organic compounds
Ethyl 4-(2-chloroquinolin-3-yl)-1-phenyl-1H-pyrrole-3-carboxylate
aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et de Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria, and cDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A.Mira de Béjaia, Route Targua Ouzmour 06000 Béjaia, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the molecule of the title compound, C22H17ClN2O2, the dihedral angles formed by the pyrrole ring with the quinoline and phenyl rings are 67.93 (8) and 28.40 (11)°, respectively. In the molecules are linked into dimers by intermolecular C—H⋯O hydrogen bonds.
Related literature
For general background, see: Corvo & Pereira (2002); Harrison et al. (2006); Wright et al. (2001); Sahu et al. (2002); Michael (1997); Rezig et al. (2000); Raj Amal et al. (2003); Witherup et al. (1995); Moussaoui et al. (2002). For related structures, see: Belfaitah et al. (2006); Bouraiou et al. (2008);. For details of the synthesis, see: Menasra et al. (2005); Benzerka et al. (2008). For pyrroles as building blocks in naturally occurring and biologically active compounds such as heme, chlorophyll and vitamin B12, see: Bigg & Bonnaud (1994); Demir et al. (2005); Tsukamoto et al. (2001);
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808032546/rz2251sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808032546/rz2251Isup2.hkl
To a 0.1 M solution of ethyl 4-(2-chloroquinolin-3-yl)-1-phenylpyrrole -3-carboxylate (1.5 mmol) in dry THF (15 ml) 2.5 equivalents of activated MnO2 were added. The mixture was refluxed for 2.5 h. The same amount of activated MnO2 was then added, and the reflux was continued for an additional 2.5 h. After cooling, the mixture was diluted with THF, filtered through Celite and washed with THF (5x5 ml). The filtrate was concentrated under reduced pressure, diluted with CH2Cl2 and washed with water (2x5 ml). The organic layers were separated and dried over anhydrous MgSO4. The filtrate was concentrated and the residue was purified by flash
on silica gel using AcOEt/pentane (2:1 v/v) as to afford the corresponding pure pyrrole derivative. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent.All H atoms were introduced in calculated positions and treated as riding, with C—H = 0.93-0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl hydrogen atoms.
Data collection: COLLECT (Nonius, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C22H17ClN2O2 | F(000) = 1568 |
Mr = 376.83 | Dx = 1.328 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I 2ya | Cell parameters from 9812 reflections |
a = 20.2021 (6) Å | θ = 5.1–25.1° |
b = 8.0500 (1) Å | µ = 0.22 mm−1 |
c = 24.0238 (7) Å | T = 296 K |
β = 105.29 (2)° | Needle, white |
V = 3768.6 (4) Å3 | 0.15 × 0.06 × 0.05 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 2343 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.043 |
Graphite monochromator | θmax = 25.1°, θmin = 5.1° |
ϕ scans, and ω scans with κ offsets | h = −23→24 |
9812 measured reflections | k = −9→9 |
3315 independent reflections | l = −28→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.103P)2 + 0.3358P] where P = (Fo2 + 2Fc2)/3 |
3315 reflections | (Δ/σ)max < 0.001 |
244 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C22H17ClN2O2 | V = 3768.6 (4) Å3 |
Mr = 376.83 | Z = 8 |
Monoclinic, I2/a | Mo Kα radiation |
a = 20.2021 (6) Å | µ = 0.22 mm−1 |
b = 8.0500 (1) Å | T = 296 K |
c = 24.0238 (7) Å | 0.15 × 0.06 × 0.05 mm |
β = 105.29 (2)° |
Nonius KappaCCD diffractometer | 2343 reflections with I > 2σ(I) |
9812 measured reflections | Rint = 0.043 |
3315 independent reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.29 e Å−3 |
3315 reflections | Δρmin = −0.27 e Å−3 |
244 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.12476 (3) | 0.20796 (10) | 0.35827 (3) | 0.0669 (3) | |
O1 | 0.19940 (10) | −0.3023 (3) | 0.31308 (8) | 0.0722 (6) | |
C13 | 0.12321 (12) | −0.1022 (3) | 0.25970 (10) | 0.0454 (6) | |
N2 | 0.10945 (10) | 0.0124 (3) | 0.17336 (8) | 0.0480 (5) | |
N1 | 0.00661 (12) | 0.1516 (3) | 0.37746 (9) | 0.0607 (6) | |
C3 | −0.04742 (13) | −0.0147 (3) | 0.27328 (11) | 0.0515 (6) | |
H3 | −0.0658 | −0.0671 | 0.2381 | 0.062* | |
O2 | 0.11506 (10) | −0.2065 (3) | 0.34790 (8) | 0.0696 (6) | |
C20 | 0.15071 (12) | −0.2127 (3) | 0.30819 (10) | 0.0489 (6) | |
C12 | 0.14907 (12) | −0.0931 (3) | 0.21243 (10) | 0.0483 (6) | |
H12 | 0.1874 | −0.1498 | 0.2079 | 0.058* | |
C1 | 0.04143 (13) | 0.1247 (3) | 0.34028 (10) | 0.0509 (6) | |
C14 | 0.12066 (13) | 0.0599 (3) | 0.11921 (10) | 0.0507 (6) | |
C10 | 0.06434 (12) | 0.0057 (3) | 0.24895 (10) | 0.0445 (5) | |
C11 | 0.05718 (12) | 0.0714 (3) | 0.19565 (10) | 0.0490 (6) | |
H11 | 0.0227 | 0.1444 | 0.1770 | 0.059* | |
C2 | 0.01905 (12) | 0.0392 (3) | 0.28691 (10) | 0.0455 (6) | |
C4 | −0.08852 (13) | 0.0083 (3) | 0.31192 (12) | 0.0555 (7) | |
C9 | −0.05921 (14) | 0.0900 (4) | 0.36430 (12) | 0.0601 (7) | |
C5 | −0.15703 (14) | −0.0503 (4) | 0.30059 (15) | 0.0705 (8) | |
H5 | −0.1772 | −0.1042 | 0.2660 | 0.085* | |
C16 | 0.19620 (18) | 0.1089 (5) | 0.05969 (13) | 0.0772 (9) | |
H16 | 0.2402 | 0.1075 | 0.0546 | 0.093* | |
C15 | 0.18577 (15) | 0.0595 (4) | 0.11161 (12) | 0.0635 (7) | |
H15 | 0.2228 | 0.0258 | 0.1415 | 0.076* | |
C7 | −0.1635 (2) | 0.0529 (5) | 0.39232 (18) | 0.0898 (11) | |
H7 | −0.1889 | 0.0675 | 0.4190 | 0.108* | |
C6 | −0.19327 (17) | −0.0274 (4) | 0.34045 (18) | 0.0827 (10) | |
H6 | −0.2382 | −0.0658 | 0.3330 | 0.099* | |
C8 | −0.09838 (17) | 0.1100 (5) | 0.40466 (15) | 0.0802 (10) | |
H8 | −0.0793 | 0.1626 | 0.4397 | 0.096* | |
C19 | 0.06632 (17) | 0.1077 (5) | 0.07449 (12) | 0.0823 (10) | |
H19 | 0.0219 | 0.1053 | 0.0788 | 0.099* | |
C17 | 0.14196 (19) | 0.1601 (5) | 0.01550 (13) | 0.0817 (10) | |
H17 | 0.1492 | 0.1950 | −0.0193 | 0.098* | |
C21 | 0.1396 (2) | −0.3041 (5) | 0.39981 (13) | 0.0838 (10) | |
H21A | 0.1874 | −0.3336 | 0.4046 | 0.101* | |
H21B | 0.1132 | −0.4057 | 0.3970 | 0.101* | |
C18 | 0.07782 (19) | 0.1593 (6) | 0.02294 (13) | 0.0936 (12) | |
H18 | 0.0410 | 0.1940 | −0.0070 | 0.112* | |
C22 | 0.1328 (3) | −0.2075 (6) | 0.44902 (17) | 0.141 (2) | |
H22A | 0.1489 | −0.2719 | 0.4836 | 0.211* | |
H22B | 0.0855 | −0.1791 | 0.4441 | 0.211* | |
H22C | 0.1596 | −0.1078 | 0.4519 | 0.211* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0655 (4) | 0.0788 (5) | 0.0550 (4) | −0.0096 (4) | 0.0136 (3) | −0.0156 (3) |
O1 | 0.0693 (12) | 0.0869 (15) | 0.0660 (12) | 0.0322 (12) | 0.0276 (10) | 0.0229 (11) |
C13 | 0.0496 (12) | 0.0459 (14) | 0.0408 (12) | 0.0020 (11) | 0.0120 (10) | −0.0005 (10) |
N2 | 0.0535 (11) | 0.0519 (12) | 0.0399 (10) | 0.0034 (10) | 0.0144 (9) | 0.0006 (9) |
N1 | 0.0674 (14) | 0.0676 (15) | 0.0516 (12) | 0.0092 (12) | 0.0239 (11) | −0.0019 (11) |
C3 | 0.0547 (14) | 0.0473 (15) | 0.0517 (14) | 0.0051 (11) | 0.0127 (11) | 0.0025 (11) |
O2 | 0.0821 (13) | 0.0810 (14) | 0.0542 (11) | 0.0318 (11) | 0.0330 (10) | 0.0230 (10) |
C20 | 0.0540 (14) | 0.0486 (14) | 0.0461 (13) | 0.0043 (12) | 0.0170 (11) | 0.0016 (11) |
C12 | 0.0521 (13) | 0.0487 (15) | 0.0456 (13) | 0.0050 (11) | 0.0154 (11) | 0.0002 (11) |
C1 | 0.0578 (14) | 0.0514 (15) | 0.0443 (13) | 0.0036 (12) | 0.0153 (11) | −0.0017 (11) |
C14 | 0.0635 (15) | 0.0514 (15) | 0.0379 (12) | 0.0035 (12) | 0.0143 (11) | 0.0013 (11) |
C10 | 0.0483 (12) | 0.0434 (13) | 0.0413 (12) | 0.0015 (11) | 0.0112 (10) | −0.0039 (10) |
C11 | 0.0502 (13) | 0.0497 (14) | 0.0466 (13) | 0.0060 (11) | 0.0116 (10) | −0.0004 (11) |
C2 | 0.0512 (13) | 0.0424 (14) | 0.0428 (13) | 0.0056 (10) | 0.0124 (10) | 0.0010 (10) |
C4 | 0.0578 (15) | 0.0498 (15) | 0.0622 (16) | 0.0104 (12) | 0.0219 (12) | 0.0127 (13) |
C9 | 0.0659 (16) | 0.0611 (18) | 0.0589 (16) | 0.0149 (14) | 0.0262 (13) | 0.0082 (13) |
C5 | 0.0592 (16) | 0.0652 (19) | 0.091 (2) | 0.0067 (14) | 0.0263 (16) | 0.0113 (16) |
C16 | 0.088 (2) | 0.093 (2) | 0.0613 (18) | 0.0162 (19) | 0.0381 (16) | 0.0154 (17) |
C15 | 0.0694 (17) | 0.0738 (19) | 0.0515 (15) | 0.0134 (15) | 0.0235 (13) | 0.0112 (14) |
C7 | 0.089 (2) | 0.103 (3) | 0.095 (3) | 0.020 (2) | 0.054 (2) | 0.016 (2) |
C6 | 0.0617 (17) | 0.078 (2) | 0.117 (3) | 0.0093 (17) | 0.0390 (19) | 0.025 (2) |
C8 | 0.083 (2) | 0.094 (3) | 0.078 (2) | 0.0131 (19) | 0.0467 (18) | 0.0042 (18) |
C19 | 0.0695 (18) | 0.125 (3) | 0.0500 (16) | 0.014 (2) | 0.0121 (14) | 0.0124 (18) |
C17 | 0.110 (3) | 0.094 (3) | 0.0478 (16) | 0.016 (2) | 0.0330 (17) | 0.0147 (16) |
C21 | 0.113 (3) | 0.089 (2) | 0.0569 (18) | 0.034 (2) | 0.0361 (17) | 0.0305 (17) |
C18 | 0.092 (2) | 0.138 (4) | 0.0473 (17) | 0.025 (2) | 0.0121 (16) | 0.0218 (19) |
C22 | 0.245 (6) | 0.113 (4) | 0.061 (2) | 0.023 (4) | 0.035 (3) | 0.017 (2) |
Cl1—C1 | 1.757 (3) | C9—C8 | 1.413 (4) |
O1—C20 | 1.200 (3) | C5—C6 | 1.362 (4) |
C13—C12 | 1.371 (3) | C5—H5 | 0.9300 |
C13—C10 | 1.440 (3) | C16—C17 | 1.373 (5) |
C13—C20 | 1.454 (3) | C16—C15 | 1.377 (4) |
N2—C12 | 1.359 (3) | C16—H16 | 0.9300 |
N2—C11 | 1.388 (3) | C15—H15 | 0.9300 |
N2—C14 | 1.430 (3) | C7—C8 | 1.350 (5) |
N1—C1 | 1.293 (3) | C7—C6 | 1.392 (5) |
N1—C9 | 1.376 (4) | C7—H7 | 0.9300 |
C3—C2 | 1.366 (3) | C6—H6 | 0.9300 |
C3—C4 | 1.411 (3) | C8—H8 | 0.9300 |
C3—H3 | 0.9300 | C19—C18 | 1.383 (4) |
O2—C20 | 1.339 (3) | C19—H19 | 0.9300 |
O2—C21 | 1.446 (3) | C17—C18 | 1.354 (5) |
C12—H12 | 0.9300 | C17—H17 | 0.9300 |
C1—C2 | 1.420 (3) | C21—C22 | 1.451 (5) |
C14—C19 | 1.373 (4) | C21—H21A | 0.9700 |
C14—C15 | 1.375 (4) | C21—H21B | 0.9700 |
C10—C11 | 1.357 (3) | C18—H18 | 0.9300 |
C10—C2 | 1.477 (3) | C22—H22A | 0.9600 |
C11—H11 | 0.9300 | C22—H22B | 0.9600 |
C4—C9 | 1.405 (4) | C22—H22C | 0.9600 |
C4—C5 | 1.419 (4) | ||
C12—C13—C10 | 107.2 (2) | C6—C5—H5 | 120.1 |
C12—C13—C20 | 123.2 (2) | C4—C5—H5 | 120.1 |
C10—C13—C20 | 129.5 (2) | C17—C16—C15 | 120.4 (3) |
C12—N2—C11 | 108.49 (19) | C17—C16—H16 | 119.8 |
C12—N2—C14 | 126.1 (2) | C15—C16—H16 | 119.8 |
C11—N2—C14 | 125.3 (2) | C14—C15—C16 | 120.0 (3) |
C1—N1—C9 | 116.8 (2) | C14—C15—H15 | 120.0 |
C2—C3—C4 | 120.8 (2) | C16—C15—H15 | 120.0 |
C2—C3—H3 | 119.6 | C8—C7—C6 | 121.4 (3) |
C4—C3—H3 | 119.6 | C8—C7—H7 | 119.3 |
C20—O2—C21 | 117.9 (2) | C6—C7—H7 | 119.3 |
O1—C20—O2 | 122.2 (2) | C5—C6—C7 | 120.4 (3) |
O1—C20—C13 | 125.2 (2) | C5—C6—H6 | 119.8 |
O2—C20—C13 | 112.6 (2) | C7—C6—H6 | 119.8 |
N2—C12—C13 | 108.8 (2) | C7—C8—C9 | 120.0 (4) |
N2—C12—H12 | 125.6 | C7—C8—H8 | 120.0 |
C13—C12—H12 | 125.6 | C9—C8—H8 | 120.0 |
N1—C1—C2 | 127.1 (2) | C14—C19—C18 | 119.8 (3) |
N1—C1—Cl1 | 115.3 (2) | C14—C19—H19 | 120.1 |
C2—C1—Cl1 | 117.60 (18) | C18—C19—H19 | 120.1 |
C19—C14—C15 | 119.5 (2) | C18—C17—C16 | 119.5 (3) |
C19—C14—N2 | 120.1 (2) | C18—C17—H17 | 120.2 |
C15—C14—N2 | 120.4 (2) | C16—C17—H17 | 120.2 |
C11—C10—C13 | 106.4 (2) | O2—C21—C22 | 109.1 (3) |
C11—C10—C2 | 125.6 (2) | O2—C21—H21A | 109.9 |
C13—C10—C2 | 128.0 (2) | C22—C21—H21A | 109.9 |
C10—C11—N2 | 109.1 (2) | O2—C21—H21B | 109.9 |
C10—C11—H11 | 125.4 | C22—C21—H21B | 109.9 |
N2—C11—H11 | 125.4 | H21A—C21—H21B | 108.3 |
C3—C2—C1 | 115.4 (2) | C17—C18—C19 | 120.8 (3) |
C3—C2—C10 | 121.6 (2) | C17—C18—H18 | 119.6 |
C1—C2—C10 | 123.0 (2) | C19—C18—H18 | 119.6 |
C9—C4—C3 | 117.9 (2) | C21—C22—H22A | 109.5 |
C9—C4—C5 | 119.1 (3) | C21—C22—H22B | 109.5 |
C3—C4—C5 | 122.9 (3) | H22A—C22—H22B | 109.5 |
N1—C9—C4 | 121.9 (2) | C21—C22—H22C | 109.5 |
N1—C9—C8 | 118.9 (3) | H22A—C22—H22C | 109.5 |
C4—C9—C8 | 119.2 (3) | H22B—C22—H22C | 109.5 |
C6—C5—C4 | 119.9 (3) | ||
C21—O2—C20—O1 | 4.1 (4) | Cl1—C1—C2—C10 | 5.3 (3) |
C21—O2—C20—C13 | −176.6 (3) | C11—C10—C2—C3 | 67.9 (4) |
C12—C13—C20—O1 | 2.5 (4) | C13—C10—C2—C3 | −111.1 (3) |
C10—C13—C20—O1 | 178.0 (3) | C11—C10—C2—C1 | −113.8 (3) |
C12—C13—C20—O2 | −176.7 (2) | C13—C10—C2—C1 | 67.2 (4) |
C10—C13—C20—O2 | −1.3 (4) | C2—C3—C4—C9 | 0.8 (4) |
C11—N2—C12—C13 | −0.3 (3) | C2—C3—C4—C5 | −177.9 (3) |
C14—N2—C12—C13 | 177.7 (2) | C1—N1—C9—C4 | −2.8 (4) |
C10—C13—C12—N2 | −0.5 (3) | C1—N1—C9—C8 | 177.4 (3) |
C20—C13—C12—N2 | 175.8 (2) | C3—C4—C9—N1 | 2.2 (4) |
C9—N1—C1—C2 | 0.4 (4) | C5—C4—C9—N1 | −179.1 (3) |
C9—N1—C1—Cl1 | 179.1 (2) | C3—C4—C9—C8 | −178.0 (3) |
C12—N2—C14—C19 | 153.2 (3) | C5—C4—C9—C8 | 0.7 (4) |
C11—N2—C14—C19 | −29.2 (4) | C9—C4—C5—C6 | −0.3 (4) |
C12—N2—C14—C15 | −27.3 (4) | C3—C4—C5—C6 | 178.4 (3) |
C11—N2—C14—C15 | 150.3 (3) | C19—C14—C15—C16 | 0.9 (5) |
C12—C13—C10—C11 | 1.1 (3) | N2—C14—C15—C16 | −178.6 (3) |
C20—C13—C10—C11 | −174.9 (2) | C17—C16—C15—C14 | 0.5 (5) |
C12—C13—C10—C2 | −179.8 (2) | C4—C5—C6—C7 | −0.1 (5) |
C20—C13—C10—C2 | 4.2 (4) | C8—C7—C6—C5 | 0.0 (6) |
C13—C10—C11—N2 | −1.2 (3) | C6—C7—C8—C9 | 0.5 (6) |
C2—C10—C11—N2 | 179.6 (2) | N1—C9—C8—C7 | 179.0 (3) |
C12—N2—C11—C10 | 1.0 (3) | C4—C9—C8—C7 | −0.9 (5) |
C14—N2—C11—C10 | −177.0 (2) | C15—C14—C19—C18 | −1.9 (5) |
C4—C3—C2—C1 | −2.9 (4) | N2—C14—C19—C18 | 177.6 (3) |
C4—C3—C2—C10 | 175.5 (2) | C15—C16—C17—C18 | −1.0 (6) |
N1—C1—C2—C3 | 2.4 (4) | C20—O2—C21—C22 | 139.1 (4) |
Cl1—C1—C2—C3 | −176.30 (19) | C16—C17—C18—C19 | 0.0 (6) |
N1—C1—C2—C10 | −176.0 (3) | C14—C19—C18—C17 | 1.5 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1i | 0.93 | 2.50 | 3.383 (3) | 159 |
C15—H15···O1i | 0.93 | 2.45 | 3.275 (4) | 148 |
Symmetry code: (i) −x+1/2, −y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C22H17ClN2O2 |
Mr | 376.83 |
Crystal system, space group | Monoclinic, I2/a |
Temperature (K) | 296 |
a, b, c (Å) | 20.2021 (6), 8.0500 (1), 24.0238 (7) |
β (°) | 105.29 (2) |
V (Å3) | 3768.6 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.15 × 0.06 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9812, 3315, 2343 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.142, 1.02 |
No. of reflections | 3315 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.27 |
Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1i | 0.9300 | 2.5000 | 3.383 (3) | 159.00 |
C15—H15···O1i | 0.9300 | 2.4500 | 3.275 (4) | 148.00 |
Symmetry code: (i) −x+1/2, −y−1/2, −z+1/2. |
Acknowledgements
We are grateful to Professor Lahcéne Ouahab (Organométalliques et materiaux moléculaire, Université de Rennes I, France) for data-collection facilities and to Professor Salah Rhouati (PHYSYNOR, Université Mentouri Constantine, Algérie) for his assistance. Thanks are due to MESRS (Ministére de l'enseignement supérieur et de la recherche scientifique) for financial support.
References
Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benzerka, S., Bouraiou, A., Debache, A., Rhouati, S. & Belfaitah, A. (2008). J. Soc. Alger. Chim. 18, 71–90. CAS Google Scholar
Bigg, C. H. & Bonnaud, B. (1994). Synthesis, pp. 465–467. Google Scholar
Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333. CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Corvo, M. C. & Pereira, M. A. (2002). Tetrahedron Lett. 43, 455–458. Web of Science CrossRef CAS Google Scholar
Demir, S., Cigdem Igdir, A. & Batuhan Gunay, N. (2005). Tetrahedron Asymmetry, 16, 3170–3175. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harrison, T. J., Koak, I. A., Corbella-Pane, M. & Dake, G. R. (2006). J. Org. Chem. 71, 4525–4529. Web of Science CrossRef PubMed CAS Google Scholar
Menasra, H., Kedjadja, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun. 35, 2779–2788. Web of Science CrossRef CAS Google Scholar
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–618. CrossRef CAS Web of Science Google Scholar
Moussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim. 12, 71–78. CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Raj Amal, A., Raghunathan, R., Sridevikumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419. Web of Science PubMed CAS Google Scholar
Rezig, R., Chebah, M., Rhouati, S., Ducki, S. & Lawrence, N. (2000). J. Soc. Alger. Chim. 10, 111–120. CAS Google Scholar
Sahu, N. S., Pal, C., Mandal, N. B., Banerjee, S., Raha, M., Kundu, A. P., Basu, A., Ghosh, M., Roy, K. & Bandyopadhyay, S. (2002). Bioorg. Med. Chem. 10, 1687–1693. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsukamoto, S., Tane, K., Ohta, T., Matsunaga, S., Fusetani, N. & van Soest, R. W. M. (2001). J. Nat. Prod. 64, 1576–1578. Web of Science CrossRef PubMed CAS Google Scholar
Witherup, K. R., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682–6685. CrossRef CAS Web of Science Google Scholar
Wright, C. W., Addac-Kyereme, J., Breen, A. G., Brown, J. E., Cox, M. F., Croft, S. L., Gokcek, Y., Kendrick, H., Phillips, R. M. & Pollet, P. L. (2001). J. Med. Chem. 44, 3187–3194. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic compounds and particularly five and six membered ring compounds occupy a prominent place among various classes of organic compounds for their diverse biological activities. Among a wide variety of heterocycles that have been explored for developing pharmaceutically important molecules (Raj Amal et al., 2003), quinolines have played an important role in medicine chemistry (Wright et al., 2001; Sahu et al., 2002). Some of them have received considerable attention due to their presence in numerous natural products along with their wide ranging application as drugs, pharmaceutical and agrochemicals (Michael, 1997). Pyrroles are an important class of heterocyclic compounds and are widely used in synthetic organic chemistry and material science (Corvo & Pereira, 2002; Harrison et al., 2006). Pyrroles are often seen as building blocks in naturally occurring and biologically active compounds such as heme, chlorophyll and vitamin B12 (Demir et al., 2005; Bigg & Bonnaud, 1994; Tsukamoto et al., 2001). Syntheses of pyrroloquinolines derivatives were not particularly numerous in the literature before the initial report of the unique alkaloids (Witherup et al., 1995). In a continuation of our program on the synthesis and biological evaluation of quinolines derivatives (Belfaitah et al., 2006; Bouraiou et al., 2008; Rezig et al., 2000; Moussaoui et al., 2002), we have elaborated an efficient route for the synthesis of 3-pyrrolylquinolines by dehydrogenation of 3-pyrrolidinyl quinolines using activated manganese dioxide in refluxing THF during 5 h (Menasra et al., 2005; Benzerka et al. 2008). We report here the crystal structure of a new N-phenylpyrrole derivative bearing a quinoline ring at C-3 and an ester group at C-4.
The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1. The quinoline ring system is essentially planar, the dihedral angle formed by the six-membered rings being only 0.64 (8)°. The dihedral angles between the pyrrole ring and the quinoline and phenyl rings are 67.93 (8) and 28.40 (11)°, respectively. The geometric parameters are in agreement with those of other structures possessing a quinolyl substituent previously reported in the literature (Belfaitah et al., 2006; Bouraiou et al., 2008). In the crystal structure (Fig. 2), molecules are linked into dimers by intermolecular C—H···O hydrogen bonds (Table 1).