organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2184-o2185

(E)-3,4-Di­hydroxy­benzaldehyde 4-methyl­thio­semicarbazone

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: farina@pkrisc.cc.ukm.my

(Received 9 October 2008; accepted 21 October 2008; online 25 October 2008)

The title compound, C9H11N3O2S, adopts an E configuration with respect to the C=N bond. The mol­ecule is approximately planar, with an r.m.s. deviation from the mean plane through all 15 non-H atoms of 0.152 Å; the dihedral angle between the benzene ring plane and the least-squares plane through the thio­semicarbazone unit is 12.48 (7)°. A weak intra­molecular N—H⋯N inter­action contributes to the planarity of the semicarbazone unit. Centrosymmetric pairs of O—H⋯O and N—H⋯S hydrogen bonds form chains along c, generating R22(10) and R22(8) ring motifs, respectively. In the crystal structure, these chains are further linked by inter­molecular O—H⋯S and C—H⋯O inter­actions, forming stacks down the c axis.

Related literature

For the biological activity of thio­semicarbazones, see: de Sousa et al. (2007[Sousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct. 826, 185-191.]). For related structures, see: Kayed et al. (2008[Kayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824-o825.]); Tan et al. (2008a[Tan, K. W., Farina, Y., Ng, C. H., Maah, M. J. & Ng, S. W. (2008a). Acta Cryst. E64, o1035.],b[Tan, K. W., Farina, Y., Ng, C. H., Maah, M. J. & Ng, S. W. (2008b). Acta Cryst. E64, o1073.]). For hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2S

  • Mr = 225.27

  • Monoclinic, P 21 /n

  • a = 6.8502 (9) Å

  • b = 14.911 (2) Å

  • c = 10.6299 (13) Å

  • β = 107.894 (6)°

  • V = 1033.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 92 (2) K

  • 0.23 × 0.15 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.799, Tmax = 0.962

  • 17952 measured reflections

  • 3696 independent reflections

  • 2974 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.07

  • 3696 reflections

  • 149 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N1 0.879 (9) 2.220 (18) 2.6282 (17) 108.0 (14)
O3—H3⋯O4i 0.837 (9) 2.070 (14) 2.8071 (14) 146.5 (19)
O4—H4⋯S1ii 0.836 (9) 2.369 (10) 3.1899 (11) 167.1 (19)
N2—H2N⋯S1iii 0.876 (9) 2.785 (12) 3.5766 (13) 150.9 (15)
C9—H9A⋯O4iv 0.98 2.56 3.435 (2) 148
Symmetry codes: (i) -x, -y, -z-1; (ii) x-1, y, z-1; (iii) -x+1, -y, -z+1; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Thiosemicarbazones are a class of compounds that have been extensively investigated because of their biological activity (de Sousa et al., 2007). As a continuation of our work on thiosemicarbazone compounds as potential ligands in transition metal chemistry (Kayed et al., 2008; Tan et al., 2008a,b) we report here the structure of the title compound, (I).

The molecule of (I) (Fig. 1) is approximately planar with a dihedral angle of 12.48 (7)° between the phenyl ring plane and the least squares plane through the C7/N1/N2/C8/S2/N3 thiosemicarbazone moiety. The planarity of this section of the molecule is aided by a weak intramolecular N3—H3N···N1 interaction. The molecule adopts an E configuration with respect to the CN bond and bond distances are normal (Allen et al., 1987).

Pairs of O3—H3···O4 hydrogen bonds generate a centrosymmetric R22(10) ring motif (Bernstein et al., 1995) and, together with the R22(8) ring generated by N2—H2N···S1 interactions, form an unusual molecular trimer. The crystal structure is further stabilized by O4—H4···S1 and C9—H9A···O4 contacts, Table 1, Fig. 2.

Related literature top

For the biological activity of thiosemicarbazones, see: de Sousa et al. (2007). For related structures, see: Kayed et al. (2008); Tan et al. (2008a,b). For hydrogen-bonding patterns, see: Bernstein et al. (1995). For reference structural data, see: Allen et al. (1987).

Experimental top

A 1:1 mixture of 3,4-dihydroxybenzaldehyde and N-methylhydrazinecarbothioamide was heated under reflux in ethanol for 2 hours. The solid product which separated upon cooling was filtered and recrystallised from methanol to afford colourless blocks of (I) in 54% yield (m.p. 418-419 K).

Refinement top

The H atoms bound to N and O atoms were located in a difference electron density map and refined freely with Uiso = 1.2Ueq (N) and Uiso = 1.5Ueq (O). All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aryl and 0.98 Å, Uiso = 1.5Ueq (C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006) and SAINT (Bruker 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. An intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. Crystal packing of (I) viewed down the c axis with hydrogen bonds drawn as dashed lines. H-atoms not involved in H-bonding have been excluded.
(E)-3,4-Dihydroxybenzaldehyde 4-methylthiosemicarbazone top
Crystal data top
C9H11N3O2SF(000) = 472
Mr = 225.27Dx = 1.448 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3847 reflections
a = 6.8502 (9) Åθ = 2.4–29.8°
b = 14.911 (2) ŵ = 0.30 mm1
c = 10.6299 (13) ÅT = 92 K
β = 107.894 (6)°Plate, colourless
V = 1033.3 (2) Å30.23 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3696 independent reflections
Radiation source: fine-focus sealed tube2974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 33.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1010
Tmin = 0.799, Tmax = 0.962k = 2218
17952 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.5756P]
where P = (Fo2 + 2Fc2)/3
3696 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.49 e Å3
4 restraintsΔρmin = 0.32 e Å3
Crystal data top
C9H11N3O2SV = 1033.3 (2) Å3
Mr = 225.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8502 (9) ŵ = 0.30 mm1
b = 14.911 (2) ÅT = 92 K
c = 10.6299 (13) Å0.23 × 0.15 × 0.13 mm
β = 107.894 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3696 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2974 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 0.962Rint = 0.044
17952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.49 e Å3
3696 reflectionsΔρmin = 0.32 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2002 (2)0.06919 (9)0.01216 (13)0.0157 (2)
C20.2338 (2)0.00229 (9)0.09567 (13)0.0165 (2)
H20.32370.04600.05900.020*
C30.1378 (2)0.00557 (9)0.23119 (13)0.0160 (2)
O30.17512 (16)0.06151 (7)0.30786 (10)0.0213 (2)
H30.110 (3)0.0532 (14)0.3876 (10)0.032*
C40.0039 (2)0.07616 (9)0.28381 (13)0.0166 (2)
O40.09897 (16)0.07447 (7)0.41779 (10)0.0206 (2)
H40.2160 (18)0.0940 (13)0.424 (2)0.031*
C50.0247 (2)0.14471 (9)0.20207 (13)0.0183 (3)
H50.11110.19400.23920.022*
C60.0727 (2)0.14133 (10)0.06654 (14)0.0180 (3)
H60.05230.18810.01110.022*
C70.2988 (2)0.05936 (9)0.13036 (13)0.0168 (2)
H70.39000.01070.16230.020*
N10.26441 (18)0.11527 (8)0.21297 (11)0.0174 (2)
N20.36894 (18)0.09854 (8)0.34422 (11)0.0182 (2)
H2N0.456 (2)0.0539 (9)0.3669 (17)0.022*
C80.3229 (2)0.14654 (9)0.43924 (13)0.0163 (2)
S10.46023 (5)0.12889 (2)0.60055 (3)0.01943 (10)
N30.17327 (18)0.20621 (8)0.39921 (12)0.0188 (2)
H3N0.107 (3)0.2075 (12)0.3142 (10)0.023*
C90.1019 (2)0.26414 (10)0.48622 (16)0.0259 (3)
H9A0.02040.22890.52980.039*
H9B0.01710.31230.43430.039*
H9C0.22020.29020.55320.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0148 (5)0.0165 (6)0.0166 (5)0.0009 (5)0.0061 (4)0.0004 (5)
C20.0158 (6)0.0143 (6)0.0202 (6)0.0002 (5)0.0067 (5)0.0006 (5)
C30.0160 (6)0.0148 (6)0.0182 (6)0.0020 (5)0.0067 (5)0.0019 (5)
O30.0239 (5)0.0197 (5)0.0194 (5)0.0032 (4)0.0055 (4)0.0040 (4)
C40.0149 (5)0.0199 (6)0.0153 (5)0.0006 (5)0.0052 (4)0.0007 (5)
O40.0190 (5)0.0258 (5)0.0164 (4)0.0032 (4)0.0044 (4)0.0027 (4)
C50.0189 (6)0.0172 (6)0.0184 (6)0.0031 (5)0.0052 (5)0.0000 (5)
C60.0172 (6)0.0188 (6)0.0182 (6)0.0013 (5)0.0058 (5)0.0009 (5)
C70.0157 (6)0.0158 (6)0.0187 (6)0.0002 (5)0.0050 (5)0.0016 (5)
N10.0163 (5)0.0198 (6)0.0152 (5)0.0012 (4)0.0037 (4)0.0011 (4)
N20.0200 (5)0.0181 (6)0.0160 (5)0.0049 (4)0.0050 (4)0.0005 (4)
C80.0165 (6)0.0141 (6)0.0193 (6)0.0018 (5)0.0072 (5)0.0010 (5)
S10.02201 (17)0.01991 (18)0.01649 (16)0.00247 (12)0.00609 (12)0.00049 (12)
N30.0184 (5)0.0162 (5)0.0214 (5)0.0019 (4)0.0056 (4)0.0010 (4)
C90.0277 (7)0.0185 (7)0.0348 (8)0.0044 (6)0.0148 (6)0.0034 (6)
Geometric parameters (Å, º) top
C1—C61.3943 (19)C6—H60.9500
C1—C21.4006 (18)C7—N11.2841 (18)
C1—C71.4642 (18)C7—H70.9500
C2—C31.3886 (18)N1—N21.3812 (15)
C2—H20.9500N2—C81.3518 (17)
C3—O31.3632 (16)N2—H2N0.876 (9)
C3—C41.3952 (19)C8—N31.3251 (18)
O3—H30.837 (9)C8—S11.7038 (14)
C4—O41.3815 (16)N3—C91.4556 (18)
C4—C51.3937 (19)N3—H3N0.879 (9)
O4—H40.836 (9)C9—H9A0.9800
C5—C61.3901 (19)C9—H9B0.9800
C5—H50.9500C9—H9C0.9800
C6—C1—C2119.39 (12)N1—C7—C1121.28 (12)
C6—C1—C7122.50 (12)N1—C7—H7119.4
C2—C1—C7118.10 (12)C1—C7—H7119.4
C3—C2—C1120.98 (12)C7—N1—N2115.24 (12)
C3—C2—H2119.5C8—N2—N1119.45 (11)
C1—C2—H2119.5C8—N2—H2N119.4 (12)
O3—C3—C2118.57 (12)N1—N2—H2N120.9 (12)
O3—C3—C4122.33 (12)N3—C8—N2116.78 (12)
C2—C3—C4119.08 (12)N3—C8—S1124.08 (11)
C3—O3—H3111.0 (14)N2—C8—S1119.13 (10)
O4—C4—C5122.08 (12)C8—N3—C9124.91 (13)
O4—C4—C3117.63 (12)C8—N3—H3N116.8 (12)
C5—C4—C3120.28 (12)C9—N3—H3N118.1 (12)
C4—O4—H4104.4 (14)N3—C9—H9A109.5
C6—C5—C4120.34 (13)N3—C9—H9B109.5
C6—C5—H5119.8H9A—C9—H9B109.5
C4—C5—H5119.8N3—C9—H9C109.5
C5—C6—C1119.83 (13)H9A—C9—H9C109.5
C5—C6—H6120.1H9B—C9—H9C109.5
C1—C6—H6120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N10.88 (1)2.22 (2)2.6282 (17)108 (1)
O3—H3···O4i0.84 (1)2.07 (1)2.8071 (14)147 (2)
O4—H4···S1ii0.84 (1)2.37 (1)3.1899 (11)167 (2)
N2—H2N···S1iii0.88 (1)2.79 (1)3.5766 (13)151 (2)
C9—H9A···O4iv0.982.563.435 (2)148
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x+1, y, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H11N3O2S
Mr225.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)92
a, b, c (Å)6.8502 (9), 14.911 (2), 10.6299 (13)
β (°) 107.894 (6)
V3)1033.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.23 × 0.15 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.799, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
17952, 3696, 2974
Rint0.044
(sin θ/λ)max1)0.765
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.07
No. of reflections3696
No. of parameters149
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.32

Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N10.879 (9)2.220 (18)2.6282 (17)108.0 (14)
O3—H3···O4i0.837 (9)2.070 (14)2.8071 (14)146.5 (19)
O4—H4···S1ii0.836 (9)2.369 (10)3.1899 (11)167.1 (19)
N2—H2N···S1iii0.876 (9)2.785 (12)3.5766 (13)150.9 (15)
C9—H9A···O4iv0.982.563.435 (2)148.3
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x+1, y, z+1; (iv) x, y, z+1.
 

Acknowledgements

We thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grants UKM-ST-01-FRGS0022–2006 and UKM-GUP-NBT-08–27-112 and Mr M. A. I. Yim for preparing the title compound. We also thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824–o825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct. 826, 185–191.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, K. W., Farina, Y., Ng, C. H., Maah, M. J. & Ng, S. W. (2008a). Acta Cryst. E64, o1035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, K. W., Farina, Y., Ng, C. H., Maah, M. J. & Ng, S. W. (2008b). Acta Cryst. E64, o1073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2184-o2185
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds