metal-organic compounds
(Acetato-κO)(2-{[2-(dimethylamino)ethylimino](phenyl)methyl}-5-methoxyphenolato-κ3N,N′,O1)copper(II)
aDepartment of Chemistry, National Changhua University of Education, Changhua 500, Taiwan, and bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: btko@cycu.edu.tw
The CuII atom in the title complex, [Cu(C18H21N2O2)(C2H3O2)], is tetracoordinated by two N atoms and two O atoms, of which one O atom is attributed to the acetate group and the other atoms are from the tridentate salicylideneiminate ligand, forming a slight distorted square-planar environment. The other acetate O atom exhibits a very weak intramolecular interaction toward the Cu atom, the Cu—O distance of 2.771 (2) Å being shorter than the van der Waals radii for Cu and O atoms (2.92 Å). Furthermore, there are weak intermolecular interactions, in which the bonding O atom of the acetate group can bridge to the Cu atom of another complex, and the distance of 2.523 (2) Å is about 0.4 Å shorter than the van der Waals Cu—O distance in other crystal structures.
Related literature
For general background, see: Coates & Moore (2004); Darensbourg et al. (2001); Inoue et al. (1969); Shen et al. (2003). For related structures, see: Chen et al. (2006); Luo et al. (1998, 1999).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808033114/rk2108sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808033114/rk2108Isup2.hkl
The ligand, 5–methoxy–2–{1–[2–(dimethylamino)ethylimino]benzyl}phenol was prepared by the reaction in which 2–dimethylaminoethylamine (1.95 g, 22.1 mmol) and 5–methoxy–2–hydroxybenzophenone (4.60 g, 20.2 mmol) in refluxed ethanol (30 ml) for 24 h (Fig. 2). Volatile materials were removed under vacuum and the resulting solid was recrystallized from slowly cooling a hot hexane (40 ml) solution giving yellow powders (yield: 71%). The title complex was synthesized by the following procedures: 5–methoxy–2–{1–[2–(dimethylamino)ethylimino]benzyl}phenol (0.597 g, 2.0 mmol) and Cu(OAc)2.2H2O (0.398 g, 2.0 mmol) was refluxed in EtOH (30 ml) for 3 h and the volatile materials were removed under vacuum giving green crystalline solid (Fig. 2). The resulting precipitate was crystallized from EtOH to yield green crystals.
The C–bound H atoms were placed in calculated positions (C—H = 0.93-0.96 Å) and included in the
in the riding–model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C).Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C18H21N2O2)(C2H3O2)] | F(000) = 876 |
Mr = 419.96 | Dx = 1.433 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3118 reflections |
a = 11.9721 (16) Å | θ = 2.2–25.4° |
b = 15.674 (2) Å | µ = 1.15 mm−1 |
c = 10.6346 (14) Å | T = 293 K |
β = 102.655 (3)° | Prism, green |
V = 1947.1 (4) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 3822 independent reflections |
Radiation source: Fine–focus sealed tube | 2673 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −14→14 |
Tmin = 0.656, Tmax = 0.803 | k = −18→19 |
11008 measured reflections | l = −8→13 |
Refinement on F2 | Primary atom site location: Direct |
Least-squares matrix: Full | Secondary atom site location: Difmap |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: Geom |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.05P)2] where P = (Fo2 + 2Fc2)/3 |
3822 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[Cu(C18H21N2O2)(C2H3O2)] | V = 1947.1 (4) Å3 |
Mr = 419.96 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.9721 (16) Å | µ = 1.15 mm−1 |
b = 15.674 (2) Å | T = 293 K |
c = 10.6346 (14) Å | 0.40 × 0.30 × 0.20 mm |
β = 102.655 (3)° |
Bruker SMART 1000 CCD diffractometer | 3822 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2673 reflections with I > 2σ(I) |
Tmin = 0.656, Tmax = 0.803 | Rint = 0.049 |
11008 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.47 e Å−3 |
3822 reflections | Δρmin = −0.40 e Å−3 |
244 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.93747 (3) | 0.10053 (2) | 0.02371 (4) | 0.02773 (13) | |
O1 | 0.92068 (16) | 0.06311 (14) | 0.1893 (2) | 0.0332 (5) | |
O2 | 0.7404 (2) | −0.04350 (17) | 0.5113 (2) | 0.0474 (6) | |
O3 | 1.09237 (16) | 0.05131 (13) | 0.0552 (2) | 0.0303 (5) | |
O4 | 1.1426 (2) | 0.17945 (16) | 0.1343 (2) | 0.0467 (6) | |
N1 | 0.7889 (2) | 0.15948 (18) | −0.0052 (3) | 0.0379 (7) | |
N2 | 0.9457 (2) | 0.15348 (17) | −0.1526 (3) | 0.0333 (6) | |
C1 | 0.8276 (2) | 0.05790 (19) | 0.2325 (3) | 0.0268 (7) | |
C2 | 0.8331 (3) | 0.0119 (2) | 0.3478 (3) | 0.0327 (7) | |
H2A | 0.9021 | −0.0132 | 0.3880 | 0.039* | |
C3 | 0.7400 (3) | 0.0029 (2) | 0.4025 (3) | 0.0355 (8) | |
C4 | 0.6361 (3) | 0.0424 (2) | 0.3444 (3) | 0.0434 (9) | |
H4A | 0.5733 | 0.0386 | 0.3825 | 0.052* | |
C5 | 0.6277 (3) | 0.0858 (2) | 0.2337 (4) | 0.0392 (8) | |
H5A | 0.5581 | 0.1112 | 0.1967 | 0.047* | |
C6 | 0.7199 (2) | 0.0949 (2) | 0.1702 (3) | 0.0290 (7) | |
C7 | 0.7052 (3) | 0.1444 (2) | 0.0533 (3) | 0.0321 (7) | |
C8 | 0.5879 (2) | 0.1779 (2) | −0.0065 (3) | 0.0348 (8) | |
C9 | 0.5162 (3) | 0.1296 (3) | −0.0985 (4) | 0.0603 (12) | |
H9A | 0.5396 | 0.0757 | −0.1189 | 0.072* | |
C10 | 0.4106 (3) | 0.1598 (3) | −0.1607 (4) | 0.0675 (13) | |
H10A | 0.3635 | 0.1267 | −0.2232 | 0.081* | |
C11 | 0.3748 (3) | 0.2386 (3) | −0.1307 (4) | 0.0581 (11) | |
H11A | 0.3038 | 0.2593 | −0.1733 | 0.070* | |
C12 | 0.4432 (3) | 0.2866 (3) | −0.0384 (4) | 0.0635 (12) | |
H12A | 0.4181 | 0.3397 | −0.0169 | 0.076* | |
C13 | 0.5505 (3) | 0.2568 (3) | 0.0241 (4) | 0.0527 (10) | |
H13A | 0.5970 | 0.2902 | 0.0868 | 0.063* | |
C14 | 0.7695 (3) | 0.2182 (3) | −0.1169 (4) | 0.0592 (12) | |
H14A | 0.7370 | 0.2715 | −0.0952 | 0.071* | |
H14B | 0.7167 | 0.1929 | −0.1896 | 0.071* | |
C15 | 0.8852 (3) | 0.2344 (2) | −0.1512 (4) | 0.0535 (10) | |
H15A | 0.8737 | 0.2613 | −0.2352 | 0.064* | |
H15B | 0.9306 | 0.2726 | −0.0883 | 0.064* | |
C16 | 0.8860 (3) | 0.0981 (3) | −0.2608 (4) | 0.0561 (11) | |
H16A | 0.8906 | 0.1237 | −0.3415 | 0.084* | |
H16B | 0.8071 | 0.0918 | −0.2567 | 0.084* | |
H16C | 0.9219 | 0.0430 | −0.2539 | 0.084* | |
C17 | 1.0606 (3) | 0.1696 (3) | −0.1764 (4) | 0.0522 (10) | |
H17A | 1.0535 | 0.1941 | −0.2606 | 0.078* | |
H17B | 1.1020 | 0.1169 | −0.1717 | 0.078* | |
H17C | 1.1011 | 0.2084 | −0.1126 | 0.078* | |
C18 | 0.8349 (3) | −0.1007 (3) | 0.5543 (4) | 0.0537 (10) | |
H18A | 0.8254 | −0.1296 | 0.6309 | 0.081* | |
H18B | 0.9050 | −0.0688 | 0.5726 | 0.081* | |
H18C | 0.8372 | −0.1418 | 0.4881 | 0.081* | |
C19 | 1.1673 (3) | 0.1069 (2) | 0.1073 (3) | 0.0329 (7) | |
C20 | 1.2906 (3) | 0.0780 (3) | 0.1325 (4) | 0.0571 (12) | |
H20A | 1.3396 | 0.1237 | 0.1713 | 0.086* | |
H20B | 1.3096 | 0.0620 | 0.0525 | 0.086* | |
H20C | 1.3008 | 0.0298 | 0.1896 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0244 (2) | 0.0309 (2) | 0.0274 (2) | 0.00498 (16) | 0.00454 (14) | 0.00588 (17) |
O1 | 0.0233 (11) | 0.0480 (14) | 0.0286 (13) | 0.0067 (10) | 0.0060 (9) | 0.0079 (10) |
O2 | 0.0479 (14) | 0.0579 (18) | 0.0401 (15) | −0.0047 (12) | 0.0181 (11) | 0.0103 (13) |
O3 | 0.0234 (10) | 0.0327 (13) | 0.0332 (13) | −0.0008 (9) | 0.0027 (9) | 0.0013 (10) |
O4 | 0.0470 (15) | 0.0407 (16) | 0.0502 (17) | 0.0011 (12) | 0.0061 (12) | −0.0130 (12) |
N1 | 0.0352 (15) | 0.0444 (19) | 0.0333 (17) | 0.0152 (13) | 0.0055 (12) | 0.0123 (13) |
N2 | 0.0354 (15) | 0.0289 (16) | 0.0344 (17) | 0.0033 (12) | 0.0053 (12) | 0.0072 (12) |
C1 | 0.0257 (15) | 0.0265 (17) | 0.0271 (18) | −0.0019 (12) | 0.0034 (13) | −0.0033 (13) |
C2 | 0.0295 (16) | 0.037 (2) | 0.0309 (19) | 0.0011 (14) | 0.0042 (13) | 0.0023 (14) |
C3 | 0.0411 (19) | 0.035 (2) | 0.032 (2) | −0.0092 (15) | 0.0106 (15) | −0.0030 (15) |
C4 | 0.0347 (19) | 0.050 (2) | 0.052 (2) | 0.0000 (16) | 0.0217 (16) | 0.0017 (19) |
C5 | 0.0282 (17) | 0.040 (2) | 0.050 (2) | 0.0031 (14) | 0.0106 (15) | 0.0002 (17) |
C6 | 0.0242 (15) | 0.0284 (18) | 0.0334 (18) | 0.0011 (13) | 0.0039 (13) | −0.0032 (14) |
C7 | 0.0293 (16) | 0.0291 (19) | 0.036 (2) | 0.0068 (13) | 0.0024 (14) | −0.0061 (15) |
C8 | 0.0277 (17) | 0.041 (2) | 0.033 (2) | 0.0092 (14) | 0.0008 (14) | 0.0031 (15) |
C9 | 0.041 (2) | 0.059 (3) | 0.071 (3) | 0.0148 (19) | −0.011 (2) | −0.026 (2) |
C10 | 0.043 (2) | 0.077 (3) | 0.069 (3) | 0.013 (2) | −0.017 (2) | −0.021 (2) |
C11 | 0.0314 (19) | 0.070 (3) | 0.065 (3) | 0.0144 (19) | −0.0067 (18) | 0.011 (2) |
C12 | 0.045 (2) | 0.049 (3) | 0.090 (3) | 0.0256 (19) | 0.002 (2) | −0.003 (2) |
C13 | 0.038 (2) | 0.047 (2) | 0.065 (3) | 0.0128 (17) | −0.0054 (18) | −0.011 (2) |
C14 | 0.059 (2) | 0.071 (3) | 0.053 (3) | 0.034 (2) | 0.0219 (19) | 0.034 (2) |
C15 | 0.068 (3) | 0.041 (2) | 0.055 (3) | 0.0165 (19) | 0.022 (2) | 0.0177 (19) |
C16 | 0.070 (3) | 0.053 (3) | 0.041 (2) | −0.003 (2) | 0.0019 (19) | 0.0058 (19) |
C17 | 0.048 (2) | 0.062 (3) | 0.051 (3) | 0.0074 (19) | 0.0203 (18) | 0.021 (2) |
C18 | 0.058 (2) | 0.062 (3) | 0.041 (2) | −0.005 (2) | 0.0095 (18) | 0.015 (2) |
C19 | 0.0274 (16) | 0.045 (2) | 0.0265 (18) | −0.0012 (15) | 0.0061 (13) | −0.0016 (16) |
C20 | 0.0288 (19) | 0.063 (3) | 0.076 (3) | 0.0009 (17) | 0.0047 (18) | −0.011 (2) |
Cu—O1 | 1.908 (2) | C9—C10 | 1.377 (5) |
Cu—N1 | 1.968 (3) | C9—H9A | 0.9300 |
Cu—O3 | 1.968 (2) | C10—C11 | 1.368 (6) |
Cu—N2 | 2.073 (3) | C10—H10A | 0.9300 |
O1—C1 | 1.298 (3) | C11—C12 | 1.359 (5) |
O2—C3 | 1.366 (4) | C11—H11A | 0.9300 |
O2—C18 | 1.437 (4) | C12—C13 | 1.392 (5) |
O3—C19 | 1.287 (4) | C12—H12A | 0.9300 |
O4—C19 | 1.224 (4) | C13—H13A | 0.9300 |
N1—C7 | 1.312 (4) | C14—C15 | 1.529 (5) |
N1—C14 | 1.481 (4) | C14—H14A | 0.9700 |
N2—C15 | 1.463 (4) | C14—H14B | 0.9700 |
N2—C17 | 1.475 (4) | C15—H15A | 0.9700 |
N2—C16 | 1.493 (4) | C15—H15B | 0.9700 |
C1—C2 | 1.412 (4) | C16—H16A | 0.9600 |
C1—C6 | 1.436 (4) | C16—H16B | 0.9600 |
C2—C3 | 1.374 (4) | C16—H16C | 0.9600 |
C2—H2A | 0.9300 | C17—H17A | 0.9600 |
C3—C4 | 1.405 (5) | C17—H17B | 0.9600 |
C4—C5 | 1.345 (5) | C17—H17C | 0.9600 |
C4—H4A | 0.9300 | C18—H18A | 0.9600 |
C5—C6 | 1.421 (4) | C18—H18B | 0.9600 |
C5—H5A | 0.9300 | C18—H18C | 0.9600 |
C6—C7 | 1.443 (4) | C19—C20 | 1.510 (4) |
C7—C8 | 1.505 (4) | C20—H20A | 0.9600 |
C8—C13 | 1.378 (5) | C20—H20B | 0.9600 |
C8—C9 | 1.378 (5) | C20—H20C | 0.9600 |
O1—Cu—N1 | 90.82 (10) | C10—C11—C12 | 119.9 (3) |
O1—Cu—O3 | 90.49 (8) | C10—C11—H11A | 120.0 |
N1—Cu—O3 | 175.05 (11) | C12—C11—H11A | 120.0 |
O1—Cu—N2 | 173.51 (10) | C13—C12—C11 | 120.4 (4) |
N1—Cu—N2 | 83.74 (11) | C13—C12—H12A | 119.8 |
O3—Cu—N2 | 94.64 (9) | C11—C12—H12A | 119.8 |
C1—O1—Cu | 128.17 (19) | C8—C13—C12 | 120.1 (3) |
C3—O2—C18 | 117.2 (3) | C8—C13—H13A | 119.9 |
C19—O3—Cu | 110.5 (2) | C12—C13—H13A | 119.9 |
C7—N1—C14 | 119.4 (3) | N1—C14—C15 | 107.7 (3) |
C7—N1—Cu | 126.8 (2) | N1—C14—H14A | 110.2 |
C14—N1—Cu | 113.3 (2) | C15—C14—H14A | 110.2 |
C15—N2—C17 | 109.6 (3) | N1—C14—H14B | 110.2 |
C15—N2—C16 | 111.0 (3) | C15—C14—H14B | 110.2 |
C17—N2—C16 | 105.9 (3) | H14A—C14—H14B | 108.5 |
C15—N2—Cu | 102.5 (2) | N2—C15—C14 | 109.6 (3) |
C17—N2—Cu | 117.1 (2) | N2—C15—H15A | 109.8 |
C16—N2—Cu | 110.8 (2) | C14—C15—H15A | 109.8 |
O1—C1—C2 | 117.3 (3) | N2—C15—H15B | 109.8 |
O1—C1—C6 | 124.4 (3) | C14—C15—H15B | 109.8 |
C2—C1—C6 | 118.3 (3) | H15A—C15—H15B | 108.2 |
C3—C2—C1 | 122.2 (3) | N2—C16—H16A | 109.5 |
C3—C2—H2A | 118.9 | N2—C16—H16B | 109.5 |
C1—C2—H2A | 118.9 | H16A—C16—H16B | 109.5 |
O2—C3—C2 | 124.1 (3) | N2—C16—H16C | 109.5 |
O2—C3—C4 | 116.5 (3) | H16A—C16—H16C | 109.5 |
C2—C3—C4 | 119.4 (3) | H16B—C16—H16C | 109.5 |
C5—C4—C3 | 119.8 (3) | N2—C17—H17A | 109.5 |
C5—C4—H4A | 120.1 | N2—C17—H17B | 109.5 |
C3—C4—H4A | 120.1 | H17A—C17—H17B | 109.5 |
C4—C5—C6 | 123.4 (3) | N2—C17—H17C | 109.5 |
C4—C5—H5A | 118.3 | H17A—C17—H17C | 109.5 |
C6—C5—H5A | 118.3 | H17B—C17—H17C | 109.5 |
C7—C6—C5 | 120.2 (3) | O2—C18—H18A | 109.5 |
C7—C6—C1 | 122.8 (3) | O2—C18—H18B | 109.5 |
C5—C6—C1 | 116.9 (3) | H18A—C18—H18B | 109.5 |
N1—C7—C6 | 123.0 (3) | O2—C18—H18C | 109.5 |
N1—C7—C8 | 118.4 (3) | H18A—C18—H18C | 109.5 |
C6—C7—C8 | 118.6 (3) | H18B—C18—H18C | 109.5 |
C13—C8—C9 | 118.5 (3) | O4—C19—O3 | 123.3 (3) |
C13—C8—C7 | 122.3 (3) | O4—C19—C20 | 120.9 (3) |
C9—C8—C7 | 119.1 (3) | O3—C19—C20 | 115.8 (3) |
C10—C9—C8 | 121.0 (4) | C19—C20—H20A | 109.5 |
C10—C9—H9A | 119.5 | C19—C20—H20B | 109.5 |
C8—C9—H9A | 119.5 | H20A—C20—H20B | 109.5 |
C11—C10—C9 | 120.0 (4) | C19—C20—H20C | 109.5 |
C11—C10—H10A | 120.0 | H20A—C20—H20C | 109.5 |
C9—C10—H10A | 120.0 | H20B—C20—H20C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [Cu(C18H21N2O2)(C2H3O2)] |
Mr | 419.96 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.9721 (16), 15.674 (2), 10.6346 (14) |
β (°) | 102.655 (3) |
V (Å3) | 1947.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.15 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.656, 0.803 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11008, 3822, 2673 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.103, 1.02 |
No. of reflections | 3822 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.40 |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
We gratefully acknowledge financial support in part from the National Science Council, Taiwan, and in part from the project of specific research fields in Chung Yuan Christian University, Taiwan (No. CYCU-97-CR-CH).
References
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745–3752. Web of Science CrossRef CAS Google Scholar
Coates, G. W. & Moore, D. R. (2004). Angew. Chem. Int. Ed. 43, 6618–6639. Web of Science CrossRef CAS Google Scholar
Darensbourg, D. J., Rainey, P. & Yarbrough, J. C. (2001). Inorg. Chem. 40, 986–993. Web of Science CSD CrossRef CAS Google Scholar
Inoue, S., Koinuma, H. & Tsuruta, T. (1969). Makromol. Chem. 130, 210–220. CrossRef CAS Google Scholar
Luo, H., Fanwick, P. E. & Green, M. A. (1998). Inorg. Chem. 37, 1127–1130. Web of Science CSD CrossRef CAS Google Scholar
Luo, H., Lo, J.-M., Fanwick, P. E. J. G., Stowell, M. A. & Green, M. A. (1999). Inorg. Chem. 38, 2071–2078. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen, Y. M., Duan, W. L. & Shi, M. (2003). J. Org. Chem. 68, 1559–1562. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbon dioxide is the most abundant carbon resource in the atmosphere and is used by green plants and anaerobic bacteria for chemical production on a massive scale. In contrast, industrial and laboratory utilization of CO2 as a chemical feedstock is rare. The reuse and recovery of CO2 have received much attention from the viewpoint of carbon resources and environmental problems during the last two decades of the twentieth century. In particular, the catalytic coupling of CO2 with heterocycles has been discovered and investigated over the past 35 years (Inoue et al., 1969). One of the major successes is the utilization of epoxides and CO2 as starting materials to prepare the polycarbonates and/or cyclic carbonates in the presence of a transition metal catalyst. However, only a few metals, including Al, Cr, Co, Mg, Li, Zn, Cu, and Cd (Coates & Moore, 2004) are active for the coupling of epoxides and CO2. Recently, Darensbourg et al., (2001) disclosed the synthesis, characterization and catalytic studies of a number of bis(salicylaldiminato)zinc complexes, in which the most active catalyst for co–polymerization of cyclohexene oxide and CO2 giving poly(cyclohexene carbonate) (>99% carbonate linkages, Mn = 41000 g.mol-1, Mw/Mn = 10.3) with a turnover frequency of 6.9 h-1. In addition, Shen et al. (2003) reported that binaphthyldiaminosalen–type Zn, Cu, and Co complexes efficiently catalyzed reactions of epoxides with CO2 to achieve five–membered ring cyclic carbonates in the presence of various catalytic amounts of organic bases. Most recently, Chen et al., (2006) has synthesized a series of Schiff base zinc complexes which have shown high activity in the ring–opening poymerization of lactide (Chen et al., 2006). We report herein the synthesis and crystal structure study of a N,N,O–tridentate Schiff base CuII complex (I), a potential catalyst for CO2/epoxide coupling copolymerization (Fig. 1).
The solid structure of I reveals a monomeric CuII complex (Fig. 1) containing a six–member and five–member ring coordinated from the tridentate salicylideneiminate ligand. The geometry around Cu atom is tetracoordinated with a slight distorted square planar environment in which two nitrogen atoms and two oxygen atoms are almost coplanar. The sums of bond angles around Cu center are 359.7 (1)°. The distances between the Cu atom and O1, O3, N1 and N2 are 1.908 (2), 1.968 (2), 2.073 (3), 1.969 (3)Å, respectively. These bond distances are similar to those found in other Schiff base CuII complexes (Luo et al., 1998). The other acetate's oxygen, O4 shows very weak intramolecular contact with Cu (Cu···O4 = 2.771 (2)Å) in comparison with Van der Waals contact (2.92Å) for Cu···O. In addition, there are weak intermolecular interactions, in which the bonding oxygen (O3) of acetate group can be bridged to the Cu atom of another complex and the distance (2.523 (2) Å) is about 0.4 Å shorter than Van der Waals contact of Cu···O in the other crystal structure.