metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η5-Cyclo­penta­dien­yl)[η6-di­ethyl eth­yl(phen­yl)malonate]iron(II) hexa­fluorido­phosphate

aDepartment of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
*Correspondence e-mail: adam.piorko@smu.ca

(Received 23 June 2008; accepted 22 September 2008; online 4 October 2008)

At 223 (2) K, the complexed rings in the iron(II) complex cation of the title salt, [Fe(C5H5)(C15H20O4)]PF6, are almost parallel [dihedral angle between planes = 4.10 (14)°]. Among the C atoms of the complexed arene ring, the quaternary C atom is located at the longest distance from the Fe atom. The F atoms of the PF6 anion were found to be equally disordered over two sites.

Related literature

For related literature, see: Abboud et al. (1991[Abboud, K. A., Simonsen, S. H., Piórko, A. & Sutherland, R. G. (1991). Acta Cryst. C47, 860-862.]); Crane (2003[Crane, J. D. (2003). Acta Cryst. E59, m1004-m1005.]); Hanson (1982[Hanson, A. W. (1982). Cryst. Struct. Commun. 11, 901-906.]); Koray et al. (1985[Koray, A. R., Zahn, T. & Ziegler, M. L. (1985). J. Organomet. Chem. 291, 53-60.]); Marcén et al. (2002[Marcén, S., Jiménez, M. V., Dobrinovich, I. T., Lahoz, F. J., Oro, L. A., Ruiz, J. & Astruc, D. (2002). Organometallics, 21, 326-330.]); Piórko et al. (1989[Piórko, A., Abd-El-Aziz, A. S., Lee, C. C. & Sutherland, R. G. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 469-475.], 1994[Piórko, A., Christie, S. & Zaworotko, M. J. (1994). Acta Cryst. C50, 1544-1545.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H20O4)]PF6

  • Mr = 530.22

  • Triclinic, [P \overline 1]

  • a = 10.1075 (5) Å

  • b = 10.6731 (5) Å

  • c = 11.4797 (6) Å

  • α = 100.396 (1)°

  • β = 111.854 (1)°

  • γ = 99.100 (1)°

  • V = 1095.56 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 223 (2) K

  • 0.40 × 0.38 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.688, Tmax = 0.920

  • 8715 measured reflections

  • 4253 independent reflections

  • 3283 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 0.95

  • 4253 reflections

  • 343 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å)

Fe1—C15 2.072 (2)
Fe1—C16 2.073 (2)
Fe1—C13 2.077 (2)
Fe1—C14 2.078 (2)
Fe1—C12 2.0906 (19)
Fe1—C11 2.1179 (19)
Fe1—C21 2.050 (2)
Fe1—C24 2.050 (2)
Fe1—C25 2.052(2)
Fe1—C23 2.053 (2)
Fe1—C22 2.063 (2)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, along with other diethyl alkylarylmalonates complexed with a cyclopentadienyliron(II) moiety, were reported as intermediates in the syntheses of alkyl (substituted aryl)malonates (Piórko et al., 1989). The ORTEP drawing of the title compound is shown in Fig. 1. The two aromatic rings are not quite coplanar, with a dihedral angle of 4.10(0.14)° between the plane formed by C11–C16 and C21–C25 which is not significantly different from the value 3.0 (4)° reported for the most similar structure of 1,1-di(2-propenyl)-3-butenylbenzene FeCp complex (Marcén et al., 2002). The Fe ion is located at distances of 1.6661 (9)Å from the Cp and 1.5360 (8)Å from the phenyl ring; such values are typical of those found in the literature for similar complexes (see for example Abboud et al., 1991; Piórko et al., 1994; Marcén et al., 2002; Crane 2003). The distance for Fe1—C11 at 2.1179 (19) Å, where C11 is the quaternary carbon in the phenyl ring, is the longest among the distances Fe to C atoms of this ring. Again, this is in agreement with the literature data for the similar FeCp complexed aromatic C atoms containing alkyl groups (see for example Hanson 1982; Koray et al., 1985; Piórko et al., 1994; Marcén et al., 2002). The PF6- anion shows some rotational disorder, as reported for systems of this kind. A view along a side of the unit cell (Fig. 2) indicates ππ stacking arrangement of the aromatic rings, with a centroid to centroid distance of 3.85 Å. The rings are oriented in a face to face arrangement, and while this almost direct overlap is uncommon for unsubstituted arene rings, the ester functionality on the ring alters the electronics of the system, making it possible for the rings to interact; the functional group on one ring is on the opposite side of that on the next ring.

Related literature top

For related literature, see: Abboud et al. (1991); Crane (2003); Hanson (1982); Koray et al. (1985); Marcén et al. (2002); Piórko et al. (1989, 1994).

Experimental top

The title compound was prepared following the method of Piórko et al. (1989). A crystal used for data collection was grown by slow evaporation of solvents from a solution of the complex in acetone–diethyl ether–dichloromethane mixture at 280 K.

Refinement top

The H atoms were placed in geometrically idealized positions with C—H distances of 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene) and constrained to ride on the parent C atom with Uiso(H) = 1.2Ueq(C) for aromatic and methylene, and Uiso(H) = 1.5Ueq(C) for methyl protons. Then F atoms of the PF6 anion were found to be disordered over two sites and were refined with a 50:50 occupancy. The F atoms were anisotropically refined and F1, F2, F3, F4 and F4' restrained using the ISOR command.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the cation and anion showing the labelling of non-H atoms with the thermal ellipsoids shown at 50% probability levels.
[Figure 2] Fig. 2. The packing diagram for the molecule.
(η5-Cyclopentadienyl)[η6-diethyl ethyl(phenyl)malonate]iron(II) hexafluoridophosphate top
Crystal data top
[Fe(C5H5)(C15H20O4)]PF6Z = 2
Mr = 530.22F(000) = 544
Triclinic, P1Dx = 1.607 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1075 (5) ÅCell parameters from 3863 reflections
b = 10.6731 (5) Åθ = 2.2–28.0°
c = 11.4797 (6) ŵ = 0.84 mm1
α = 100.396 (1)°T = 223 K
β = 111.854 (1)°Plate, yellow
γ = 99.100 (1)°0.40 × 0.38 × 0.10 mm
V = 1095.56 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4253 independent reflections
Radiation source: fine-focus sealed tube3283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.688, Tmax = 0.920k = 1313
8715 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0326P)2]
where P = (Fo2 + 2Fc2)/3
4253 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.27 e Å3
30 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Fe(C5H5)(C15H20O4)]PF6γ = 99.100 (1)°
Mr = 530.22V = 1095.56 (9) Å3
Triclinic, P1Z = 2
a = 10.1075 (5) ÅMo Kα radiation
b = 10.6731 (5) ŵ = 0.84 mm1
c = 11.4797 (6) ÅT = 223 K
α = 100.396 (1)°0.40 × 0.38 × 0.10 mm
β = 111.854 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4253 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3283 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.920Rint = 0.016
8715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02930 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 0.95Δρmax = 0.27 e Å3
4253 reflectionsΔρmin = 0.26 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.81979 (3)0.78170 (3)0.69683 (3)0.02689 (10)
O10.92832 (15)0.74047 (14)1.12205 (13)0.0373 (4)
O20.72028 (15)0.60360 (14)1.09549 (13)0.0346 (3)
O30.53949 (16)0.50483 (14)0.74158 (14)0.0403 (4)
O40.76727 (15)0.48640 (13)0.85723 (13)0.0329 (3)
C10.7101 (2)0.68946 (18)0.91843 (18)0.0254 (4)
C20.5722 (2)0.7343 (2)0.9184 (2)0.0334 (5)
H2A0.51920.74990.83360.040*
H2B0.50720.66270.92860.040*
C30.6033 (3)0.8579 (2)1.0241 (2)0.0445 (6)
H3A0.51140.87971.01670.067*
H3B0.66600.93011.01400.067*
H3C0.65240.84271.10880.067*
C40.8028 (2)0.68215 (18)1.05709 (18)0.0272 (4)
C50.7890 (2)0.5919 (2)1.2283 (2)0.0407 (6)
H5A0.71380.57461.26180.049*
H5B0.86010.67481.28400.049*
C60.8652 (3)0.4835 (3)1.2322 (3)0.0620 (7)
H6A0.91080.47751.32110.093*
H6B0.94010.50101.19950.093*
H6C0.79440.40121.17850.093*
C70.6602 (2)0.54987 (19)0.82816 (19)0.0282 (4)
C80.7289 (3)0.3497 (2)0.7801 (2)0.0420 (6)
H8A0.81860.32420.78230.050*
H8B0.66540.34250.68940.050*
C90.6513 (3)0.2591 (2)0.8327 (3)0.0582 (7)
H9A0.62590.16970.78010.087*
H9B0.56230.28430.83020.087*
H9C0.71520.26470.92170.087*
C110.8062 (2)0.78164 (18)0.87652 (17)0.0249 (4)
C120.9415 (2)0.75755 (19)0.87999 (18)0.0279 (4)
H12A0.95930.66990.88620.034*
C131.0319 (2)0.8405 (2)0.84251 (19)0.0336 (5)
H13A1.11170.80990.82480.040*
C140.9897 (2)0.9497 (2)0.8011 (2)0.0383 (5)
H14A1.04060.99460.75560.046*
C150.8563 (2)0.9749 (2)0.7967 (2)0.0359 (5)
H15A0.81511.03690.74740.043*
C160.7640 (2)0.89045 (19)0.83243 (19)0.0309 (5)
H16A0.66040.89550.80720.037*
C210.6282 (2)0.6578 (2)0.55586 (19)0.0400 (6)
H21A0.53830.62470.56790.048*
C220.7449 (3)0.5962 (2)0.57124 (19)0.0391 (5)
H22A0.75140.51270.59640.047*
C230.8518 (3)0.6756 (2)0.5459 (2)0.0400 (5)
H23A0.94600.65710.54940.048*
C240.7992 (3)0.7845 (2)0.5129 (2)0.0409 (6)
H24A0.85020.85620.48920.049*
C250.6604 (2)0.7735 (2)0.5190 (2)0.0407 (6)
H25A0.59730.83590.50020.049*
P10.27016 (7)0.85459 (6)0.57865 (6)0.04155 (16)
F10.4244 (5)0.9355 (6)0.6910 (5)0.1004 (17)0.50
F20.1990 (10)0.9654 (8)0.6111 (6)0.116 (2)0.50
F30.1268 (7)0.7640 (9)0.4775 (7)0.133 (3)0.50
F40.3508 (9)0.7418 (6)0.5589 (7)0.090 (2)0.50
F50.2264 (15)0.8121 (18)0.6816 (17)0.101 (4)0.50
F60.2812 (16)0.8822 (15)0.4546 (10)0.093 (4)0.50
F1'0.3536 (9)0.9989 (5)0.6502 (5)0.110 (2)0.50
F2'0.1219 (6)0.9002 (7)0.5286 (9)0.124 (3)0.50
F3'0.1751 (10)0.7108 (5)0.4937 (8)0.114 (3)0.50
F4'0.4077 (7)0.8045 (9)0.6140 (8)0.117 (3)0.50
F5'0.2616 (16)0.8132 (17)0.7044 (17)0.094 (4)0.50
F6'0.3100 (15)0.9107 (15)0.4735 (12)0.095 (4)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02888 (17)0.02541 (16)0.02465 (16)0.00237 (12)0.01130 (13)0.00567 (12)
O10.0332 (8)0.0393 (9)0.0293 (8)0.0006 (7)0.0056 (7)0.0093 (7)
O20.0352 (8)0.0418 (9)0.0270 (8)0.0043 (7)0.0130 (7)0.0137 (6)
O30.0341 (9)0.0373 (9)0.0345 (8)0.0006 (7)0.0040 (7)0.0037 (7)
O40.0325 (8)0.0245 (7)0.0371 (8)0.0050 (6)0.0130 (7)0.0019 (6)
C10.0249 (10)0.0262 (10)0.0235 (10)0.0047 (8)0.0094 (8)0.0054 (8)
C20.0274 (11)0.0367 (12)0.0403 (12)0.0089 (9)0.0164 (10)0.0139 (10)
C30.0476 (14)0.0437 (14)0.0568 (15)0.0192 (11)0.0337 (13)0.0143 (12)
C40.0329 (12)0.0235 (10)0.0261 (10)0.0081 (9)0.0134 (9)0.0047 (8)
C50.0439 (14)0.0546 (15)0.0271 (11)0.0096 (11)0.0167 (10)0.0170 (11)
C60.0710 (19)0.0593 (18)0.0575 (17)0.0261 (15)0.0182 (15)0.0290 (14)
C70.0313 (11)0.0275 (11)0.0270 (11)0.0029 (9)0.0142 (10)0.0093 (9)
C80.0458 (14)0.0253 (11)0.0517 (14)0.0059 (10)0.0225 (12)0.0001 (10)
C90.0716 (19)0.0321 (13)0.0714 (18)0.0060 (13)0.0327 (16)0.0140 (12)
C110.0264 (10)0.0234 (10)0.0199 (10)0.0023 (8)0.0080 (8)0.0003 (8)
C120.0265 (10)0.0276 (11)0.0231 (10)0.0026 (9)0.0074 (9)0.0011 (8)
C130.0266 (11)0.0370 (12)0.0311 (11)0.0005 (9)0.0115 (9)0.0025 (9)
C140.0428 (13)0.0317 (12)0.0343 (12)0.0063 (10)0.0180 (10)0.0024 (9)
C150.0490 (14)0.0232 (11)0.0347 (12)0.0048 (10)0.0184 (11)0.0069 (9)
C160.0359 (12)0.0263 (11)0.0302 (11)0.0065 (9)0.0149 (10)0.0049 (9)
C210.0368 (12)0.0421 (13)0.0248 (11)0.0083 (10)0.0055 (10)0.0014 (10)
C220.0531 (15)0.0299 (12)0.0247 (11)0.0028 (11)0.0115 (10)0.0010 (9)
C230.0485 (14)0.0438 (14)0.0281 (11)0.0094 (11)0.0195 (11)0.0038 (10)
C240.0517 (14)0.0430 (14)0.0260 (11)0.0026 (11)0.0169 (11)0.0106 (10)
C250.0405 (13)0.0451 (14)0.0278 (12)0.0082 (11)0.0054 (10)0.0098 (10)
P10.0377 (3)0.0473 (4)0.0485 (4)0.0136 (3)0.0237 (3)0.0180 (3)
F10.071 (3)0.096 (4)0.083 (3)0.021 (3)0.000 (2)0.010 (3)
F20.172 (6)0.136 (5)0.119 (4)0.127 (5)0.091 (4)0.072 (4)
F30.054 (3)0.188 (8)0.092 (3)0.041 (4)0.000 (3)0.012 (6)
F40.135 (6)0.066 (3)0.111 (4)0.054 (3)0.083 (4)0.025 (2)
F50.093 (6)0.147 (9)0.090 (7)0.001 (5)0.072 (6)0.040 (5)
F60.160 (9)0.083 (5)0.040 (3)0.023 (5)0.043 (4)0.028 (3)
F1'0.151 (6)0.071 (3)0.065 (3)0.050 (3)0.040 (3)0.009 (2)
F2'0.053 (3)0.114 (5)0.228 (8)0.046 (3)0.057 (4)0.077 (5)
F3'0.171 (9)0.036 (2)0.119 (5)0.006 (3)0.057 (5)0.007 (2)
F4'0.067 (4)0.197 (8)0.148 (6)0.084 (4)0.061 (4)0.112 (5)
F5'0.124 (8)0.140 (9)0.081 (6)0.080 (8)0.068 (6)0.077 (6)
F6'0.099 (5)0.107 (8)0.129 (8)0.032 (5)0.076 (6)0.081 (7)
Geometric parameters (Å, º) top
Fe1—C212.050 (2)C9—H9A0.9700
Fe1—C242.050 (2)C9—H9B0.9700
Fe1—C252.052 (2)C9—H9C0.9700
Fe1—C232.053 (2)C11—C161.413 (3)
Fe1—C222.063 (2)C11—C121.418 (3)
Fe1—C152.072 (2)C12—C131.406 (3)
Fe1—C162.073 (2)C12—H12A0.9900
Fe1—C132.077 (2)C13—C141.405 (3)
Fe1—C142.078 (2)C13—H13A0.9900
Fe1—C122.0906 (19)C14—C151.400 (3)
Fe1—C112.1179 (19)C14—H14A0.9900
O1—C41.196 (2)C15—C161.415 (3)
O2—C41.334 (2)C15—H15A0.9900
O2—C51.459 (2)C16—H16A0.9900
O3—C71.203 (2)C21—C251.405 (3)
O4—C71.336 (2)C21—C221.409 (3)
O4—C81.470 (2)C21—H21A0.9900
C1—C111.536 (3)C22—C231.416 (3)
C1—C71.538 (3)C22—H22A0.9900
C1—C41.541 (3)C23—C241.408 (3)
C1—C21.543 (3)C23—H23A0.9900
C2—C31.522 (3)C24—C251.418 (3)
C2—H2A0.9800C24—H24A0.9900
C2—H2B0.9800C25—H25A0.9900
C3—H3A0.9700P1—F4'1.508 (5)
C3—H3B0.9700P1—F31.510 (6)
C3—H3C0.9700P1—F51.523 (12)
C5—C61.486 (3)P1—F21.538 (5)
C5—H5A0.9800P1—F1'1.541 (4)
C5—H5B0.9800P1—F61.544 (11)
C6—H6A0.9700P1—F2'1.582 (5)
C6—H6B0.9700P1—F41.586 (6)
C6—H6C0.9700P1—F11.586 (4)
C8—C91.496 (3)P1—F6'1.589 (13)
C8—H8A0.9800P1—F3'1.590 (6)
C8—H8B0.9800P1—F5'1.612 (14)
C21—Fe1—C2467.56 (9)C12—C13—Fe170.81 (11)
C21—Fe1—C2540.06 (9)C14—C13—H13A119.0
C24—Fe1—C2540.45 (9)C12—C13—H13A119.0
C21—Fe1—C2367.69 (9)Fe1—C13—H13A119.0
C24—Fe1—C2340.14 (9)C15—C14—C13119.4 (2)
C25—Fe1—C2367.79 (9)C15—C14—Fe170.05 (12)
C21—Fe1—C2240.07 (9)C13—C14—Fe170.18 (12)
C24—Fe1—C2267.35 (9)C15—C14—H14A119.4
C25—Fe1—C2267.37 (9)C13—C14—H14A119.4
C23—Fe1—C2240.24 (9)Fe1—C14—H14A119.4
C21—Fe1—C15128.85 (9)C14—C15—C16120.4 (2)
C24—Fe1—C15106.60 (9)C14—C15—Fe170.53 (12)
C25—Fe1—C15101.40 (9)C16—C15—Fe170.08 (11)
C23—Fe1—C15140.10 (9)C14—C15—H15A118.8
C22—Fe1—C15168.30 (9)C16—C15—H15A118.8
C21—Fe1—C16106.85 (9)Fe1—C15—H15A118.8
C24—Fe1—C16134.61 (9)C11—C16—C15120.80 (19)
C25—Fe1—C16105.35 (9)C11—C16—Fe172.02 (11)
C23—Fe1—C16173.11 (9)C15—C16—Fe170.00 (12)
C22—Fe1—C16137.62 (9)C11—C16—H16A118.8
C15—Fe1—C1639.93 (8)C15—C16—H16A118.8
C21—Fe1—C13158.75 (9)Fe1—C16—H16A118.8
C24—Fe1—C13116.55 (9)C25—C21—C22108.4 (2)
C25—Fe1—C13154.37 (9)C25—C21—Fe170.08 (12)
C23—Fe1—C13101.40 (9)C22—C21—Fe170.47 (12)
C22—Fe1—C13120.09 (9)C25—C21—H21A125.8
C15—Fe1—C1371.43 (9)C22—C21—H21A125.8
C16—Fe1—C1385.11 (8)Fe1—C21—H21A125.8
C21—Fe1—C14160.63 (9)C21—C22—C23108.0 (2)
C24—Fe1—C1498.94 (9)C21—C22—Fe169.46 (12)
C25—Fe1—C14120.80 (9)C23—C22—Fe169.50 (12)
C23—Fe1—C14111.53 (9)C21—C22—H22A126.0
C22—Fe1—C14148.93 (9)C23—C22—H22A126.0
C15—Fe1—C1439.42 (9)Fe1—C22—H22A126.0
C16—Fe1—C1472.10 (8)C24—C23—C22107.7 (2)
C13—Fe1—C1439.53 (8)C24—C23—Fe169.82 (12)
C21—Fe1—C12127.06 (8)C22—C23—Fe170.26 (12)
C24—Fe1—C12149.64 (9)C24—C23—H23A126.1
C25—Fe1—C12166.15 (8)C22—C23—H23A126.1
C23—Fe1—C12115.23 (9)Fe1—C23—H23A126.1
C22—Fe1—C12105.62 (8)C23—C24—C25108.2 (2)
C15—Fe1—C1284.63 (8)C23—C24—Fe170.05 (12)
C16—Fe1—C1271.27 (8)C25—C24—Fe169.87 (12)
C13—Fe1—C1239.44 (8)C23—C24—H24A125.9
C14—Fe1—C1271.60 (8)C25—C24—H24A125.9
C21—Fe1—C11106.11 (8)Fe1—C24—H24A125.9
C24—Fe1—C11170.92 (8)C21—C25—C24107.7 (2)
C25—Fe1—C11130.58 (8)C21—C25—Fe169.87 (12)
C23—Fe1—C11144.91 (9)C24—C25—Fe169.68 (12)
C22—Fe1—C11112.43 (8)C21—C25—H25A126.2
C15—Fe1—C1171.85 (8)C24—C25—H25A126.2
C16—Fe1—C1139.38 (7)Fe1—C25—H25A126.2
C13—Fe1—C1171.79 (8)F4'—P1—F3118.9 (5)
C14—Fe1—C1185.47 (8)F4'—P1—F595.7 (6)
C12—Fe1—C1139.38 (7)F3—P1—F587.7 (8)
C4—O2—C5116.62 (16)F4'—P1—F2146.6 (5)
C7—O4—C8116.15 (16)F3—P1—F294.2 (4)
C11—C1—C7110.06 (15)F5—P1—F279.9 (7)
C11—C1—C4108.78 (15)F4'—P1—F1'94.2 (4)
C7—C1—C4107.62 (15)F3—P1—F1'145.1 (5)
C11—C1—C2113.56 (16)F5—P1—F1'100.5 (8)
C7—C1—C2108.40 (16)F2—P1—F1'54.9 (3)
C4—C1—C2108.24 (16)F4'—P1—F691.8 (7)
C3—C2—C1114.76 (17)F3—P1—F680.5 (6)
C3—C2—H2A108.6F5—P1—F6168.0 (8)
C1—C2—H2A108.6F2—P1—F698.8 (6)
C3—C2—H2B108.6F1'—P1—F688.2 (6)
C1—C2—H2B108.6F4'—P1—F2'174.9 (4)
H2A—C2—H2B107.6F3—P1—F2'57.2 (4)
C2—C3—H3A109.5F5—P1—F2'87.5 (6)
C2—C3—H3B109.5F2—P1—F2'37.9 (3)
H3A—C3—H3B109.5F1'—P1—F2'89.1 (4)
C2—C3—H3C109.5F6—P1—F2'84.4 (7)
H3A—C3—H3C109.5F4'—P1—F429.7 (3)
H3B—C3—H3C109.5F3—P1—F489.2 (4)
O1—C4—O2124.96 (18)F5—P1—F496.3 (7)
O1—C4—C1125.52 (18)F2—P1—F4174.8 (3)
O2—C4—C1109.49 (16)F1'—P1—F4122.9 (4)
O2—C5—C6110.53 (19)F6—P1—F485.6 (7)
O2—C5—H5A109.5F2'—P1—F4146.1 (4)
C6—C5—H5A109.5F4'—P1—F156.3 (3)
O2—C5—H5B109.5F3—P1—F1173.4 (4)
C6—C5—H5B109.5F5—P1—F188.5 (7)
H5A—C5—H5B108.1F2—P1—F190.4 (4)
C5—C6—H6A109.5F1'—P1—F141.1 (3)
C5—C6—H6B109.5F6—P1—F1103.5 (6)
H6A—C6—H6B109.5F2'—P1—F1127.9 (4)
C5—C6—H6C109.5F4—P1—F185.9 (3)
H6A—C6—H6C109.5F4'—P1—F6'88.7 (6)
H6B—C6—H6C109.5F3—P1—F6'93.0 (6)
O3—C7—O4124.71 (18)F5—P1—F6'174.6 (8)
O3—C7—C1123.51 (18)F2—P1—F6'94.7 (6)
O4—C7—C1111.77 (16)F1'—P1—F6'75.9 (6)
O4—C8—C9110.54 (18)F6—P1—F6'12.9 (10)
O4—C8—H8A109.5F2'—P1—F6'88.3 (6)
C9—C8—H8A109.5F4—P1—F6'89.0 (6)
O4—C8—H8B109.5F1—P1—F6'91.3 (6)
C9—C8—H8B109.5F4'—P1—F3'89.7 (4)
H8A—C8—H8B108.1F3—P1—F3'30.1 (4)
C8—C9—H9A109.5F5—P1—F3'82.8 (8)
C8—C9—H9B109.5F2—P1—F3'122.1 (4)
H9A—C9—H9B109.5F1'—P1—F3'174.5 (4)
C8—C9—H9C109.5F6—P1—F3'87.9 (6)
H9A—C9—H9C109.5F2'—P1—F3'86.8 (4)
H9B—C9—H9C109.5F4—P1—F3'60.5 (3)
C16—C11—C12117.94 (18)F1—P1—F3'143.9 (4)
C16—C11—C1122.20 (17)F6'—P1—F3'100.4 (6)
C12—C11—C1119.85 (17)F4'—P1—F5'84.6 (5)
C16—C11—Fe168.60 (11)F3—P1—F5'98.0 (7)
C12—C11—Fe169.27 (11)F5—P1—F5'12.5 (10)
C1—C11—Fe1133.56 (12)F2—P1—F5'86.2 (6)
C13—C12—C11121.08 (19)F1'—P1—F5'95.7 (7)
C13—C12—Fe169.75 (12)F6—P1—F5'174.9 (9)
C11—C12—Fe171.34 (11)F2'—P1—F5'99.0 (5)
C13—C12—H12A118.5F4—P1—F5'89.5 (6)
C11—C12—H12A118.5F1—P1—F5'77.6 (7)
Fe1—C12—H12A118.5F6'—P1—F5'168.9 (8)
C14—C13—C12120.31 (19)F3'—P1—F5'88.4 (8)
C14—C13—Fe170.29 (12)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H20O4)]PF6
Mr530.22
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)10.1075 (5), 10.6731 (5), 11.4797 (6)
α, β, γ (°)100.396 (1), 111.854 (1), 99.100 (1)
V3)1095.56 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.40 × 0.38 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.688, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
8715, 4253, 3283
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 0.95
No. of reflections4253
No. of parameters343
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998) and SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe1—C152.072 (2)O2—C51.459 (2)
Fe1—C162.073 (2)O3—C71.203 (2)
Fe1—C132.077 (2)O4—C71.336 (2)
Fe1—C142.078 (2)O4—C81.470 (2)
Fe1—C122.0906 (19)C1—C111.536 (3)
Fe1—C112.1179 (19)C1—C71.538 (3)
O1—C41.196 (2)C1—C41.541 (3)
O2—C41.334 (2)C1—C21.543 (3)
C4—O2—C5116.62 (16)O2—C4—C1109.49 (16)
C7—O4—C8116.15 (16)O3—C7—O4124.71 (18)
C7—C1—C4107.62 (15)O3—C7—C1123.51 (18)
C11—C1—C2113.56 (16)O4—C7—C1111.77 (16)
C3—C2—C1114.76 (17)C16—C11—C12117.94 (18)
O1—C4—O2124.96 (18)C16—C11—C1122.20 (17)
O1—C4—C1125.52 (18)
 

Acknowledgements

The authors thank Saint Mary's University for financial support.

References

First citationAbboud, K. A., Simonsen, S. H., Piórko, A. & Sutherland, R. G. (1991). Acta Cryst. C47, 860–862.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrane, J. D. (2003). Acta Cryst. E59, m1004–m1005.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHanson, A. W. (1982). Cryst. Struct. Commun. 11, 901–906.  CAS Google Scholar
First citationKoray, A. R., Zahn, T. & Ziegler, M. L. (1985). J. Organomet. Chem. 291, 53–60.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarcén, S., Jiménez, M. V., Dobrinovich, I. T., Lahoz, F. J., Oro, L. A., Ruiz, J. & Astruc, D. (2002). Organometallics, 21, 326–330.  Google Scholar
First citationPiórko, A., Abd-El-Aziz, A. S., Lee, C. C. & Sutherland, R. G. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 469–475.  Google Scholar
First citationPiórko, A., Christie, S. & Zaworotko, M. J. (1994). Acta Cryst. C50, 1544–1545.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds