metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetato-κO)(2-{[2-(di­methyl­amino)­ethyl­imino](phen­yl)meth­yl}-5-meth­oxy­phenolato-κ3N,N′,O1)copper(II)

aDepartment of Chemistry, National Changhua University of Education, Changhua 500, Taiwan, and bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: btko@cycu.edu.tw

(Received 27 August 2008; accepted 13 October 2008; online 18 October 2008)

The CuII atom in the title complex, [Cu(C18H21N2O2)(C2H3O2)], is tetra­coordinated by two N atoms and two O atoms, of which one O atom is attributed to the acetate group and the other atoms are from the tridentate salicylideneiminate ligand, forming a slight distorted square-planar environment. The other acetate O atom exhibits a very weak intra­molecular inter­action toward the Cu atom, the Cu—O distance of 2.771 (2) Å being shorter than the van der Waals radii for Cu and O atoms (2.92 Å). Furthermore, there are weak inter­molecular inter­actions, in which the bonding O atom of the acetate group can bridge to the Cu atom of another complex, and the distance of 2.523 (2) Å is about 0.4 Å shorter than the van der Waals Cu—O distance in other crystal structures.

Related literature

For general background, see: Coates & Moore (2004[Coates, G. W. & Moore, D. R. (2004). Angew. Chem. Int. Ed. 43, 6618-6639.]); Darensbourg et al. (2001[Darensbourg, D. J., Rainey, P. & Yarbrough, J. C. (2001). Inorg. Chem. 40, 986-993.]); Inoue et al. (1969[Inoue, S., Koinuma, H. & Tsuruta, T. (1969). Makromol. Chem. 130, 210-220.]); Shen et al. (2003[Shen, Y. M., Duan, W. L. & Shi, M. (2003). J. Org. Chem. 68, 1559-1562.]). For related structures, see: Chen et al. (2006[Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745-3752.]); Luo et al. (1998[Luo, H., Fanwick, P. E. & Green, M. A. (1998). Inorg. Chem. 37, 1127-1130.], 1999[Luo, H., Lo, J.-M., Fanwick, P. E. J. G., Stowell, M. A. & Green, M. A. (1999). Inorg. Chem. 38, 2071-2078.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H21N2O2)(C2H3O2)]

  • Mr = 419.96

  • Monoclinic, P 21 /c

  • a = 11.9721 (16) Å

  • b = 15.674 (2) Å

  • c = 10.6346 (14) Å

  • β = 102.655 (3)°

  • V = 1947.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.656, Tmax = 0.803

  • 11008 measured reflections

  • 3822 independent reflections

  • 2673 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.02

  • 3822 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carbon dioxide is the most abundant carbon resource in the atmosphere and is used by green plants and anaerobic bacteria for chemical production on a massive scale. In contrast, industrial and laboratory utilization of CO2 as a chemical feedstock is rare. The reuse and recovery of CO2 have received much attention from the viewpoint of carbon resources and environmental problems during the last two decades of the twentieth century. In particular, the catalytic coupling of CO2 with heterocycles has been discovered and investigated over the past 35 years (Inoue et al., 1969). One of the major successes is the utilization of epoxides and CO2 as starting materials to prepare the polycarbonates and/or cyclic carbonates in the presence of a transition metal catalyst. However, only a few metals, including Al, Cr, Co, Mg, Li, Zn, Cu, and Cd (Coates & Moore, 2004) are active for the coupling of epoxides and CO2. Recently, Darensbourg et al., (2001) disclosed the synthesis, characterization and catalytic studies of a number of bis(salicylaldiminato)zinc complexes, in which the most active catalyst for co–polymerization of cyclohexene oxide and CO2 giving poly(cyclohexene carbonate) (>99% carbonate linkages, Mn = 41000 g.mol-1, Mw/Mn = 10.3) with a turnover frequency of 6.9 h-1. In addition, Shen et al. (2003) reported that binaphthyldiaminosalen–type Zn, Cu, and Co complexes efficiently catalyzed reactions of epoxides with CO2 to achieve five–membered ring cyclic carbonates in the presence of various catalytic amounts of organic bases. Most recently, Chen et al., (2006) has synthesized a series of Schiff base zinc complexes which have shown high activity in the ring–opening poymerization of lactide (Chen et al., 2006). We report herein the synthesis and crystal structure study of a N,N,O–tridentate Schiff base CuII complex (I), a potential catalyst for CO2/epoxide coupling copolymerization (Fig. 1).

The solid structure of I reveals a monomeric CuII complex (Fig. 1) containing a six–member and five–member ring coordinated from the tridentate salicylideneiminate ligand. The geometry around Cu atom is tetracoordinated with a slight distorted square planar environment in which two nitrogen atoms and two oxygen atoms are almost coplanar. The sums of bond angles around Cu center are 359.7 (1)°. The distances between the Cu atom and O1, O3, N1 and N2 are 1.908 (2), 1.968 (2), 2.073 (3), 1.969 (3)Å, respectively. These bond distances are similar to those found in other Schiff base CuII complexes (Luo et al., 1998). The other acetate's oxygen, O4 shows very weak intramolecular contact with Cu (Cu···O4 = 2.771 (2)Å) in comparison with Van der Waals contact (2.92Å) for Cu···O. In addition, there are weak intermolecular interactions, in which the bonding oxygen (O3) of acetate group can be bridged to the Cu atom of another complex and the distance (2.523 (2) Å) is about 0.4 Å shorter than Van der Waals contact of Cu···O in the other crystal structure.

Related literature top

Chen et al. (2006); Coates & Moore (2004); Darensbourg et al. (2001); Inoue et al. (1969); Luo et al. (1998, 1999); Shen et al. (2003). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that it said, for example, "For general background, see··· For related structures, see..; etc. Please revise this section as indicated.

Experimental top

The ligand, 5–methoxy–2–{1–[2–(dimethylamino)ethylimino]benzyl}phenol was prepared by the reaction in which 2–dimethylaminoethylamine (1.95 g, 22.1 mmol) and 5–methoxy–2–hydroxybenzophenone (4.60 g, 20.2 mmol) in refluxed ethanol (30 ml) for 24 h (Fig. 2). Volatile materials were removed under vacuum and the resulting solid was recrystallized from slowly cooling a hot hexane (40 ml) solution giving yellow powders (yield: 71%). The title complex was synthesized by the following procedures: 5–methoxy–2–{1–[2–(dimethylamino)ethylimino]benzyl}phenol (0.597 g, 2.0 mmol) and Cu(OAc)2.2H2O (0.398 g, 2.0 mmol) was refluxed in EtOH (30 ml) for 3 h and the volatile materials were removed under vacuum giving green crystalline solid (Fig. 2). The resulting precipitate was crystallized from EtOH to yield green crystals.

Refinement top

The C–bound H atoms were placed in calculated positions (C—H = 0.93-0.96 Å) and included in the refinement in the riding–model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The synthetic route of the title Cu complex.
(Acetato-κO)(2-{[2-(dimethylamino)ethylimino](phenyl)methyl}-5- methoxyphenolato-κ3N,N',O1)copper(II) top
Crystal data top
[Cu(C18H21N2O2)(C2H3O2)]F(000) = 876
Mr = 419.96Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3118 reflections
a = 11.9721 (16) Åθ = 2.2–25.4°
b = 15.674 (2) ŵ = 1.15 mm1
c = 10.6346 (14) ÅT = 293 K
β = 102.655 (3)°Prism, green
V = 1947.1 (4) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3822 independent reflections
Radiation source: Fine–focus sealed tube2673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.656, Tmax = 0.803k = 1819
11008 measured reflectionsl = 813
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: Geom
wR(F2) = 0.103H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C18H21N2O2)(C2H3O2)]V = 1947.1 (4) Å3
Mr = 419.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9721 (16) ŵ = 1.15 mm1
b = 15.674 (2) ÅT = 293 K
c = 10.6346 (14) Å0.40 × 0.30 × 0.20 mm
β = 102.655 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2673 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.803Rint = 0.049
11008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
3822 reflectionsΔρmin = 0.40 e Å3
244 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.93747 (3)0.10053 (2)0.02371 (4)0.02773 (13)
O10.92068 (16)0.06311 (14)0.1893 (2)0.0332 (5)
O20.7404 (2)0.04350 (17)0.5113 (2)0.0474 (6)
O31.09237 (16)0.05131 (13)0.0552 (2)0.0303 (5)
O41.1426 (2)0.17945 (16)0.1343 (2)0.0467 (6)
N10.7889 (2)0.15948 (18)0.0052 (3)0.0379 (7)
N20.9457 (2)0.15348 (17)0.1526 (3)0.0333 (6)
C10.8276 (2)0.05790 (19)0.2325 (3)0.0268 (7)
C20.8331 (3)0.0119 (2)0.3478 (3)0.0327 (7)
H2A0.90210.01320.38800.039*
C30.7400 (3)0.0029 (2)0.4025 (3)0.0355 (8)
C40.6361 (3)0.0424 (2)0.3444 (3)0.0434 (9)
H4A0.57330.03860.38250.052*
C50.6277 (3)0.0858 (2)0.2337 (4)0.0392 (8)
H5A0.55810.11120.19670.047*
C60.7199 (2)0.0949 (2)0.1702 (3)0.0290 (7)
C70.7052 (3)0.1444 (2)0.0533 (3)0.0321 (7)
C80.5879 (2)0.1779 (2)0.0065 (3)0.0348 (8)
C90.5162 (3)0.1296 (3)0.0985 (4)0.0603 (12)
H9A0.53960.07570.11890.072*
C100.4106 (3)0.1598 (3)0.1607 (4)0.0675 (13)
H10A0.36350.12670.22320.081*
C110.3748 (3)0.2386 (3)0.1307 (4)0.0581 (11)
H11A0.30380.25930.17330.070*
C120.4432 (3)0.2866 (3)0.0384 (4)0.0635 (12)
H12A0.41810.33970.01690.076*
C130.5505 (3)0.2568 (3)0.0241 (4)0.0527 (10)
H13A0.59700.29020.08680.063*
C140.7695 (3)0.2182 (3)0.1169 (4)0.0592 (12)
H14A0.73700.27150.09520.071*
H14B0.71670.19290.18960.071*
C150.8852 (3)0.2344 (2)0.1512 (4)0.0535 (10)
H15A0.87370.26130.23520.064*
H15B0.93060.27260.08830.064*
C160.8860 (3)0.0981 (3)0.2608 (4)0.0561 (11)
H16A0.89060.12370.34150.084*
H16B0.80710.09180.25670.084*
H16C0.92190.04300.25390.084*
C171.0606 (3)0.1696 (3)0.1764 (4)0.0522 (10)
H17A1.05350.19410.26060.078*
H17B1.10200.11690.17170.078*
H17C1.10110.20840.11260.078*
C180.8349 (3)0.1007 (3)0.5543 (4)0.0537 (10)
H18A0.82540.12960.63090.081*
H18B0.90500.06880.57260.081*
H18C0.83720.14180.48810.081*
C191.1673 (3)0.1069 (2)0.1073 (3)0.0329 (7)
C201.2906 (3)0.0780 (3)0.1325 (4)0.0571 (12)
H20A1.33960.12370.17130.086*
H20B1.30960.06200.05250.086*
H20C1.30080.02980.18960.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0244 (2)0.0309 (2)0.0274 (2)0.00498 (16)0.00454 (14)0.00588 (17)
O10.0233 (11)0.0480 (14)0.0286 (13)0.0067 (10)0.0060 (9)0.0079 (10)
O20.0479 (14)0.0579 (18)0.0401 (15)0.0047 (12)0.0181 (11)0.0103 (13)
O30.0234 (10)0.0327 (13)0.0332 (13)0.0008 (9)0.0027 (9)0.0013 (10)
O40.0470 (15)0.0407 (16)0.0502 (17)0.0011 (12)0.0061 (12)0.0130 (12)
N10.0352 (15)0.0444 (19)0.0333 (17)0.0152 (13)0.0055 (12)0.0123 (13)
N20.0354 (15)0.0289 (16)0.0344 (17)0.0033 (12)0.0053 (12)0.0072 (12)
C10.0257 (15)0.0265 (17)0.0271 (18)0.0019 (12)0.0034 (13)0.0033 (13)
C20.0295 (16)0.037 (2)0.0309 (19)0.0011 (14)0.0042 (13)0.0023 (14)
C30.0411 (19)0.035 (2)0.032 (2)0.0092 (15)0.0106 (15)0.0030 (15)
C40.0347 (19)0.050 (2)0.052 (2)0.0000 (16)0.0217 (16)0.0017 (19)
C50.0282 (17)0.040 (2)0.050 (2)0.0031 (14)0.0106 (15)0.0002 (17)
C60.0242 (15)0.0284 (18)0.0334 (18)0.0011 (13)0.0039 (13)0.0032 (14)
C70.0293 (16)0.0291 (19)0.036 (2)0.0068 (13)0.0024 (14)0.0061 (15)
C80.0277 (17)0.041 (2)0.033 (2)0.0092 (14)0.0008 (14)0.0031 (15)
C90.041 (2)0.059 (3)0.071 (3)0.0148 (19)0.011 (2)0.026 (2)
C100.043 (2)0.077 (3)0.069 (3)0.013 (2)0.017 (2)0.021 (2)
C110.0314 (19)0.070 (3)0.065 (3)0.0144 (19)0.0067 (18)0.011 (2)
C120.045 (2)0.049 (3)0.090 (3)0.0256 (19)0.002 (2)0.003 (2)
C130.038 (2)0.047 (2)0.065 (3)0.0128 (17)0.0054 (18)0.011 (2)
C140.059 (2)0.071 (3)0.053 (3)0.034 (2)0.0219 (19)0.034 (2)
C150.068 (3)0.041 (2)0.055 (3)0.0165 (19)0.022 (2)0.0177 (19)
C160.070 (3)0.053 (3)0.041 (2)0.003 (2)0.0019 (19)0.0058 (19)
C170.048 (2)0.062 (3)0.051 (3)0.0074 (19)0.0203 (18)0.021 (2)
C180.058 (2)0.062 (3)0.041 (2)0.005 (2)0.0095 (18)0.015 (2)
C190.0274 (16)0.045 (2)0.0265 (18)0.0012 (15)0.0061 (13)0.0016 (16)
C200.0288 (19)0.063 (3)0.076 (3)0.0009 (17)0.0047 (18)0.011 (2)
Geometric parameters (Å, º) top
Cu—O11.908 (2)C9—C101.377 (5)
Cu—N11.968 (3)C9—H9A0.9300
Cu—O31.968 (2)C10—C111.368 (6)
Cu—N22.073 (3)C10—H10A0.9300
O1—C11.298 (3)C11—C121.359 (5)
O2—C31.366 (4)C11—H11A0.9300
O2—C181.437 (4)C12—C131.392 (5)
O3—C191.287 (4)C12—H12A0.9300
O4—C191.224 (4)C13—H13A0.9300
N1—C71.312 (4)C14—C151.529 (5)
N1—C141.481 (4)C14—H14A0.9700
N2—C151.463 (4)C14—H14B0.9700
N2—C171.475 (4)C15—H15A0.9700
N2—C161.493 (4)C15—H15B0.9700
C1—C21.412 (4)C16—H16A0.9600
C1—C61.436 (4)C16—H16B0.9600
C2—C31.374 (4)C16—H16C0.9600
C2—H2A0.9300C17—H17A0.9600
C3—C41.405 (5)C17—H17B0.9600
C4—C51.345 (5)C17—H17C0.9600
C4—H4A0.9300C18—H18A0.9600
C5—C61.421 (4)C18—H18B0.9600
C5—H5A0.9300C18—H18C0.9600
C6—C71.443 (4)C19—C201.510 (4)
C7—C81.505 (4)C20—H20A0.9600
C8—C131.378 (5)C20—H20B0.9600
C8—C91.378 (5)C20—H20C0.9600
O1—Cu—N190.82 (10)C10—C11—C12119.9 (3)
O1—Cu—O390.49 (8)C10—C11—H11A120.0
N1—Cu—O3175.05 (11)C12—C11—H11A120.0
O1—Cu—N2173.51 (10)C13—C12—C11120.4 (4)
N1—Cu—N283.74 (11)C13—C12—H12A119.8
O3—Cu—N294.64 (9)C11—C12—H12A119.8
C1—O1—Cu128.17 (19)C8—C13—C12120.1 (3)
C3—O2—C18117.2 (3)C8—C13—H13A119.9
C19—O3—Cu110.5 (2)C12—C13—H13A119.9
C7—N1—C14119.4 (3)N1—C14—C15107.7 (3)
C7—N1—Cu126.8 (2)N1—C14—H14A110.2
C14—N1—Cu113.3 (2)C15—C14—H14A110.2
C15—N2—C17109.6 (3)N1—C14—H14B110.2
C15—N2—C16111.0 (3)C15—C14—H14B110.2
C17—N2—C16105.9 (3)H14A—C14—H14B108.5
C15—N2—Cu102.5 (2)N2—C15—C14109.6 (3)
C17—N2—Cu117.1 (2)N2—C15—H15A109.8
C16—N2—Cu110.8 (2)C14—C15—H15A109.8
O1—C1—C2117.3 (3)N2—C15—H15B109.8
O1—C1—C6124.4 (3)C14—C15—H15B109.8
C2—C1—C6118.3 (3)H15A—C15—H15B108.2
C3—C2—C1122.2 (3)N2—C16—H16A109.5
C3—C2—H2A118.9N2—C16—H16B109.5
C1—C2—H2A118.9H16A—C16—H16B109.5
O2—C3—C2124.1 (3)N2—C16—H16C109.5
O2—C3—C4116.5 (3)H16A—C16—H16C109.5
C2—C3—C4119.4 (3)H16B—C16—H16C109.5
C5—C4—C3119.8 (3)N2—C17—H17A109.5
C5—C4—H4A120.1N2—C17—H17B109.5
C3—C4—H4A120.1H17A—C17—H17B109.5
C4—C5—C6123.4 (3)N2—C17—H17C109.5
C4—C5—H5A118.3H17A—C17—H17C109.5
C6—C5—H5A118.3H17B—C17—H17C109.5
C7—C6—C5120.2 (3)O2—C18—H18A109.5
C7—C6—C1122.8 (3)O2—C18—H18B109.5
C5—C6—C1116.9 (3)H18A—C18—H18B109.5
N1—C7—C6123.0 (3)O2—C18—H18C109.5
N1—C7—C8118.4 (3)H18A—C18—H18C109.5
C6—C7—C8118.6 (3)H18B—C18—H18C109.5
C13—C8—C9118.5 (3)O4—C19—O3123.3 (3)
C13—C8—C7122.3 (3)O4—C19—C20120.9 (3)
C9—C8—C7119.1 (3)O3—C19—C20115.8 (3)
C10—C9—C8121.0 (4)C19—C20—H20A109.5
C10—C9—H9A119.5C19—C20—H20B109.5
C8—C9—H9A119.5H20A—C20—H20B109.5
C11—C10—C9120.0 (4)C19—C20—H20C109.5
C11—C10—H10A120.0H20A—C20—H20C109.5
C9—C10—H10A120.0H20B—C20—H20C109.5

Experimental details

Crystal data
Chemical formula[Cu(C18H21N2O2)(C2H3O2)]
Mr419.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.9721 (16), 15.674 (2), 10.6346 (14)
β (°) 102.655 (3)
V3)1947.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.656, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
11008, 3822, 2673
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.02
No. of reflections3822
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.40

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support in part from the National Science Council, Taiwan, and in part from the project of specific research fields in Chung Yuan Christian University, Taiwan (No. CYCU-97-CR-CH).

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745–3752.  Web of Science CrossRef CAS Google Scholar
First citationCoates, G. W. & Moore, D. R. (2004). Angew. Chem. Int. Ed. 43, 6618–6639.  Web of Science CrossRef CAS Google Scholar
First citationDarensbourg, D. J., Rainey, P. & Yarbrough, J. C. (2001). Inorg. Chem. 40, 986–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationInoue, S., Koinuma, H. & Tsuruta, T. (1969). Makromol. Chem. 130, 210–220.  CrossRef CAS Google Scholar
First citationLuo, H., Fanwick, P. E. & Green, M. A. (1998). Inorg. Chem. 37, 1127–1130.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, H., Lo, J.-M., Fanwick, P. E. J. G., Stowell, M. A. & Green, M. A. (1999). Inorg. Chem. 38, 2071–2078.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y. M., Duan, W. L. & Shi, M. (2003). J. Org. Chem. 68, 1559–1562.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds