organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Amino-1H-inden-2-yl)ethanone

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 30 September 2008; accepted 15 October 2008; online 31 October 2008)

The title compound, C11H11NO, was synthesized by the reaction of 2-(bromo­meth­yl)benzonitrile and acetyl­acetone in the presence of KOH. In the crystal packing, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds into chains running parallel to the b axis. Centrosymmetrically-related chains inter­act further through weak C—H⋯π inter­actions.

Related literature

For the crystal structures of related compounds, see: Choi et al. (1999[Choi, K. Y., Kim, Y. J., Ryu, H. & Suh, I. H. (1999). Inorg. Chem. Commun. 2, 176-180.]); Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, m1630.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO

  • Mr = 173.21

  • Monoclinic, P 21 /c

  • a = 8.1794 (4) Å

  • b = 10.6905 (5) Å

  • c = 10.5602 (6) Å

  • β = 93.783 (8)°

  • V = 921.39 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.25 × 0.16 × 0.14 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.980, Tmax = 0.989

  • 9369 measured reflections

  • 2108 independent reflections

  • 1385 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.171

  • S = 1.04

  • 2108 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C11/C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.17 2.766 (2) 126
N1—H1B⋯O2i 0.86 2.09 2.924 (2) 164
C2—H2BCg1ii 0.97 2.77 3.631 (2) 148
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

In recent years, the synthesis and characterization of new ligands containing amino donor groups has received considerable attention due to the potential applications in coordination chemistry (Choi et al., 1999; Fu & Zhao, 2007). We report here the crystal structure of the title compound, which was obtained by the reaction of o-(bromomethyl)benzonitrile and acetylacetone in the presence of KOH.

In the molecule of the title compound (Fig. 1), the five-membered ring formed through the reaction is planar, and the geometric parameters are in the usual ranges. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bond (Table 1). In the crystal structure (Fig. 2), molecules are connected by intermolecular N—H···O hydrogen bonds into chains running parallel to the b axis (Table 1). Centrosymmetrically-related chains are further interacting through weak C—H···π interactions (Table 1).

Related literature top

For the crystal structures of related compounds, see: Choi et al. (1999); Fu & Zhao (2007).

Experimental top

Acetylacetone (0.5 g, 0.5 mmol) and o-(bromomethyl)-benzonitrile (0.98 g, 0.5 mmol) were dissolved in methanol (30 ml) in the presence of KOH (0.28 g, 0.5 mmol) and the mixture refluxed for 24 h at 393K. After cooling to room temperature, most of the solvent was removed by vacuum filtration. Colourless crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation of the remaining solvent.

Refinement top

All H atoms were placed at calculated positions and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
1-(3-Amino-1H-inden-2-yl)ethanone top
Crystal data top
C11H11NOF(000) = 368
Mr = 173.21Dx = 1.249 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4430 reflections
a = 8.1794 (4) Åθ = 3.1–27.4°
b = 10.6905 (5) ŵ = 0.08 mm1
c = 10.5602 (6) ÅT = 293 K
β = 93.783 (8)°Block, colourless
V = 921.39 (8) Å30.25 × 0.16 × 0.14 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2108 independent reflections
Radiation source: fine-focus sealed tube1385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.980, Tmax = 0.989l = 1313
9369 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0814P)2 + 0.2011P]
where P = (Fo2 + 2Fc2)/3
2108 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H11NOV = 921.39 (8) Å3
Mr = 173.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1794 (4) ŵ = 0.08 mm1
b = 10.6905 (5) ÅT = 293 K
c = 10.5602 (6) Å0.25 × 0.16 × 0.14 mm
β = 93.783 (8)°
Data collection top
Rigaku SCXmini
diffractometer
2108 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1385 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.989Rint = 0.049
9369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
2108 reflectionsΔρmin = 0.20 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.6932 (2)0.90032 (19)0.07286 (18)0.0447 (5)
H2A0.74460.86470.14480.054*
H2B0.58590.86300.06720.054*
C40.7981 (2)0.88190 (18)0.04815 (17)0.0393 (5)
C50.8500 (2)0.76630 (18)0.1034 (2)0.0434 (5)
C60.8406 (2)0.99769 (18)0.10065 (17)0.0363 (4)
C70.7680 (2)1.09672 (19)0.01929 (18)0.0389 (5)
C80.5992 (3)1.1144 (2)0.1751 (2)0.0584 (6)
H80.54011.07830.24400.070*
C90.6815 (2)1.0401 (2)0.08348 (18)0.0439 (5)
C100.6928 (3)1.2986 (3)0.0592 (2)0.0629 (7)
H100.69521.38530.05210.076*
C110.7750 (3)1.2260 (2)0.0329 (2)0.0490 (6)
H110.83321.26260.10190.059*
C120.7998 (3)0.6463 (2)0.0355 (3)0.0667 (7)
H12A0.87920.58240.05700.100*
H12B0.79390.66020.05450.100*
H12C0.69450.62040.06080.100*
C130.6070 (3)1.2432 (2)0.1617 (2)0.0664 (7)
H130.55331.29360.22310.080*
N10.9314 (2)1.01839 (16)0.20784 (15)0.0490 (5)
H1A0.97020.95640.25220.059*
H1B0.95121.09380.23280.059*
O20.93402 (18)0.75969 (13)0.20655 (14)0.0527 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0439 (11)0.0511 (13)0.0384 (11)0.0004 (9)0.0018 (8)0.0056 (9)
C40.0376 (10)0.0419 (11)0.0383 (10)0.0022 (8)0.0014 (8)0.0035 (8)
C50.0434 (11)0.0401 (12)0.0470 (12)0.0014 (9)0.0046 (9)0.0010 (8)
C60.0332 (9)0.0403 (11)0.0354 (10)0.0004 (8)0.0023 (7)0.0010 (8)
C70.0346 (9)0.0424 (11)0.0399 (11)0.0010 (8)0.0036 (8)0.0024 (8)
C80.0553 (13)0.0740 (18)0.0446 (13)0.0109 (12)0.0053 (10)0.0031 (11)
C90.0392 (10)0.0544 (14)0.0380 (11)0.0049 (9)0.0023 (8)0.0025 (9)
C100.0714 (16)0.0487 (13)0.0685 (17)0.0096 (12)0.0037 (13)0.0164 (12)
C110.0484 (12)0.0456 (14)0.0526 (12)0.0016 (10)0.0007 (9)0.0042 (10)
C120.0854 (18)0.0415 (13)0.0719 (16)0.0014 (12)0.0041 (13)0.0100 (11)
C130.0691 (16)0.0700 (17)0.0593 (15)0.0214 (13)0.0016 (12)0.0218 (12)
N10.0605 (11)0.0381 (9)0.0461 (10)0.0026 (8)0.0137 (8)0.0000 (7)
O20.0660 (10)0.0415 (8)0.0493 (9)0.0033 (7)0.0075 (7)0.0062 (6)
Geometric parameters (Å, º) top
C2—C91.501 (3)C8—C91.391 (3)
C2—C41.505 (3)C8—H80.9300
C2—H2A0.9700C10—C111.383 (3)
C2—H2B0.9700C10—C131.384 (3)
C4—C61.391 (3)C10—H100.9300
C4—C51.420 (3)C11—H110.9300
C5—O21.251 (2)C12—H12A0.9600
C5—C121.513 (3)C12—H12B0.9600
C6—N11.331 (2)C12—H12C0.9600
C6—C71.464 (3)C13—H130.9300
C7—C111.391 (3)N1—H1A0.8600
C7—C91.394 (3)N1—H1B0.8600
C8—C131.385 (4)
C9—C2—C4102.92 (15)C8—C9—C7119.4 (2)
C9—C2—H2A111.2C8—C9—C2130.2 (2)
C4—C2—H2A111.2C7—C9—C2110.33 (17)
C9—C2—H2B111.2C11—C10—C13120.5 (3)
C4—C2—H2B111.2C11—C10—H10119.7
H2A—C2—H2B109.1C13—C10—H10119.7
C6—C4—C5123.41 (18)C10—C11—C7118.1 (2)
C6—C4—C2109.61 (17)C10—C11—H11121.0
C5—C4—C2126.98 (18)C7—C11—H11121.0
O2—C5—C4122.65 (18)C5—C12—H12A109.5
O2—C5—C12118.77 (19)C5—C12—H12B109.5
C4—C5—C12118.6 (2)H12A—C12—H12B109.5
N1—C6—C4126.71 (18)C5—C12—H12C109.5
N1—C6—C7124.11 (17)H12A—C12—H12C109.5
C4—C6—C7109.18 (16)H12B—C12—H12C109.5
C11—C7—C9121.81 (19)C10—C13—C8121.5 (2)
C11—C7—C6130.23 (19)C10—C13—H13119.2
C9—C7—C6107.96 (18)C8—C13—H13119.2
C13—C8—C9118.7 (2)C6—N1—H1A120.0
C13—C8—H8120.7C6—N1—H1B120.0
C9—C8—H8120.7H1A—N1—H1B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.172.766 (2)126
N1—H1B···O2i0.862.092.924 (2)164
C2—H2B···Cg1ii0.972.773.631 (2)148
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC11H11NO
Mr173.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1794 (4), 10.6905 (5), 10.5602 (6)
β (°) 93.783 (8)
V3)921.39 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.16 × 0.14
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.980, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
9369, 2108, 1385
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.171, 1.04
No. of reflections2108
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.172.766 (2)125.8
N1—H1B···O2i0.862.092.924 (2)164.2
C2—H2B···Cg1ii0.972.773.631 (2)148.1
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y+2, z.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to ZRQ.

References

First citationChoi, K. Y., Kim, Y. J., Ryu, H. & Suh, I. H. (1999). Inorg. Chem. Commun. 2, 176–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, m1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds