organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5,5′-(Diazene-1,2-di­yl)diisophthalic acid N,N-di­methyl­formamide disolvate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 15 September 2008; accepted 10 October 2008; online 25 October 2008)

The title compound, C16H10N2O8·2C3H7NO, was synthesized by the reductive condensation reaction of 5-nitro­isophthalic acid in the presence of NaOH. The tetra-acid mol­ecule, which has a crystallographically imposed centre of symmetry, adopts an E configuration with respect to the azo group. In the crystal packing, mol­ecules are linked through inter­molecular O—H⋯O and C—H⋯O hydrogen-bonding inter­actions, forming chains propagating in [2[\overline{1}]0].

Related literature

For general background information on the applications of azo compounds, see: Chung & Stevens (1993[Chung, K.-T. & Stevens, S. E. Jr (1993). Environ. Toxicol. Chem. 2, 2121-2132.]); Carliell et al. (1995[Carliell, C. M., Barclay, S. J., Naidoo, N., Buckley, C. A., Mulholland, D. A. & Senior, E. (1995). Water SA, 21, 61-69.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10N2O8·2C3H7NO

  • Mr = 504.45

  • Triclinic, [P \overline 1]

  • a = 6.2926 (13) Å

  • b = 7.2114 (13) Å

  • c = 13.653 (4) Å

  • α = 80.94 (4)°

  • β = 85.30 (4)°

  • γ = 81.72 (3)°

  • V = 604.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.971, Tmax = 0.979

  • 5593 measured reflections

  • 2363 independent reflections

  • 1607 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.154

  • S = 1.04

  • 2363 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.82 1.72 2.541 (2) 174
O3—H3⋯O2ii 0.82 1.94 2.697 (2) 154
C4—H4⋯O3ii 0.93 2.42 3.305 (2) 159
C11—H11⋯O2iii 0.93 2.58 3.240 (3) 128
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Azo compounds are used as dyes in textile, paper manufacturing, pharmaceutial and food industries (Chung & Stevens, 1993; Carliell et al., 1995). Herein, we report the crystal structure of the title compound, which was obtained by reductive condensation reaction of 5-nitroisophthalic acid in the presence of NaOH.

The acid molecule of the title compound (Fig. 1) has a crystallographically imposed centre of symmetry and adopts an E-configuration with respect to the azo group. The molecular conformation is stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal packing (Fig. 2), molecules are linked into layers parallel to the (210) plane by intermolecular O—H···O and C—H···O hydrogen bonds (Table 1).

Related literature top

For general background information on the applications of azo compounds, see: Chung & Stevens (1993); Carliell et al. (1995).

Experimental top

A solution of sodium hydroxide (35.9 g, 0.9 mol) in H2O (125 ml) was added dropwise to a suspension of 5-nitroisophthalic acid (10 g, 50.3 mmol) in H2O (125 ml). The mixture was heated at 50°C for 18 h. After filtration, the yellow solid obtained was dissolved in H2O and acidified with HCl. Crystals suitable for X-ray analysis were obtained after 10 days by slow evaporation of a DMF solution.

Refinement top

All H atoms were positioned geometrically and were allowed to ride on their parent atoms, with C—H = 0.93-0.96 Å, O—H = 0.82 Å, and with Uiso(H) = 1.5Ueq(C, O) or 1.2Ueq(C) for aromatic and aldehyde H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. [Symmetry code: (A) -x+3, -y, -z+1].
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-5,5'-(Diazene-1,2-diyl)diisophthalic acid N,N-dimethylformamide disolvate top
Crystal data top
C16H10N2O8·2C3H7NOZ = 1
Mr = 504.45F(000) = 264
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2926 (13) ÅCell parameters from 1381 reflections
b = 7.2114 (13) Åθ = 2.9–27.4°
c = 13.653 (4) ŵ = 0.11 mm1
α = 80.94 (4)°T = 293 K
β = 85.30 (4)°Cuboid, colourless
γ = 81.72 (3)°0.20 × 0.20 × 0.20 mm
V = 604.3 (3) Å3
Data collection top
Rigaku SCXmini
diffractometer
2363 independent reflections
Radiation source: fine-focus sealed tube1607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.971, Tmax = 0.979l = 1616
5593 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0869P)2 + 0.0094P]
where P = (Fo2 + 2Fc2)/3
2363 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H10N2O8·2C3H7NOγ = 81.72 (3)°
Mr = 504.45V = 604.3 (3) Å3
Triclinic, P1Z = 1
a = 6.2926 (13) ÅMo Kα radiation
b = 7.2114 (13) ŵ = 0.11 mm1
c = 13.653 (4) ÅT = 293 K
α = 80.94 (4)°0.20 × 0.20 × 0.20 mm
β = 85.30 (4)°
Data collection top
Rigaku SCXmini
diffractometer
2363 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1607 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.979Rint = 0.029
5593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
2363 reflectionsΔρmin = 0.19 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2504 (3)0.1247 (3)0.53879 (14)0.0368 (5)
C21.1485 (3)0.1486 (3)0.63147 (14)0.0388 (5)
H21.22130.10370.68890.047*
C30.9387 (3)0.2393 (3)0.63829 (14)0.0362 (4)
C40.8321 (3)0.3072 (3)0.55177 (14)0.0361 (5)
H40.69090.36640.55580.043*
C50.9357 (3)0.2870 (2)0.45901 (13)0.0340 (4)
C61.1450 (3)0.1962 (2)0.45217 (14)0.0360 (4)
H61.21440.18300.39030.043*
C70.8248 (3)0.3644 (3)0.36581 (14)0.0393 (5)
C80.8253 (3)0.2634 (3)0.73691 (14)0.0429 (5)
C90.5021 (5)0.1873 (5)0.1616 (2)0.0951 (10)
H9A0.65540.18520.15360.143*
H9B0.46890.06330.18940.143*
H9C0.44270.27630.20520.143*
C100.1791 (4)0.2888 (5)0.0659 (2)0.0897 (10)
H10A0.13670.31940.00130.135*
H10B0.13370.39530.10030.135*
H10C0.11330.18170.09880.135*
C110.5328 (4)0.2465 (4)0.01670 (17)0.0583 (6)
H110.46620.28230.07640.070*
N11.4637 (2)0.0230 (2)0.54104 (12)0.0396 (4)
N20.4107 (3)0.2433 (3)0.06578 (13)0.0560 (5)
O10.9368 (2)0.1852 (3)0.81263 (10)0.0609 (5)
H10.86280.19570.86430.091*
O20.6425 (2)0.3456 (2)0.74637 (11)0.0587 (5)
O30.6225 (2)0.4372 (2)0.38429 (11)0.0559 (5)
H30.57020.48800.33210.084*
O40.9084 (2)0.3631 (3)0.28388 (11)0.0658 (5)
O50.7304 (3)0.2054 (3)0.02061 (11)0.0725 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (10)0.0368 (10)0.0480 (12)0.0002 (7)0.0004 (8)0.0085 (9)
C20.0308 (10)0.0441 (11)0.0393 (10)0.0020 (8)0.0022 (8)0.0062 (9)
C30.0287 (10)0.0376 (10)0.0404 (11)0.0008 (7)0.0016 (8)0.0067 (8)
C40.0256 (10)0.0376 (10)0.0428 (11)0.0035 (7)0.0003 (8)0.0074 (8)
C50.0280 (10)0.0340 (9)0.0390 (10)0.0004 (7)0.0000 (7)0.0077 (8)
C60.0313 (10)0.0375 (10)0.0383 (10)0.0012 (8)0.0023 (8)0.0083 (8)
C70.0334 (11)0.0427 (11)0.0401 (11)0.0018 (8)0.0006 (8)0.0084 (8)
C80.0368 (11)0.0525 (12)0.0356 (11)0.0035 (9)0.0004 (8)0.0042 (9)
C90.097 (2)0.142 (3)0.0424 (15)0.011 (2)0.0023 (14)0.0094 (17)
C100.0544 (18)0.110 (2)0.093 (2)0.0092 (15)0.0136 (15)0.0082 (19)
C110.0547 (15)0.0755 (16)0.0417 (12)0.0016 (12)0.0043 (10)0.0081 (11)
N10.0257 (9)0.0437 (9)0.0473 (9)0.0046 (7)0.0009 (7)0.0097 (8)
N20.0496 (12)0.0716 (13)0.0446 (10)0.0024 (9)0.0042 (8)0.0110 (9)
O10.0468 (9)0.0897 (12)0.0349 (8)0.0200 (8)0.0010 (7)0.0018 (8)
O20.0395 (9)0.0859 (11)0.0401 (8)0.0211 (8)0.0030 (6)0.0069 (8)
O30.0372 (9)0.0786 (11)0.0427 (8)0.0188 (7)0.0053 (6)0.0032 (8)
O40.0494 (10)0.1019 (13)0.0383 (9)0.0144 (8)0.0017 (7)0.0113 (9)
O50.0458 (10)0.1218 (16)0.0445 (10)0.0002 (9)0.0043 (7)0.0103 (10)
Geometric parameters (Å, º) top
C1—C61.394 (3)C8—O11.304 (2)
C1—C21.395 (3)C9—N21.447 (3)
C1—N11.434 (2)C9—H9A0.9600
C2—C31.389 (2)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
C3—C41.392 (3)C10—N21.447 (3)
C3—C81.494 (3)C10—H10A0.9600
C4—C51.395 (3)C10—H10B0.9600
C4—H40.9300C10—H10C0.9600
C5—C61.387 (2)C11—O51.235 (3)
C5—C71.492 (3)C11—N21.309 (3)
C6—H60.9300C11—H110.9300
C7—O41.197 (2)N1—N1i1.251 (3)
C7—O31.325 (2)O1—H10.8200
C8—O21.222 (2)O3—H30.8200
C6—C1—C2120.34 (17)O1—C8—C3114.04 (17)
C6—C1—N1124.35 (17)N2—C9—H9A109.5
C2—C1—N1115.31 (17)N2—C9—H9B109.5
C3—C2—C1120.22 (18)H9A—C9—H9B109.5
C3—C2—H2119.9N2—C9—H9C109.5
C1—C2—H2119.9H9A—C9—H9C109.5
C2—C3—C4119.34 (17)H9B—C9—H9C109.5
C2—C3—C8121.08 (18)N2—C10—H10A109.5
C4—C3—C8119.57 (17)N2—C10—H10B109.5
C3—C4—C5120.42 (17)H10A—C10—H10B109.5
C3—C4—H4119.8N2—C10—H10C109.5
C5—C4—H4119.8H10A—C10—H10C109.5
C6—C5—C4120.25 (17)H10B—C10—H10C109.5
C6—C5—C7118.99 (17)O5—C11—N2124.4 (2)
C4—C5—C7120.75 (16)O5—C11—H11117.8
C5—C6—C1119.40 (18)N2—C11—H11117.8
C5—C6—H6120.3N1i—N1—C1113.5 (2)
C1—C6—H6120.3C11—N2—C10122.1 (2)
O4—C7—O3123.70 (19)C11—N2—C9121.0 (2)
O4—C7—C5124.31 (18)C10—N2—C9116.8 (2)
O3—C7—C5111.99 (17)C8—O1—H1109.5
O2—C8—O1122.62 (18)C7—O3—H3109.5
O2—C8—C3123.32 (18)
Symmetry code: (i) x+3, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O30.932.382.704 (3)100
C9—H9A···O50.962.372.763 (3)104
O1—H1···O5ii0.821.722.541 (2)174
O3—H3···O2iii0.821.942.697 (2)154
C4—H4···O3iii0.932.423.305 (2)159
C11—H11···O2iv0.932.583.240 (3)128
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formulaC16H10N2O8·2C3H7NO
Mr504.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.2926 (13), 7.2114 (13), 13.653 (4)
α, β, γ (°)80.94 (4), 85.30 (4), 81.72 (3)
V3)604.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.971, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5593, 2363, 1607
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.154, 1.04
No. of reflections2363
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O30.932.382.704 (3)100.3
C9—H9A···O50.962.372.763 (3)103.8
O1—H1···O5i0.821.722.541 (2)174.0
O3—H3···O2ii0.821.942.697 (2)154.0
C4—H4···O3ii0.932.423.305 (2)158.8
C11—H11···O2iii0.932.583.240 (3)128.4
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z1.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Dr Z.-R. Qu.

References

First citationCarliell, C. M., Barclay, S. J., Naidoo, N., Buckley, C. A., Mulholland, D. A. & Senior, E. (1995). Water SA, 21, 61–69.  CAS Google Scholar
First citationChung, K.-T. & Stevens, S. E. Jr (1993). Environ. Toxicol. Chem. 2, 2121–2132.  CrossRef Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds