9°
Tmin = 0.546, Tmax = 0.614h = 1214
3602 measured reflectionsk = 149
628 independent reflectionsl = 1014
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0379P)2 + 3.8029P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 0.93Δρmax = 0.29 e Å3
628 reflectionsΔρmin = 0.43 e Å3
32 parameters
Crystal data top
[Co(NH3)6][Mn(CN)6]Z = 3
Mr = 372.19Mo Kα radiation
Trigonal, R3µ = 1.96 mm1
a = 10.963 (5) ÅT = 100 K
c = 10.779 (5) Å0.35 × 0.26 × 0.25 mm
V = 1121.9 (9) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
628 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
497 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.614Rint = 0.038
3602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.93Δρmax = 0.29 e Å3
628 reflectionsΔρmin = 0.43 e Å3
32 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10000.00732 (17)
Mn10.33330.66670.16670.00607 (17)
N10.02748 (15)0.13048 (15)0.10659 (13)0.0107 (3)
H1A0.02380.21790.07770.016*
H1B0.11810.10610.10650.016*
H1C0.00060.12640.18370.016*
C20.31385 (18)0.80238 (18)0.06080 (16)0.0119 (3)
N20.30018 (17)0.87891 (17)0.00283 (15)0.0184 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0076 (2)0.0076 (2)0.0067 (3)0.00381 (10)00
Mn10.0064 (2)0.0064 (2)0.0055 (3)0.00318 (10)00
N10.0117 (7)0.0099 (7)0.0111 (7)0.0058 (6)0.0007 (5)0.0010 (5)
C20.0108 (8)0.0144 (8)0.0115 (8)0.0070 (7)0.0001 (6)0.0026 (6)
N20.0200 (8)0.0248 (9)0.0159 (7)0.0152 (7)0.0014 (6)0.0013 (6)
Geometric parameters (Å, º) top
Co1—N1i1.9718 (16)Mn1—C2vii1.9696 (19)
Co1—N1ii1.9718 (16)Mn1—C2viii1.9696 (19)
Co1—N1iii1.9718 (15)Mn1—C2ix1.9696 (19)
Co1—N1iv1.9718 (15)Mn1—C2x1.9696 (19)
Co1—N11.9718 (15)N1—H1A0.89
Co1—N1v1.9718 (15)N1—H1B0.89
Mn1—C2vi1.9696 (19)N1—H1C0.89
Mn1—C21.9696 (19)C2—N21.150 (2)
N1i—Co1—N1ii180.00 (7)C2—Mn1—C2viii89.80 (7)
N1i—Co1—N1iii89.47 (6)C2vii—Mn1—C2viii89.80 (7)
N1ii—Co1—N1iii90.53 (6)C2vi—Mn1—C2ix89.80 (7)
N1i—Co1—N1iv89.47 (6)C2—Mn1—C2ix90.20 (7)
N1ii—Co1—N1iv90.53 (6)C2vii—Mn1—C2ix180
N1iii—Co1—N1iv89.47 (6)C2viii—Mn1—C2ix90.20 (7)
N1i—Co1—N190.53 (6)C2vi—Mn1—C2x89.80 (7)
N1ii—Co1—N189.47 (6)C2—Mn1—C2x90.20 (7)
N1iii—Co1—N1180.00 (10)C2vii—Mn1—C2x90.20 (7)
N1iv—Co1—N190.53 (6)C2viii—Mn1—C2x180.00 (7)
N1i—Co1—N1v90.53 (6)C2ix—Mn1—C2x89.80 (7)
N1ii—Co1—N1v89.47 (6)Co1—N1—H1A109.5
N1iii—Co1—N1v90.53 (6)Co1—N1—H1B109.5
N1iv—Co1—N1v180.00 (10)H1A—N1—H1B109.5
N1—Co1—N1v89.47 (6)Co1—N1—H1C109.5
C2vi—Mn1—C2180H1A—N1—H1C109.5
C2vi—Mn1—C2vii90.20 (7)H1B—N1—H1C109.5
C2—Mn1—C2vii89.80 (7)N2—C2—Mn1178.31 (17)
C2vi—Mn1—C2viii90.20 (7)
Symmetry codes: (i) y, x+y, z; (ii) y, xy, z; (iii) x, y, z; (iv) xy, x, z; (v) x+y, x, z; (vi) x+2/3, y+4/3, z+1/3; (vii) y+1, xy+1, z; (viii) x+y, x+1, z; (ix) y1/3, x+y+1/3, z+1/3; (x) xy+2/3, x+1/3, z+1/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2vii0.892.092.979 (2)173
Symmetry code: (vii) y+1, xy+1, z.

Experimental details

Crystal data
Chemical formula[Co(NH3)6][Mn(CN)6]
Mr372.19
Crystal system, space groupTrigonal, R3
Temperature (K)100
a, c (Å)10.963 (5), 10.779 (5)
V3)1121.9 (9)
Z3
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.35 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.546, 0.614
No. of measured, independent and
observed [I > 2σ(I)] reflections
3602, 628, 497
Rint0.038
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.071, 0.93
No. of reflections628
No. of parameters32
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.43

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.892.092.979 (2)172.9
Symmetry code: (i) y+1, xy+1, z.
 

Acknowledgements

The University of the Free State is gratefully acknowledged for financial support. Dr A. J. Muller and Mr Leo Kirsten are acknowledged for help with the data collection.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuschmann, W. E., Liable-Sands, L., Rheingold, A. L. & Miller, J. S. (1999). Inorg. Chim. Acta, 284, 175–179.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPrzychodzen, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234–2260.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWithers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352–358.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds