organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2-nitro­terephthalate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: zou-pei@163.com

(Received 15 October 2008; accepted 23 October 2008; online 31 October 2008)

In the mol­ecule of the title compound, C10H9NO6, the two ester groups and the nitro group are inclined at 9.2 (2), 123.3 (6) and 135.2 (5)°, respectively to the mean plane of the benzene ring. In the crystal structure, mol­ecules are stacked along the a axis, without any ππ inter­actions. The stacked columns are linked together by non-classical intermolecular interactions of the type C—H⋯O.

Related literature

For the use of the title compound in the preparation of 2-amino-dimethyl-terephthalic acid, an inter­mediate for dyes, see: Niu et al. (2002[Niu, T. S., Niu, X. Y., Yang, G. S. & Hou, J. Q. (2002). Appl. Chem. Ind. 34, 176-177.]). For related structures, see: Brisse & Pérez (1976[Brisse, F. & Pérez, S. (1976). Acta Cryst. B32, 2110-2115.]); Huang & Liang (2007[Huang, J.-Y. & Liang, H.-Z. (2007). Acta Cryst. E63, o3019-o3020.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO6

  • Mr = 239.18

  • Monoclinic, P 21 /n

  • a = 6.9080 (14) Å

  • b = 12.662 (3) Å

  • c = 12.231 (2) Å

  • β = 98.18 (3)°

  • V = 1058.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 (2) K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.963, Tmax = 0.987

  • 2052 measured reflections

  • 1889 independent reflections

  • 1245 reflections with I > 2σ(I)

  • Rint = 0.057

  • 3 standard reflections every 200 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.201

  • S = 1.00

  • 1889 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.96 2.59 3.523 (7) 164
C4—H4A⋯O2ii 0.93 2.54 3.185 (5) 127
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is useful as a raw material for the preparation of 2-amino-dimethyl-terephthalic acid, which is used as an important intermediate for dyes (Niu et al., 2002). The structures of dimethyl terephthalate (Brisse & Pérez, 1976) and dimethyl 2,3-dihydroxyterephthalate (Huang & Liang, 2007) which are closely related to the title compound have already been reported. In this article, we report the crystal structure of (I). A view of the molecule of (I) is presented in Fig. 1. The bond lengths and angles are within expected ranges. The C1/O1/C2/O2, C10/O6/C9/O5 and O3/N/O4 planes form dihedral angles of 9.2 (2), 123.3 (6) and 135.2 (5)°, respectively, with the C3—C8 plane. In the crystal structure, the molecules are stacked along the a axis, without any π-π interactions. The stacked columns are linked together by non-classical intermolecular interactions of the type C—H···O (Table 1).

Related literature top

For the use of the title compound in the preparation of 2-amino-dimethyl-terephthalic acid, an intermediate for dyes, see: Niu et al. (2002). For related structures, see: Brisse & Pérez, (1976); Huang & Liang, (2007).

Experimental top

A sample of commercial 2-nitro-dimethyl-terephthalic acid (Aldrich) was crystalized by slow evaporation of a solution in methanol.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with HC(aryl) = 0.93 Å and Uiso(H) = 1.2Ueq(C) or with HC(methyl) = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius,1989); cell refinement: CAD-4 Software (Enraf–Nonius,1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Dimethyl 2-nitroterephthalate top
Crystal data top
C10H9NO6F(000) = 496
Mr = 239.18Dx = 1.500 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.9080 (14) Åθ = 10–13°
b = 12.662 (3) ŵ = 0.13 mm1
c = 12.231 (2) ÅT = 293 K
β = 98.18 (3)°Block, colourless
V = 1058.9 (4) Å30.30 × 0.30 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1245 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 88
Absorption correction: ψ scan
(CAD-4 Software; Enraf–Nonius,1989)
k = 015
Tmin = 0.963, Tmax = 0.987l = 014
2052 measured reflections3 standard reflections every 200 reflections
1889 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.201 w = 1/[σ2(Fo2) + (0.05P)2 + 3.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1889 reflectionsΔρmax = 0.29 e Å3
156 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (8)
Crystal data top
C10H9NO6V = 1058.9 (4) Å3
Mr = 239.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9080 (14) ŵ = 0.13 mm1
b = 12.662 (3) ÅT = 293 K
c = 12.231 (2) Å0.30 × 0.30 × 0.10 mm
β = 98.18 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1245 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CAD-4 Software; Enraf–Nonius,1989)
Rint = 0.057
Tmin = 0.963, Tmax = 0.9873 standard reflections every 200 reflections
2052 measured reflections intensity decay: 2%
1889 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
1889 reflectionsΔρmin = 0.31 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.0321 (5)0.4552 (3)0.8800 (3)0.0576 (9)
O20.7697 (5)0.0539 (2)1.0189 (3)0.0634 (10)
O10.8957 (5)0.2101 (3)1.0787 (3)0.0584 (9)
O50.0234 (5)0.3733 (3)0.7173 (3)0.0633 (10)
O40.1497 (6)0.0806 (3)0.7385 (3)0.0755 (12)
N0.1105 (6)0.1519 (3)0.8006 (3)0.0545 (11)
C30.5871 (6)0.2093 (3)0.9698 (3)0.0397 (10)
O30.0550 (5)0.1733 (3)0.8156 (4)0.0806 (13)
C20.7594 (7)0.1483 (3)1.0248 (4)0.0445 (11)
C80.5802 (7)0.3193 (3)0.9806 (4)0.0489 (11)
H8A0.68380.35611.02010.059*
C60.2593 (6)0.3208 (3)0.8712 (3)0.0412 (10)
C70.4154 (7)0.3717 (3)0.9309 (4)0.0516 (12)
H7A0.40980.44470.93820.062*
C90.0911 (7)0.3822 (3)0.8120 (4)0.0470 (11)
C100.1157 (8)0.5271 (4)0.8335 (5)0.0629 (14)
H10A0.13050.58190.88590.094*
H10B0.23730.49010.81550.094*
H10C0.07900.55790.76770.094*
C50.2728 (6)0.2107 (3)0.8613 (3)0.0386 (10)
C40.4337 (7)0.1556 (3)0.9090 (4)0.0465 (11)
H4A0.43980.08270.90060.056*
C11.0681 (8)0.1571 (5)1.1324 (5)0.0769 (17)
H1A1.16620.20861.15830.115*
H1B1.11740.11061.08080.115*
H1C1.03570.11701.19390.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.073 (2)0.0433 (18)0.060 (2)0.0163 (17)0.0214 (17)0.0090 (16)
O20.075 (2)0.0335 (18)0.087 (3)0.0090 (17)0.0289 (19)0.0070 (17)
O10.062 (2)0.0383 (18)0.076 (2)0.0080 (16)0.0165 (18)0.0019 (17)
O50.065 (2)0.075 (3)0.049 (2)0.0151 (19)0.0045 (17)0.0057 (18)
O40.099 (3)0.048 (2)0.081 (3)0.005 (2)0.017 (2)0.028 (2)
N0.063 (3)0.042 (2)0.061 (3)0.017 (2)0.019 (2)0.001 (2)
C30.051 (3)0.029 (2)0.044 (2)0.0019 (19)0.0248 (19)0.0009 (18)
O30.052 (2)0.083 (3)0.113 (3)0.017 (2)0.036 (2)0.010 (3)
C20.054 (3)0.032 (2)0.053 (3)0.001 (2)0.025 (2)0.004 (2)
C80.064 (3)0.027 (2)0.058 (3)0.002 (2)0.015 (2)0.005 (2)
C60.053 (3)0.029 (2)0.045 (2)0.0025 (19)0.020 (2)0.0016 (19)
C70.071 (3)0.023 (2)0.061 (3)0.006 (2)0.010 (2)0.004 (2)
C90.059 (3)0.036 (2)0.052 (3)0.002 (2)0.025 (2)0.002 (2)
C100.068 (3)0.052 (3)0.071 (3)0.018 (3)0.021 (3)0.002 (3)
C50.048 (2)0.030 (2)0.043 (2)0.0010 (19)0.0230 (19)0.0007 (18)
C40.059 (3)0.023 (2)0.065 (3)0.007 (2)0.035 (2)0.005 (2)
C10.076 (4)0.059 (4)0.099 (5)0.016 (3)0.026 (3)0.006 (3)
Geometric parameters (Å, º) top
O6—C91.345 (5)C8—H8A0.9300
O6—C101.425 (6)C6—C71.373 (6)
O2—C21.200 (5)C6—C51.404 (6)
O1—C21.325 (5)C6—C91.497 (6)
O1—C11.442 (6)C7—H7A0.9300
O5—C91.191 (5)C10—H10A0.9600
O4—N1.234 (5)C10—H10B0.9600
N—O31.214 (5)C10—H10C0.9600
N—C51.458 (6)C5—C41.371 (6)
C3—C41.383 (6)C4—H4A0.9300
C3—C81.401 (6)C1—H1A0.9600
C3—C21.496 (6)C1—H1B0.9600
C8—C71.381 (6)C1—H1C0.9600
C9—O6—C10117.2 (4)O5—C9—C6126.3 (4)
C2—O1—C1115.7 (4)O6—C9—C6109.9 (4)
O3—N—O4123.5 (4)O6—C10—H10A109.5
O3—N—C5118.7 (4)O6—C10—H10B109.5
O4—N—C5117.8 (4)H10A—C10—H10B109.5
C4—C3—C8120.4 (4)O6—C10—H10C109.5
C4—C3—C2119.2 (4)H10A—C10—H10C109.5
C8—C3—C2120.5 (4)H10B—C10—H10C109.5
O2—C2—O1125.0 (4)C4—C5—C6121.9 (4)
O2—C2—C3122.5 (4)C4—C5—N118.4 (4)
O1—C2—C3112.5 (4)C6—C5—N119.7 (4)
C7—C8—C3118.3 (4)C5—C4—C3119.4 (4)
C7—C8—H8A120.9C5—C4—H4A120.3
C3—C8—H8A120.9C3—C4—H4A120.3
C7—C6—C5117.1 (4)O1—C1—H1A109.5
C7—C6—C9120.7 (4)O1—C1—H1B109.5
C5—C6—C9122.0 (4)H1A—C1—H1B109.5
C6—C7—C8123.0 (4)O1—C1—H1C109.5
C6—C7—H7A118.5H1A—C1—H1C109.5
C8—C7—H7A118.5H1B—C1—H1C109.5
O5—C9—O6123.7 (5)
C1—O1—C2—O20.6 (7)C7—C6—C9—O648.0 (5)
C1—O1—C2—C3179.0 (4)C5—C6—C9—O6137.2 (4)
C4—C3—C2—O20.5 (6)C7—C6—C5—C40.1 (6)
C8—C3—C2—O2178.9 (4)C9—C6—C5—C4175.1 (4)
C4—C3—C2—O1179.1 (4)C7—C6—C5—N179.0 (4)
C8—C3—C2—O11.4 (6)C9—C6—C5—N6.1 (6)
C4—C3—C8—C71.3 (7)O3—N—C5—C4135.0 (5)
C2—C3—C8—C7178.2 (4)O4—N—C5—C443.2 (6)
C5—C6—C7—C80.3 (7)O3—N—C5—C643.9 (6)
C9—C6—C7—C8175.3 (4)O4—N—C5—C6138.0 (4)
C3—C8—C7—C60.4 (7)C6—C5—C4—C30.7 (6)
C10—O6—C9—O51.9 (7)N—C5—C4—C3178.1 (4)
C10—O6—C9—C6174.5 (4)C8—C3—C4—C51.5 (6)
C7—C6—C9—O5128.2 (5)C2—C3—C4—C5178.0 (4)
C5—C6—C9—O546.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.962.593.523 (7)164
C4—H4A···O2ii0.932.543.185 (5)127
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC10H9NO6
Mr239.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.9080 (14), 12.662 (3), 12.231 (2)
β (°) 98.18 (3)
V3)1058.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CAD-4 Software; Enraf–Nonius,1989)
Tmin, Tmax0.963, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
2052, 1889, 1245
Rint0.057
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.201, 1.01
No. of reflections1889
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: CAD-4 Software (Enraf–Nonius,1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.96002.59003.523 (7)164.00
C4—H4A···O2ii0.93002.54003.185 (5)127.00
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2.
 

Acknowledgements

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

References

First citationBrisse, F. & Pérez, S. (1976). Acta Cryst. B32, 2110–2115.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHuang, J.-Y. & Liang, H.-Z. (2007). Acta Cryst. E63, o3019–o3020.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiu, T. S., Niu, X. Y., Yang, G. S. & Hou, J. Q. (2002). Appl. Chem. Ind. 34, 176–177.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds