metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Benzo­phenone imine-κN)­chlorido(hydrido­tripyrazolyl­borato)­(tri­phenyl­phosphine)ruthenium(II) di­ethyl ether solvate

aDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan, bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan, and cDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan
*Correspondence e-mail: yhlo@ttu.edu.tw

(Received 12 September 2008; accepted 15 October 2008; online 22 October 2008)

The reaction of RuCl(Tp)(Ph3P)2, where Tp is [(CH)3N2]3BH, with benzophenone imine leads to the formation of the title compound, [Ru(C9H10BN6)Cl(C13H11N)(C18H15P)]·C4H10O. The environment about the Ru atom corresponds to a slightly distorted octa­hedron and the bite angle of the Tp ligand produces an average N—Ru—N angle of 86.3 (9)°. The three Ru—N(Tp) bond lengths [2.117 (2), 2.079 (2) and 2.084 (2) Å] are slightly longer than the average distance (2.038 Å) in other ruthenium–Tp complexes.

Related literature

For background literature, see: Albertin et al. (2008[Albertin, G., Antoniutti, S. & Magaton, A. (2008). Inorg. Chim. Acta, 361, 1744-1753.]); Burrows (2001[Burrows, A. D. (2001). CrystEngComm, 46, 1-5.]); Harman & Tube (1988[Harman, W. D. & Tube, H. (1988). Inorg. Chem. 27, 3261-3262.]); Pavlik et al. (2005[Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organometallics, 24, 3561-3575.]). For related structures, see: Alock et al. (1992[Alock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906-2908.]); Bohanna et al. (1996[Bohanna, C., Esteruelas, M. A., López, A. M. & Oro, L. A. (1996). J. Organomet. Chem. 526, 73-83.]); Gemel et al. (1996[Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998-4004.]); Slugovc et al. (1998[Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827-831.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C9H10BN6)Cl(C13H11N)(C18H15P)]·C4H10O

  • Mr = 867.18

  • Monoclinic, P 21 /c

  • a = 9.3768 (1) Å

  • b = 30.1803 (5) Å

  • c = 14.9092 (2) Å

  • β = 96.126 (1)°

  • V = 4195.13 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 295 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.915, Tmax = 0.952

  • 28699 measured reflections

  • 9587 independent reflections

  • 7313 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.02

  • 9587 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 1.60 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ruthenium(II) hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik et al., 2005). The complex RuCl(Tp)(PPh3)2 (Alock et al., 1992) has been used as the starting material for the synthesis of several complexes because of its substitutionally labile chloride and phosphines (Burrows, 2001). On the other hand, despite the large number of known transition metal complexes containing multidentate imine ligands, the monodentate nitrogen-bond imine derivatives are rather rare (Albertin et al., 2008). This is somewhat surprising and may be partly due to the weak Lewis basicity of the imine nitrogen atom (Harman & Tube 1988). However, coordination of an imine on a metal fragment would be an important step in its activation toward nucleophilic attack or its hydrogenation reaction to give the amine.

The complex [RuCl(Tp)(PPh3)2] reacts smoothly with benzophenone imine in warm toluene affording the title compound RuCl(Tp)(PPh3)(HNCPh2) ((I)). The complex (I) is yellow crystalline solid which in their IR spectra display one medium band near 3312 cm-1, attributable to ν(NH) in the imine ligand. We have observed that the benzophenone imine is lost readily in solution. It appears that a rapid dissociation equilibrium occurs which leads to the formation of variable amounts of free imine plus other species. This behavior has been observed in other imine complexes of ruthenium, as in the case of RuHCl(CO)(HNCPh2)(PiPr3)2, where PiPr is tri(isopropyl)phosphine, (Bohanna et al., 1996), and hence in all further operations for the purification of (I), an excess of free imine was added in order to prevent decomposition by imine ligand dissociation. In complex (I), the environment about the ruthenium metal center corresponds to a slightly distorted octahedron and the bite angle of the Tp ligand produces an average N—Ru—N angle of 86.3° only slightly distorted from 90°. The three Ru—N(Tp) bond lengths: 2.117 (2), 2.079 (2) and 2.084 (2) Å are slightly longer than the average distance of 2.038 Å in other ruthenium Tp complexes (Gemel et al., 1996; Slugovc et al., 1998). The Ru1—N7 and N7—C10 bond lengths of 2.063 (2) Å and 1.284 (3) Å correspond to single Ru—N and double CN bonds. The angles (121.5 (2)°, 120.2 (3)° and 117.9 (2)°) around C10 indicate a sp2 hybridization as expected.

Related literature top

For related structures, see: Alock et al. (1992); Bohanna et al. (1996); Gemel et al. (1996); Slugovc et al. (1998).

For related literature, see: Albertin et al. (2008); Burrows (2001); Harman & Tube (1988); Pavlik et al. (2005).

Experimental top

The synthesis of the title compound (I) was carried out as follows: to a solution of RuCl(Tp)(PPh3)2 (3.95 g, 4.50 mmol) in toluene (100 ml), an excess of benzophenone imine (7.9 ml, 45.0 mmol) were added. The mixture was heated using a warm water bath for 30 min. A deep yellow color developed during this time. The reaction mixture was stirred for a further 2 h at room temperature. Then, it was concentrated to approximately half of the volume and cooled to 253 K. The yellow precipitate was filtered off, washed with ethanol and ether, dried under vacuum to give the (I) (3.34 g, 95% yield). Spectroscopic analysis: IR (KBr, cm-1): ν(BH) 2467 cm-1; ν(NH) 3312 cm-1. The 1H NMR (CDCl3, 303 K, d, p.p.m.): δ 5.67 (t, JHH = 2.0 Hz, 1H, Tp), 5.78 (t, 1H, JHH = 2.0 Hz, Tp), 5.95 (d, 1H, JHH = 2.0 Hz, Tp), 6.11 (t, 1H, JHH = 2.0 Hz, Tp), 6.45 (d, 1H, JHH = 2.0 Hz, Tp), 6.73–7.70 (Ph, Tp), 8.13 (d, 1H, JHH = 2.0 Hz, Tp), 12.45 (s, 1H, HN). The 13C NMR (CDCl3, 303 K, d, p.p.m.): 105.2–148.4 (m, Ph, PPh3, Tp), 179.9 (s, HNC (Ph)2). The 31P NMR (CDCl3, 303 K, d, p.p.m.): d 51.3. The MS (m/z, Ru 102): 793.2 (M+),758.1 (M+ - Cl), 612.2 (M+ - HNC (Ph)2). Anal. Calc. for C40H36BClN7PRu, (%): C, 60.58; H,4.58; N, 12.36. Found (%): C, 60.43; H, 4.61; N, 12.42. The bright-yellow crystals of (I) for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ether containing free benzophenone imine.

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5Ueq(C), N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N), B—H = 1.10 Å and Uiso(H) = 1.2Ueq(B).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atoms numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The H atoms are drawn with arbitrary radius.
(Benzophenone imine-κN)chlorido(hydridotripyrazolylborato) (triphenylphosphine)ruthenium(II) diethyl ether solvate top
Crystal data top
[Ru(C9H10BN6)Cl(C13H11N)(C18H15P)]·C4H10OF(000) = 1792
Mr = 867.18Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 61738 reflections
a = 9.3768 (1) Åθ = 1–27.5°
b = 30.1803 (5) ŵ = 0.52 mm1
c = 14.9092 (2) ÅT = 295 K
β = 96.126 (1)°Plate, yellow
V = 4195.13 (10) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
9587 independent reflections
Radiation source: fine-focus sealed tube7313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1212
Tmin = 0.915, Tmax = 0.952k = 3839
28699 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0492P)2 + 2.3324P]
where P = (Fo2 + 2Fc2)/3
9587 reflections(Δ/σ)max < 0.001
505 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ru(C9H10BN6)Cl(C13H11N)(C18H15P)]·C4H10OV = 4195.13 (10) Å3
Mr = 867.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3768 (1) ŵ = 0.52 mm1
b = 30.1803 (5) ÅT = 295 K
c = 14.9092 (2) Å0.20 × 0.15 × 0.10 mm
β = 96.126 (1)°
Data collection top
Nonius KappaCCD
diffractometer
9587 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
7313 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.952Rint = 0.037
28699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 1.60 e Å3
9587 reflectionsΔρmin = 0.46 e Å3
505 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.29312 (2)0.099417 (7)0.750725 (14)0.03648 (7)
Cl10.44869 (8)0.14260 (3)0.66246 (5)0.05512 (19)
P10.22862 (8)0.15893 (2)0.83575 (5)0.04520 (17)
N10.3739 (2)0.00419 (7)0.72037 (16)0.0441 (5)
N20.3456 (2)0.04306 (8)0.67632 (14)0.0419 (5)
N30.2246 (2)0.01635 (7)0.84529 (15)0.0418 (5)
N40.1670 (2)0.05607 (7)0.81661 (14)0.0378 (5)
N50.4838 (2)0.03736 (7)0.86467 (15)0.0423 (5)
N60.4675 (2)0.08098 (7)0.84144 (15)0.0409 (5)
N70.1440 (2)0.11552 (8)0.64377 (15)0.0450 (5)
H7A0.17170.13990.62150.054*
B10.3757 (3)0.00265 (10)0.8237 (2)0.0450 (7)
H10.40470.03060.84980.054*
C10.3922 (3)0.02816 (11)0.6606 (2)0.0563 (8)
H1A0.41220.05770.67450.068*
C20.3764 (3)0.01009 (12)0.5761 (2)0.0620 (9)
H2A0.38310.02460.52170.074*
C30.3483 (3)0.03437 (12)0.5884 (2)0.0535 (7)
H3A0.33340.05520.54240.064*
C40.1277 (3)0.00731 (10)0.88551 (19)0.0498 (7)
H4A0.14190.03540.91060.060*
C50.0039 (3)0.01730 (10)0.8830 (2)0.0513 (7)
H5A0.08120.00940.90570.062*
C60.0332 (3)0.05626 (10)0.83963 (18)0.0439 (6)
H6A0.03150.07940.82810.053*
C70.6081 (3)0.03204 (11)0.9177 (2)0.0525 (7)
H7B0.64290.00550.94290.063*
C80.6744 (3)0.07213 (11)0.9282 (2)0.0573 (8)
H8A0.76210.07830.96100.069*
C90.5838 (3)0.10188 (10)0.8796 (2)0.0506 (7)
H9A0.60150.13200.87440.061*
C100.0270 (3)0.10422 (9)0.59664 (18)0.0432 (6)
C110.0235 (3)0.12837 (10)0.51180 (19)0.0482 (7)
C120.0215 (4)0.17094 (12)0.4950 (2)0.0665 (9)
H12A0.08220.18560.53860.080*
C130.0224 (5)0.19198 (14)0.4145 (3)0.0849 (12)
H13A0.00980.22050.40390.102*
C140.1128 (5)0.17104 (17)0.3507 (3)0.0962 (14)
H14A0.14370.18540.29700.115*
C150.1579 (5)0.12930 (18)0.3653 (3)0.1075 (18)
H15A0.21780.11490.32080.129*
C160.1153 (4)0.10794 (14)0.4459 (2)0.0787 (12)
H16A0.14900.07960.45580.094*
C170.0629 (3)0.06701 (10)0.62470 (17)0.0429 (6)
C180.2001 (3)0.07601 (11)0.6479 (2)0.0524 (7)
H18A0.23590.10470.64300.063*
C190.2831 (3)0.04240 (13)0.6781 (2)0.0605 (8)
H19A0.37310.04880.69570.073*
C200.2333 (4)0.00019 (13)0.6822 (2)0.0670 (9)
H20A0.28920.02270.70270.080*
C210.0998 (4)0.00975 (12)0.6560 (2)0.0638 (8)
H21A0.06740.03890.65710.077*
C220.0140 (3)0.02370 (10)0.6281 (2)0.0515 (7)
H22A0.07660.01710.61170.062*
C230.1486 (3)0.14282 (11)0.9387 (2)0.0568 (8)
C240.2256 (4)0.11179 (12)0.9944 (2)0.0674 (9)
H24A0.31070.10030.97730.081*
C250.1776 (6)0.09801 (14)1.0740 (3)0.0893 (14)
H25A0.23160.07811.11100.107*
C260.0504 (7)0.11364 (18)1.0985 (3)0.1055 (19)
H26A0.01690.10391.15160.127*
C270.0279 (5)0.14388 (18)1.0444 (3)0.0978 (16)
H27A0.11450.15431.06120.117*
C280.0211 (4)0.15916 (13)0.9643 (3)0.0746 (10)
H28A0.03150.18000.92880.090*
C290.3590 (3)0.20070 (10)0.8864 (2)0.0547 (7)
C300.3323 (4)0.22422 (11)0.9633 (2)0.0710 (9)
H30A0.24910.21870.99020.085*
C310.4288 (6)0.25585 (13)1.0002 (3)0.0899 (13)
H31A0.40910.27151.05110.108*
C320.5529 (6)0.26417 (14)0.9621 (3)0.0970 (14)
H32A0.61860.28480.98800.116*
C330.5794 (4)0.24191 (13)0.8856 (3)0.0882 (13)
H33A0.66270.24780.85900.106*
C340.4823 (4)0.21035 (11)0.8474 (3)0.0691 (9)
H34A0.50090.19570.79500.083*
C350.0942 (3)0.19466 (10)0.7724 (2)0.0546 (7)
C360.1355 (4)0.23402 (11)0.7351 (2)0.0665 (9)
H36A0.22950.24400.74750.080*
C370.0374 (5)0.25872 (13)0.6794 (3)0.0859 (12)
H37A0.06620.28500.65430.103*
C380.1033 (5)0.24445 (14)0.6609 (3)0.0886 (13)
H38A0.16880.26130.62410.106*
C390.1453 (4)0.20575 (14)0.6968 (3)0.0815 (12)
H39A0.23970.19620.68490.098*
C400.0466 (4)0.18051 (12)0.7515 (2)0.0677 (9)
H40A0.07530.15370.77430.081*
O10.4596 (3)0.13805 (11)0.2598 (2)0.0970 (9)
C440.5827 (5)0.1501 (2)0.1320 (3)0.128 (2)
H44A0.59090.17000.08260.192*
H44B0.55510.12130.10900.192*
H44C0.67340.14810.16840.192*
C420.3529 (6)0.15112 (18)0.3139 (3)0.1105 (16)
H42A0.25930.14840.27990.133*
H42B0.36710.18190.33130.133*
C430.4733 (6)0.16682 (17)0.1874 (3)0.1003 (14)
H43A0.50050.19610.21020.120*
H43B0.38190.16930.15060.120*
C410.3591 (7)0.12344 (18)0.3947 (4)0.136 (2)
H41A0.28590.13260.43110.204*
H41B0.45140.12650.42870.204*
H41C0.34380.09300.37750.204*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03305 (11)0.03839 (12)0.03758 (12)0.00223 (8)0.00183 (8)0.00409 (9)
Cl10.0477 (4)0.0613 (4)0.0563 (4)0.0130 (3)0.0054 (3)0.0137 (4)
P10.0461 (4)0.0396 (4)0.0488 (4)0.0000 (3)0.0001 (3)0.0003 (3)
N10.0406 (11)0.0418 (12)0.0508 (13)0.0015 (9)0.0092 (10)0.0054 (10)
N20.0369 (11)0.0504 (13)0.0390 (12)0.0029 (9)0.0063 (9)0.0000 (10)
N30.0404 (11)0.0404 (12)0.0448 (12)0.0011 (9)0.0044 (9)0.0060 (10)
N40.0360 (11)0.0412 (12)0.0363 (11)0.0017 (9)0.0043 (9)0.0005 (9)
N50.0386 (11)0.0438 (12)0.0439 (12)0.0035 (9)0.0016 (9)0.0038 (10)
N60.0372 (11)0.0418 (12)0.0427 (12)0.0007 (9)0.0005 (9)0.0019 (10)
N70.0414 (12)0.0460 (12)0.0465 (13)0.0009 (10)0.0001 (10)0.0072 (11)
B10.0433 (16)0.0391 (16)0.0526 (19)0.0013 (13)0.0052 (14)0.0029 (14)
C10.0502 (16)0.0511 (17)0.069 (2)0.0068 (13)0.0149 (15)0.0159 (16)
C20.0540 (18)0.078 (2)0.057 (2)0.0110 (16)0.0188 (15)0.0245 (18)
C30.0421 (15)0.076 (2)0.0433 (16)0.0072 (14)0.0098 (12)0.0031 (15)
C40.0509 (16)0.0510 (16)0.0479 (16)0.0085 (13)0.0077 (13)0.0127 (13)
C50.0429 (15)0.0633 (19)0.0490 (16)0.0072 (13)0.0113 (12)0.0066 (14)
C60.0356 (13)0.0535 (16)0.0429 (15)0.0007 (12)0.0064 (11)0.0003 (13)
C70.0430 (15)0.0604 (19)0.0519 (17)0.0084 (13)0.0049 (12)0.0095 (14)
C80.0436 (15)0.066 (2)0.0584 (19)0.0009 (14)0.0125 (13)0.0009 (16)
C90.0435 (15)0.0518 (17)0.0544 (17)0.0049 (12)0.0051 (13)0.0031 (14)
C100.0361 (13)0.0507 (16)0.0426 (15)0.0009 (11)0.0029 (11)0.0010 (12)
C110.0421 (14)0.0578 (18)0.0438 (16)0.0002 (13)0.0001 (12)0.0047 (13)
C120.077 (2)0.060 (2)0.059 (2)0.0028 (17)0.0089 (17)0.0092 (16)
C130.109 (3)0.066 (2)0.076 (3)0.006 (2)0.005 (2)0.027 (2)
C140.101 (3)0.112 (4)0.069 (3)0.015 (3)0.023 (2)0.040 (3)
C150.111 (3)0.130 (4)0.070 (3)0.048 (3)0.040 (2)0.038 (3)
C160.082 (2)0.087 (3)0.061 (2)0.030 (2)0.0195 (19)0.0201 (19)
C170.0364 (13)0.0546 (16)0.0371 (14)0.0053 (11)0.0009 (10)0.0007 (12)
C180.0389 (14)0.0646 (19)0.0532 (17)0.0003 (13)0.0030 (12)0.0012 (15)
C190.0405 (15)0.086 (3)0.0557 (19)0.0097 (16)0.0075 (13)0.0034 (17)
C200.0551 (19)0.079 (2)0.067 (2)0.0256 (17)0.0054 (16)0.0059 (18)
C210.0590 (19)0.0575 (19)0.074 (2)0.0086 (15)0.0038 (16)0.0031 (17)
C220.0406 (14)0.0577 (18)0.0564 (18)0.0026 (13)0.0055 (13)0.0014 (14)
C230.0644 (19)0.0540 (18)0.0530 (18)0.0114 (15)0.0114 (15)0.0116 (15)
C240.095 (3)0.060 (2)0.0480 (18)0.0119 (18)0.0096 (17)0.0069 (16)
C250.139 (4)0.080 (3)0.051 (2)0.026 (3)0.020 (2)0.0063 (19)
C260.157 (5)0.098 (4)0.068 (3)0.066 (4)0.045 (3)0.023 (3)
C270.102 (3)0.104 (4)0.097 (3)0.046 (3)0.052 (3)0.054 (3)
C280.077 (2)0.071 (2)0.079 (2)0.0156 (19)0.0226 (19)0.027 (2)
C290.0590 (18)0.0418 (15)0.0600 (19)0.0033 (13)0.0083 (14)0.0013 (14)
C300.089 (2)0.055 (2)0.066 (2)0.0126 (18)0.0081 (18)0.0034 (17)
C310.125 (4)0.065 (2)0.074 (3)0.014 (2)0.017 (3)0.016 (2)
C320.109 (3)0.065 (3)0.108 (4)0.030 (2)0.033 (3)0.005 (3)
C330.078 (3)0.061 (2)0.122 (4)0.0238 (19)0.006 (2)0.002 (2)
C340.068 (2)0.0486 (18)0.088 (3)0.0090 (16)0.0022 (18)0.0045 (17)
C350.0554 (17)0.0479 (17)0.0583 (18)0.0112 (13)0.0046 (14)0.0091 (14)
C360.077 (2)0.0504 (18)0.070 (2)0.0082 (16)0.0056 (17)0.0031 (16)
C370.112 (3)0.057 (2)0.083 (3)0.017 (2)0.014 (2)0.007 (2)
C380.097 (3)0.072 (3)0.090 (3)0.035 (2)0.024 (2)0.007 (2)
C390.063 (2)0.080 (3)0.096 (3)0.0233 (19)0.018 (2)0.018 (2)
C400.061 (2)0.056 (2)0.082 (2)0.0105 (16)0.0078 (17)0.0080 (18)
O10.105 (2)0.110 (2)0.0786 (19)0.0160 (18)0.0204 (16)0.0066 (18)
C440.099 (4)0.197 (6)0.090 (3)0.006 (4)0.019 (3)0.020 (4)
C420.131 (4)0.104 (4)0.098 (4)0.019 (3)0.020 (3)0.021 (3)
C430.113 (4)0.105 (4)0.081 (3)0.007 (3)0.002 (3)0.003 (3)
C410.210 (7)0.095 (4)0.115 (4)0.027 (4)0.075 (4)0.007 (3)
Geometric parameters (Å, º) top
Ru1—N72.063 (2)C18—H18A0.9300
Ru1—N42.079 (2)C19—C201.367 (5)
Ru1—N62.084 (2)C19—H19A0.9300
Ru1—N22.117 (2)C20—C211.381 (5)
Ru1—P12.3158 (8)C20—H20A0.9300
Ru1—Cl12.4429 (7)C21—C221.382 (4)
Ru1—B13.183 (3)C21—H21A0.9300
P1—C351.841 (3)C22—H22A0.9300
P1—C231.844 (3)C23—C281.384 (5)
P1—C291.859 (3)C23—C241.400 (5)
N1—C11.345 (4)C24—C251.378 (5)
N1—N21.357 (3)C24—H24A0.9300
N1—B11.539 (4)C25—C261.368 (7)
N2—C31.340 (3)C25—H25A0.9300
N3—C41.346 (3)C26—C271.377 (7)
N3—N41.365 (3)C26—H26A0.9300
N3—B11.542 (4)C27—C281.403 (6)
N4—C61.335 (3)C27—H27A0.9300
N5—C71.346 (3)C28—H28A0.9300
N5—N61.366 (3)C29—C341.379 (5)
N5—B11.538 (4)C29—C301.393 (5)
N6—C91.333 (3)C30—C311.388 (5)
N7—C101.284 (3)C30—H30A0.9300
N7—H7A0.8600C31—C321.372 (6)
B1—H11.1000C31—H31A0.9300
C1—C21.367 (5)C32—C331.368 (6)
C1—H1A0.9300C32—H32A0.9300
C2—C31.384 (5)C33—C341.397 (5)
C2—H2A0.9300C33—H33A0.9300
C3—H3A0.9300C34—H34A0.9300
C4—C51.375 (4)C35—C361.384 (5)
C4—H4A0.9300C35—C401.390 (4)
C5—C61.384 (4)C36—C371.390 (5)
C5—H5A0.9300C36—H36A0.9300
C6—H6A0.9300C37—C381.387 (6)
C7—C81.362 (4)C37—H37A0.9300
C7—H7B0.9300C38—C391.360 (6)
C8—C91.386 (4)C38—H38A0.9300
C8—H8A0.9300C39—C401.393 (5)
C9—H9A0.9300C39—H39A0.9300
C10—C171.491 (4)C40—H40A0.9300
C10—C111.493 (4)O1—C431.403 (5)
C11—C161.380 (4)O1—C421.406 (5)
C11—C121.383 (4)C44—C431.472 (6)
C12—C131.381 (5)C44—H44A0.9600
C12—H12A0.9300C44—H44B0.9600
C13—C141.360 (6)C44—H44C0.9600
C13—H13A0.9300C42—C411.462 (7)
C14—C151.354 (6)C42—H42A0.9700
C14—H14A0.9300C42—H42B0.9700
C15—C161.385 (5)C43—H43A0.9700
C15—H15A0.9300C43—H43B0.9700
C16—H16A0.9300C41—H41A0.9600
C17—C221.384 (4)C41—H41B0.9600
C17—C181.394 (4)C41—H41C0.9600
C18—C191.383 (4)
N7—Ru1—N498.08 (8)C16—C15—H15A119.8
N7—Ru1—N6169.96 (9)C11—C16—C15120.6 (4)
N4—Ru1—N688.39 (8)C11—C16—H16A119.7
N7—Ru1—N287.74 (9)C15—C16—H16A119.7
N4—Ru1—N285.29 (8)C22—C17—C18119.0 (3)
N6—Ru1—N285.14 (8)C22—C17—C10121.8 (2)
N7—Ru1—P192.60 (7)C18—C17—C10119.2 (3)
N4—Ru1—P191.98 (6)C19—C18—C17120.3 (3)
N6—Ru1—P194.85 (6)C19—C18—H18A119.9
N2—Ru1—P1177.26 (6)C17—C18—H18A119.9
N7—Ru1—Cl181.51 (6)C20—C19—C18120.2 (3)
N4—Ru1—Cl1173.03 (6)C20—C19—H19A119.9
N6—Ru1—Cl191.13 (6)C18—C19—H19A119.9
N2—Ru1—Cl187.75 (6)C19—C20—C21120.0 (3)
P1—Ru1—Cl194.99 (3)C19—C20—H20A120.0
N7—Ru1—B1126.89 (9)C21—C20—H20A120.0
N4—Ru1—B152.49 (8)C20—C21—C22120.4 (3)
N6—Ru1—B152.24 (8)C20—C21—H21A119.8
N2—Ru1—B151.71 (8)C22—C21—H21A119.8
P1—Ru1—B1126.35 (6)C21—C22—C17120.0 (3)
Cl1—Ru1—B1122.41 (6)C21—C22—H22A120.0
C35—P1—C23105.29 (15)C17—C22—H22A120.0
C35—P1—C29101.29 (14)C28—C23—C24118.7 (3)
C23—P1—C2998.59 (14)C28—C23—P1125.2 (3)
C35—P1—Ru1112.22 (10)C24—C23—P1116.1 (3)
C23—P1—Ru1113.85 (10)C25—C24—C23121.2 (4)
C29—P1—Ru1123.32 (11)C25—C24—H24A119.4
C1—N1—N2109.8 (2)C23—C24—H24A119.4
C1—N1—B1130.7 (3)C26—C25—C24120.0 (5)
N2—N1—B1119.4 (2)C26—C25—H25A120.0
C3—N2—N1106.3 (2)C24—C25—H25A120.0
C3—N2—Ru1134.4 (2)C25—C26—C27119.9 (4)
N1—N2—Ru1119.04 (16)C25—C26—H26A120.1
C4—N3—N4110.0 (2)C27—C26—H26A120.1
C4—N3—B1129.0 (2)C26—C27—C28120.9 (4)
N4—N3—B1120.8 (2)C26—C27—H27A119.5
C6—N4—N3105.9 (2)C28—C27—H27A119.5
C6—N4—Ru1135.73 (19)C23—C28—C27119.3 (4)
N3—N4—Ru1118.33 (15)C23—C28—H28A120.4
C7—N5—N6109.3 (2)C27—C28—H28A120.4
C7—N5—B1130.1 (2)C34—C29—C30118.1 (3)
N6—N5—B1120.3 (2)C34—C29—P1121.1 (3)
C9—N6—N5106.5 (2)C30—C29—P1120.8 (3)
C9—N6—Ru1134.4 (2)C31—C30—C29120.7 (4)
N5—N6—Ru1118.73 (16)C31—C30—H30A119.7
C10—N7—Ru1146.0 (2)C29—C30—H30A119.7
C10—N7—H7A107.0C32—C31—C30120.5 (4)
Ru1—N7—H7A107.0C32—C31—H31A119.8
N5—B1—N1108.3 (2)C30—C31—H31A119.8
N5—B1—N3108.4 (2)C33—C32—C31119.5 (4)
N1—B1—N3106.8 (2)C33—C32—H32A120.2
N5—B1—Ru168.71 (14)C31—C32—H32A120.2
N1—B1—Ru169.76 (14)C32—C33—C34120.4 (4)
N3—B1—Ru168.29 (14)C32—C33—H33A119.8
N5—B1—H1110.7C34—C33—H33A119.8
N1—B1—H1111.0C29—C34—C33120.7 (4)
N3—B1—H1111.6C29—C34—H34A119.6
Ru1—B1—H1179.2C33—C34—H34A119.6
N1—C1—C2108.2 (3)C36—C35—C40118.2 (3)
N1—C1—H1A125.9C36—C35—P1120.2 (2)
C2—C1—H1A125.9C40—C35—P1121.1 (3)
C1—C2—C3105.5 (3)C35—C36—C37120.3 (4)
C1—C2—H2A127.2C35—C36—H36A119.9
C3—C2—H2A127.2C37—C36—H36A119.9
N2—C3—C2110.1 (3)C38—C37—C36120.5 (4)
N2—C3—H3A125.0C38—C37—H37A119.8
C2—C3—H3A125.0C36—C37—H37A119.8
N3—C4—C5108.0 (3)C39—C38—C37119.8 (4)
N3—C4—H4A126.0C39—C38—H38A120.1
C5—C4—H4A126.0C37—C38—H38A120.1
C4—C5—C6105.2 (2)C38—C39—C40119.9 (4)
C4—C5—H5A127.4C38—C39—H39A120.1
C6—C5—H5A127.4C40—C39—H39A120.1
N4—C6—C5110.8 (2)C35—C40—C39121.3 (4)
N4—C6—H6A124.6C35—C40—H40A119.4
C5—C6—H6A124.6C39—C40—H40A119.4
N5—C7—C8108.5 (3)C43—O1—C42113.4 (4)
N5—C7—H7B125.7C43—C44—H44A109.5
C8—C7—H7B125.7C43—C44—H44B109.5
C7—C8—C9105.6 (3)H44A—C44—H44B109.5
C7—C8—H8A127.2C43—C44—H44C109.5
C9—C8—H8A127.2H44A—C44—H44C109.5
N6—C9—C8110.1 (3)H44B—C44—H44C109.5
N6—C9—H9A124.9O1—C42—C41110.2 (4)
C8—C9—H9A124.9O1—C42—H42A109.6
N7—C10—C17121.5 (2)C41—C42—H42A109.6
N7—C10—C11120.6 (2)O1—C42—H42B109.6
C17—C10—C11117.9 (2)C41—C42—H42B109.6
C16—C11—C12117.7 (3)H42A—C42—H42B108.1
C16—C11—C10120.1 (3)O1—C43—C44110.3 (4)
C12—C11—C10122.1 (3)O1—C43—H43A109.6
C13—C12—C11121.1 (3)C44—C43—H43A109.6
C13—C12—H12A119.5O1—C43—H43B109.6
C11—C12—H12A119.5C44—C43—H43B109.6
C14—C13—C12120.0 (4)H43A—C43—H43B108.1
C14—C13—H13A120.0C42—C41—H41A109.5
C12—C13—H13A120.0C42—C41—H41B109.5
C15—C14—C13120.2 (4)H41A—C41—H41B109.5
C15—C14—H14A119.9C42—C41—H41C109.5
C13—C14—H14A119.9H41A—C41—H41C109.5
C14—C15—C16120.4 (4)H41B—C41—H41C109.5
C14—C15—H15A119.8

Experimental details

Crystal data
Chemical formula[Ru(C9H10BN6)Cl(C13H11N)(C18H15P)]·C4H10O
Mr867.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.3768 (1), 30.1803 (5), 14.9092 (2)
β (°) 96.126 (1)
V3)4195.13 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.915, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
28699, 9587, 7313
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.02
No. of reflections9587
No. of parameters505
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.60, 0.46

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported by the National Science Council, Taiwan, and in part by the Project of the Specific Research Fields of Tatung University, Taiwan (grant No. B96-C07-081), and the Project of the Specific Research Fields of Chung Yuan Christian University, Taiwan (grant No. CYCU-97-CR-CH). We also thank Mr. Yi-Hung Liu (Department of Chemistry, National Taiwan University, Taiwan) for his assistance in the X-ray single-crystal structure analysis.

References

First citationAlbertin, G., Antoniutti, S. & Magaton, A. (2008). Inorg. Chim. Acta, 361, 1744–1753.  Web of Science CrossRef CAS Google Scholar
First citationAlock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBohanna, C., Esteruelas, M. A., López, A. M. & Oro, L. A. (1996). J. Organomet. Chem. 526, 73–83.  CrossRef CAS Web of Science Google Scholar
First citationBurrows, A. D. (2001). CrystEngComm, 46, 1–5.  Google Scholar
First citationGemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998–4004.  CSD CrossRef Web of Science Google Scholar
First citationHarman, W. D. & Tube, H. (1988). Inorg. Chem. 27, 3261–3262.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organometallics, 24, 3561–3575.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds