organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2-Phenyl­ethyn­yl)isobenzo­furan-1,3-dione

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and bCollege of Materials and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
*Correspondence e-mail: gaosunday@yahoo.com.cn

(Received 30 August 2008; accepted 4 September 2008; online 25 October 2008)

The title compound, C16H8O3, was synthesized by the Pd-coupling reaction of phenyl­acetyl­ene with 4-bromo­phthalic anhydride. The phenyl and isobenzofurane rings are nearly coplanar, forming a dihedral angle of 6.70 (10)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by C—H⋯O hydrogen bonds.

Related literature

For a general background to the synthesis and applications of the title compound, see: Hergenrother & Smith (1994[Hergenrother, P. M. & Smith, J. G. Jr (1994). Polymer, 35, 4857-4864.], 1996[Hergenrother, P. M. & Smith, J. G. Jr (1996). US Patent 5 567 800.]); Takekoshi & Terry (1994[Takekoshi, T. & Terry, J. M. (1994). Polymer, 35, 4874-4880.]); Urazoe et al. (2005[Urazoe, D., Mori, H. & Yamakawa, K. (2005). US Patent 2 005 215 820.]); Urazoe & Mori (2006[Urazoe, D. & Mori, H. (2006). Jpn Patent JP 2 006 151 904.]). For the properties of polyimides, see: Feger et al. (1989[Feger, C., Khohasteh, M. M. & McGrath, J. E. (1989). Polyimides: Chemistry, Materials, and Characterization. Amsterdam: Elsevier.]); Ghosh & Mittal (1996[Ghosh, M. K. & Mittal, K. L. (1996). Polymides: Fundamentals and Applications. New York: Dekker.]). For the crystal structure of related compounds, see: Wright & Schorzman (2000[Wright, M. E. & Schorzman, D. A. (2000). Macromolecules, 33, 8611-8617.]).

[Scheme 1]

Experimental

Crystal data
  • C16H8O3

  • Mr = 248.22

  • Triclinic, [P \overline 1]

  • a = 6.998 (3) Å

  • b = 7.518 (3) Å

  • c = 11.683 (4) Å

  • α = 89.06 (2)°

  • β = 79.31 (3)°

  • γ = 81.04 (2)°

  • V = 596.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 (2) K

  • 0.50 × 0.40 × 0.22 mm

Data collection
  • Enraf–Nonius CAD4 diffractometer

  • Absorption correction: none

  • 2227 measured reflections

  • 2198 independent reflections

  • 1105 reflections with I > 2σ(I)

  • Rint = 0.007

  • 3 standard reflections every 100 reflections intensity decay: 1.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.158

  • S = 1.09

  • 2198 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.93 2.56 3.436 (5) 158
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Pittsburgh Meetting,. Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polyimides are well known for possessing excellent thermal and oxidative stability, as well as excellent mechanical properties (Ghosh & Mittal, 1996; Feger et al.,1989). The title compound is used as terminal endcapping agent which imparts thermal curability, thermal resistance and solvent resistance to polyimide (Hergenrother & Smith, 1994, 1996; Takekoshi & Terry, 1994). Further, various types of method for producing 4-phenylethynylphthalic anhydride have been described (Urazoe et al., 2005; Urazoe & Mori, 2006). We report here the crystal sturcture of the title compound.

In the molecule of the title compound (Fig. 1) the phenyl and isobenzofurane rings are nearly coplanar, making a dihedral angle of 6.70 (10)°. Bond distances of the ethyne chain show similar values to those in C22H13O2N (Wright & Schorzman, 2000), with the C7—C9, C9—C10 and C10—C11 distances of 1.418 (4), 1.203 (4) and 1.429 (4) Å, respectively. The bond angles within the ethyne chain are slightly bent, with the C7—C9—C10 and C9—C10—C11 angles of 176.3 (4) and 173.6 (4)°, respectively. The isobenzofurane ring is flat, atoms C2 deviating only by 0.027 (5) Å from the mean plane. In the crystal structure, centrosymmetrically related molecules are linked into dimers by intermolecular C—H···O hydrogen interactions (Table 1).

Related literature top

For a general background to the synthesis and applications of the title compound, see: Hergenrother & Smith (1994, 1996); Takekoshi & Terry (1994); Urazoe et al. (2005); Urazoe & Mori (2006). For the properties of polyimides, see: Feger et al. (1989); Ghosh & Mittal (1996). For the crystal structure of related compounds, see: Wright & Schorzman (2000).

Experimental top

4-Bromophthalic anhydride (5.00 g, 22.0 mmol), phenylacetylene (2.69 g, 26.4 mmol), PdCl2(PPh3)2 (0.11 g, 0.157 mmol), and PPh3 (0.22 g, 0.840 mmol) were dissolved in 40 ml of dry NEt3 under argon, and the mixture was heated to 333 K. Then CuI (0.10 g, 0.524 mmol) was added and the solution was stirred at 353 K for 12 h. The precipitated triethylammonium bromide was separated after cooling and the solvent was evaporated. The residue was recrystallized from toluene/n-hexane (1:1 v/v) twice to give 4-phenylethynylphthalic anhydride as pale yellow crystals (yield 83.6%; m.p. 424–425 K). Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an acetic anhydride solution at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
5-(2-Phenylethynyl)isobenzofuran-1,3-dione top
Crystal data top
C16H8O3Z = 2
Mr = 248.22F(000) = 256
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.998 (3) ÅCell parameters from 25 reflections
b = 7.518 (3) Åθ = 4.5–11.8°
c = 11.683 (4) ŵ = 0.10 mm1
α = 89.06 (2)°T = 294 K
β = 79.31 (3)°Block, colourless
γ = 81.04 (2)°0.50 × 0.40 × 0.22 mm
V = 596.6 (4) Å3
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.007
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.7°
Graphite monochromatorh = 88
ω/2θ scansk = 39
2227 measured reflectionsl = 1414
2198 independent reflections3 standard reflections every 100 reflections
1105 reflections with I > 2σ(I) intensity decay: 1.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2198 reflectionsΔρmax = 0.22 e Å3
173 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4'
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (4)
Crystal data top
C16H8O3γ = 81.04 (2)°
Mr = 248.22V = 596.6 (4) Å3
Triclinic, P1Z = 2
a = 6.998 (3) ÅMo Kα radiation
b = 7.518 (3) ŵ = 0.10 mm1
c = 11.683 (4) ÅT = 294 K
α = 89.06 (2)°0.50 × 0.40 × 0.22 mm
β = 79.31 (3)°
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.007
2227 measured reflections3 standard reflections every 100 reflections
2198 independent reflections intensity decay: 1.8%
1105 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.09Δρmax = 0.22 e Å3
2198 reflectionsΔρmin = 0.21 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5201 (3)0.1623 (3)0.3262 (2)0.0689 (8)
O20.3130 (4)0.3047 (4)0.4814 (2)0.0912 (10)
O30.6535 (3)0.0590 (3)0.1454 (2)0.0814 (9)
C10.3406 (5)0.2634 (5)0.3814 (4)0.0655 (11)
C20.5145 (5)0.1372 (5)0.2089 (4)0.0621 (10)
C30.2138 (5)0.2980 (4)0.2931 (3)0.0484 (9)
C40.3202 (4)0.2205 (4)0.1897 (3)0.0489 (9)
C50.2391 (5)0.2304 (4)0.0913 (3)0.0604 (10)
H50.30960.17770.02160.072*
C60.0505 (5)0.3205 (4)0.0986 (3)0.0570 (10)
H60.00730.32730.03290.068*
C70.0562 (4)0.4021 (4)0.2025 (3)0.0505 (9)
C80.0267 (5)0.3885 (4)0.3023 (3)0.0521 (9)
H80.04300.43920.37280.062*
C90.2470 (5)0.5020 (4)0.2070 (3)0.0607 (10)
C100.4084 (5)0.5899 (4)0.2170 (3)0.0603 (10)
C110.6025 (4)0.6902 (4)0.2426 (3)0.0534 (9)
C120.7133 (5)0.7369 (4)0.1575 (3)0.0594 (10)
H120.66150.70560.08010.071*
C130.9015 (5)0.8304 (5)0.1881 (4)0.0667 (11)
H130.97520.86380.13050.080*
C140.9807 (5)0.8744 (5)0.3007 (4)0.0697 (11)
H141.10880.93540.32040.084*
C150.8719 (5)0.8288 (5)0.3852 (3)0.0726 (11)
H150.92720.85890.46240.087*
C160.6828 (5)0.7396 (4)0.3586 (3)0.0647 (11)
H160.60880.71230.41670.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0505 (16)0.0776 (17)0.076 (2)0.0049 (13)0.0171 (14)0.0015 (15)
O20.081 (2)0.137 (3)0.0513 (18)0.0076 (17)0.0214 (16)0.0083 (17)
O30.0510 (16)0.0859 (19)0.095 (2)0.0177 (14)0.0024 (15)0.0271 (16)
C10.054 (2)0.075 (3)0.065 (3)0.000 (2)0.011 (2)0.001 (2)
C20.056 (3)0.058 (2)0.070 (3)0.0026 (19)0.010 (2)0.004 (2)
C30.046 (2)0.049 (2)0.049 (2)0.0002 (16)0.0090 (18)0.0020 (17)
C40.0405 (19)0.047 (2)0.056 (2)0.0001 (15)0.0068 (18)0.0085 (17)
C50.057 (2)0.061 (2)0.058 (2)0.0036 (18)0.007 (2)0.0159 (19)
C60.053 (2)0.064 (2)0.051 (2)0.0041 (18)0.0135 (18)0.0154 (18)
C70.041 (2)0.050 (2)0.057 (2)0.0056 (16)0.0105 (18)0.0051 (17)
C80.044 (2)0.058 (2)0.048 (2)0.0031 (17)0.0006 (18)0.0095 (17)
C90.054 (2)0.059 (2)0.068 (3)0.004 (2)0.013 (2)0.0032 (19)
C100.061 (2)0.058 (2)0.064 (3)0.006 (2)0.019 (2)0.0029 (19)
C110.036 (2)0.0445 (19)0.076 (3)0.0035 (16)0.009 (2)0.0023 (18)
C120.058 (2)0.058 (2)0.061 (2)0.0038 (18)0.012 (2)0.0039 (18)
C130.057 (2)0.063 (2)0.085 (3)0.005 (2)0.028 (2)0.003 (2)
C140.055 (2)0.063 (2)0.083 (3)0.0072 (19)0.006 (2)0.014 (2)
C150.074 (3)0.070 (3)0.066 (3)0.011 (2)0.009 (2)0.016 (2)
C160.061 (2)0.067 (3)0.065 (3)0.004 (2)0.020 (2)0.008 (2)
Geometric parameters (Å, º) top
O1—C21.395 (4)C8—H80.9300
O1—C11.411 (4)C9—C101.203 (4)
O2—C11.186 (4)C10—C111.429 (4)
O3—C21.187 (4)C11—C121.379 (5)
C1—C31.476 (5)C11—C161.399 (4)
C2—C41.461 (4)C12—C131.379 (4)
C3—C81.365 (4)C12—H120.9300
C3—C41.381 (4)C13—C141.354 (4)
C4—C51.369 (4)C13—H130.9300
C5—C61.375 (4)C14—C151.363 (5)
C5—H50.9300C14—H140.9300
C6—C71.397 (4)C15—C161.370 (4)
C6—H60.9300C15—H150.9300
C7—C81.391 (4)C16—H160.9300
C7—C91.418 (4)
C2—O1—C1109.3 (3)C3—C8—H8121.2
O2—C1—O1121.4 (4)C7—C8—H8121.2
O2—C1—C3131.4 (4)C10—C9—C7176.3 (4)
O1—C1—C3107.2 (3)C9—C10—C11173.6 (4)
O3—C2—O1120.3 (3)C12—C11—C16119.3 (3)
O3—C2—C4132.2 (4)C12—C11—C10122.3 (3)
O1—C2—C4107.5 (3)C16—C11—C10118.3 (3)
C8—C3—C4122.4 (3)C11—C12—C13119.6 (3)
C8—C3—C1130.3 (3)C11—C12—H12120.2
C4—C3—C1107.3 (3)C13—C12—H12120.2
C5—C4—C3120.6 (3)C14—C13—C12121.0 (4)
C5—C4—C2130.8 (3)C14—C13—H13119.5
C3—C4—C2108.7 (3)C12—C13—H13119.5
C4—C5—C6118.1 (3)C13—C14—C15119.7 (4)
C4—C5—H5121.0C13—C14—H14120.2
C6—C5—H5121.0C15—C14—H14120.2
C5—C6—C7121.6 (3)C14—C15—C16121.3 (4)
C5—C6—H6119.2C14—C15—H15119.3
C7—C6—H6119.2C16—C15—H15119.3
C8—C7—C6119.8 (3)C15—C16—C11119.0 (3)
C8—C7—C9119.4 (3)C15—C16—H16120.5
C6—C7—C9120.8 (3)C11—C16—H16120.5
C3—C8—C7117.6 (3)
C2—O1—C1—O2178.4 (4)C2—C4—C5—C6179.3 (3)
C2—O1—C1—C31.8 (4)C4—C5—C6—C70.7 (5)
C1—O1—C2—O3178.1 (3)C5—C6—C7—C81.8 (5)
C1—O1—C2—C42.1 (4)C5—C6—C7—C9176.9 (3)
O2—C1—C3—C80.0 (7)C4—C3—C8—C70.4 (5)
O1—C1—C3—C8179.7 (3)C1—C3—C8—C7179.1 (3)
O2—C1—C3—C4179.5 (4)C6—C7—C8—C31.6 (5)
O1—C1—C3—C40.8 (4)C9—C7—C8—C3177.2 (3)
C8—C3—C4—C50.7 (5)C16—C11—C12—C130.4 (5)
C1—C3—C4—C5179.7 (3)C10—C11—C12—C13178.6 (3)
C8—C3—C4—C2179.1 (3)C11—C12—C13—C141.2 (5)
C1—C3—C4—C20.4 (4)C12—C13—C14—C151.3 (6)
O3—C2—C4—C51.1 (7)C13—C14—C15—C160.3 (6)
O1—C2—C4—C5178.6 (3)C14—C15—C16—C111.8 (6)
O3—C2—C4—C3178.7 (4)C12—C11—C16—C151.9 (5)
O1—C2—C4—C31.5 (4)C10—C11—C16—C15177.2 (3)
C3—C4—C5—C60.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.563.436 (5)158
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H8O3
Mr248.22
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.998 (3), 7.518 (3), 11.683 (4)
α, β, γ (°)89.06 (2), 79.31 (3), 81.04 (2)
V3)596.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.40 × 0.22
Data collection
DiffractometerEnraf–Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2227, 2198, 1105
Rint0.007
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.158, 1.09
No. of reflections2198
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.563.436 (5)157.7
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeger, C., Khohasteh, M. M. & McGrath, J. E. (1989). Polyimides: Chemistry, Materials, and Characterization. Amsterdam: Elsevier.  Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Pittsburgh Meetting,. Abstract PA 104.  Google Scholar
First citationGhosh, M. K. & Mittal, K. L. (1996). Polymides: Fundamentals and Applications. New York: Dekker.  Google Scholar
First citationHergenrother, P. M. & Smith, J. G. Jr (1994). Polymer, 35, 4857–4864.  CrossRef CAS Web of Science Google Scholar
First citationHergenrother, P. M. & Smith, J. G. Jr (1996). US Patent 5 567 800.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakekoshi, T. & Terry, J. M. (1994). Polymer, 35, 4874–4880.  CrossRef CAS Web of Science Google Scholar
First citationUrazoe, D. & Mori, H. (2006). Jpn Patent JP 2 006 151 904.  Google Scholar
First citationUrazoe, D., Mori, H. & Yamakawa, K. (2005). US Patent 2 005 215 820.  Google Scholar
First citationWright, M. E. & Schorzman, D. A. (2000). Macromolecules, 33, 8611–8617.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds