organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second monoclinic polymorph of N-(pyrazin-2-yl)aniline

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 23 September 2008; accepted 4 October 2008; online 11 October 2008)

The two aromatic rings in the title compound, C10H9N3, are aligned at 23.4 (1)° and the bridging C—N—C angle is 128.9 (1)°. In the crystal structure, intermolecular N—H⋯N hydrogen bonds result in a chain motif, the repeat distance of which is half the b axial length of 8.8851 (3) Å.

Related literature

In the P21/c modification, the aromatic rings are aligned at 15.2 (1)°, and the repeat distance of the helical chain is half the b-axial length of 7.8423 (3) Å; see: Wan Saffiee et al. (2008[Wan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2105.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3

  • Mr = 171.20

  • Monoclinic, P 21 /n

  • a = 8.2194 (3) Å

  • b = 8.8851 (3) Å

  • c = 11.8395 (4) Å

  • β = 104.643 (2)°

  • V = 836.56 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.25 × 0.05 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 7621 measured reflections

  • 1922 independent reflections

  • 1389 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.03

  • 1922 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.90 (2) 2.17 (2) 3.062 (2) 175 (2)
Symmetry code: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The cell dimensions of the reported monoclinic P21/c modification are: a = 10.0644 (3), b = 7.8423 (3), c = 10.8907 (3) Å; β = 116.439 (2)° (Wan Saffiee et al., 2008). The cell dimensions of the present modification (Scheme I, Fig. 1), after transformation to the standard P21/c setting, are: a = 8.2194 (3), b = 8.8851 (3), c = 12.5909 (4) Å, β = 114.525 (2)°.

Related literature top

In the P21/c modification, the aromatic rings are aligned at 15.2 (1)°, and the repeat distance of the helical chain is half the b-axial length of 7.8423 (3) Å; see: Wan Saffiee et al. (2008).

Experimental top

The P21/c modification of 2-pyrazinyl-N-aniline (0.10 g, 0.4 mmol), zinc acetate (0.09 g, 0.4 mmol) and water (18 ml) were heated in a 23-ml Teflon-lined Parr bomb at 403 K for 2 days. The bomb was cooled to room temperature at 5 K min-1. Several faint yellow prisms were picked out manually from the cool solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2U(C). The amino H-atom was located in a difference Fourier map, and was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C10H9N3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
N-(pyrazin-2-yl)aniline top
Crystal data top
C10H9N3F(000) = 360
Mr = 171.20Dx = 1.359 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1282 reflections
a = 8.2194 (3) Åθ = 2.7–26.1°
b = 8.8851 (3) ŵ = 0.09 mm1
c = 11.8395 (4) ÅT = 100 K
β = 104.643 (2)°Prism, pale yellow
V = 836.56 (5) Å30.25 × 0.05 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1389 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
ω scansh = 1010
7621 measured reflectionsk = 1111
1922 independent reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.1331P]
where P = (Fo2 + 2Fc2)/3
1922 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H9N3V = 836.56 (5) Å3
Mr = 171.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2194 (3) ŵ = 0.09 mm1
b = 8.8851 (3) ÅT = 100 K
c = 11.8395 (4) Å0.25 × 0.05 × 0.03 mm
β = 104.643 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1389 reflections with I > 2σ(I)
7621 measured reflectionsRint = 0.045
1922 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
1922 reflectionsΔρmin = 0.23 e Å3
122 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.00115 (16)0.42084 (14)0.63143 (11)0.0216 (3)
H11.103 (2)0.377 (2)0.6527 (15)0.035 (5)*
N20.84988 (15)0.63197 (14)0.66840 (11)0.0230 (3)
N31.15770 (16)0.76478 (14)0.78284 (11)0.0228 (3)
C10.86787 (18)0.33136 (16)0.56827 (12)0.0193 (3)
C20.89595 (19)0.17682 (17)0.56499 (13)0.0254 (4)
H21.00210.13670.60490.030*
C30.7717 (2)0.08147 (17)0.50462 (14)0.0264 (4)
H30.79330.02350.50300.032*
C40.61582 (19)0.13750 (17)0.44633 (13)0.0232 (3)
H40.52960.07170.40580.028*
C50.58777 (19)0.29106 (17)0.44814 (13)0.0222 (3)
H50.48150.33050.40790.027*
C60.71238 (18)0.38836 (16)0.50783 (13)0.0211 (3)
H60.69160.49360.50740.025*
C70.99583 (18)0.56191 (16)0.67668 (13)0.0192 (3)
C81.14967 (18)0.63040 (16)0.73478 (13)0.0213 (3)
H81.25140.57720.73930.026*
C91.00948 (18)0.83515 (18)0.77382 (13)0.0248 (4)
H91.00850.93250.80690.030*
C100.8604 (2)0.76892 (17)0.71788 (14)0.0254 (4)
H100.75920.82260.71390.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0144 (7)0.0200 (7)0.0276 (7)0.0019 (5)0.0003 (5)0.0014 (5)
N20.0173 (6)0.0230 (7)0.0272 (7)0.0004 (5)0.0027 (5)0.0036 (5)
N30.0195 (7)0.0228 (7)0.0251 (7)0.0033 (5)0.0037 (5)0.0011 (5)
C10.0180 (7)0.0205 (7)0.0193 (7)0.0010 (6)0.0048 (6)0.0009 (6)
C20.0217 (8)0.0227 (8)0.0289 (8)0.0040 (6)0.0012 (6)0.0000 (6)
C30.0293 (9)0.0176 (8)0.0307 (9)0.0005 (6)0.0043 (7)0.0019 (6)
C40.0217 (8)0.0233 (8)0.0244 (8)0.0059 (6)0.0053 (6)0.0035 (6)
C50.0173 (7)0.0251 (8)0.0229 (8)0.0005 (6)0.0026 (6)0.0006 (6)
C60.0195 (8)0.0190 (7)0.0237 (8)0.0005 (6)0.0031 (6)0.0011 (6)
C70.0175 (7)0.0198 (7)0.0194 (7)0.0004 (6)0.0030 (6)0.0020 (6)
C80.0177 (7)0.0224 (8)0.0233 (8)0.0001 (6)0.0041 (6)0.0015 (6)
C90.0228 (8)0.0220 (8)0.0284 (8)0.0016 (6)0.0047 (6)0.0049 (6)
C100.0202 (8)0.0241 (8)0.0307 (9)0.0032 (6)0.0043 (6)0.0041 (7)
Geometric parameters (Å, º) top
N1—C71.3681 (19)C3—H30.9500
N1—C11.4061 (19)C4—C51.385 (2)
N1—H10.897 (18)C4—H40.9500
N2—C71.3330 (18)C5—C61.389 (2)
N2—C101.3438 (19)C5—H50.9500
N3—C81.3171 (19)C6—H60.9500
N3—C91.3494 (19)C7—C81.415 (2)
C1—C61.393 (2)C8—H80.9500
C1—C21.395 (2)C9—C101.370 (2)
C2—C31.379 (2)C9—H90.9500
C2—H20.9500C10—H100.9500
C3—C41.385 (2)
C7—N1—C1128.94 (13)C4—C5—H5119.4
C7—N1—H1114.0 (12)C6—C5—H5119.4
C1—N1—H1116.7 (11)C5—C6—C1119.86 (14)
C7—N2—C10115.67 (13)C5—C6—H6120.1
C8—N3—C9116.12 (13)C1—C6—H6120.1
C6—C1—C2118.72 (13)N2—C7—N1121.09 (13)
C6—C1—N1123.92 (13)N2—C7—C8120.79 (13)
C2—C1—N1117.35 (13)N1—C7—C8118.11 (13)
C3—C2—C1120.88 (14)N3—C8—C7122.74 (13)
C3—C2—H2119.6N3—C8—H8118.6
C1—C2—H2119.6C7—C8—H8118.6
C2—C3—C4120.52 (14)N3—C9—C10121.23 (14)
C2—C3—H3119.7N3—C9—H9119.4
C4—C3—H3119.7C10—C9—H9119.4
C5—C4—C3118.88 (14)N2—C10—C9123.44 (14)
C5—C4—H4120.6N2—C10—H10118.3
C3—C4—H4120.6C9—C10—H10118.3
C4—C5—C6121.11 (14)
C7—N1—C1—C621.9 (2)C10—N2—C7—N1178.88 (14)
C7—N1—C1—C2159.27 (15)C10—N2—C7—C80.2 (2)
C6—C1—C2—C31.0 (2)C1—N1—C7—N22.9 (2)
N1—C1—C2—C3179.81 (14)C1—N1—C7—C8178.36 (14)
C1—C2—C3—C40.3 (2)C9—N3—C8—C70.0 (2)
C2—C3—C4—C51.0 (2)N2—C7—C8—N30.2 (2)
C3—C4—C5—C60.5 (2)N1—C7—C8—N3178.92 (13)
C4—C5—C6—C10.8 (2)C8—N3—C9—C100.1 (2)
C2—C1—C6—C51.5 (2)C7—N2—C10—C90.0 (2)
N1—C1—C6—C5179.75 (13)N3—C9—C10—N20.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.90 (2)2.17 (2)3.062 (2)175 (2)
Symmetry code: (i) x+5/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H9N3
Mr171.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.2194 (3), 8.8851 (3), 11.8395 (4)
β (°) 104.643 (2)
V3)836.56 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.05 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7621, 1922, 1389
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.03
No. of reflections1922
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.90 (2)2.17 (2)3.062 (2)175 (2)
Symmetry code: (i) x+5/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the University of Malaya for supporting this study (grant Nos. FS 358/2008A and FA 067/2006A).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds