metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-hydroxido-bis­­[aqua­tri­chlorido­tin(IV)] di­ethyl ether disolvate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 15 September 2008; accepted 10 October 2008; online 18 October 2008)

The title compound, [Sn2Cl6(OH)2(H2O)2]·2C4H10O, consists of a centrosymmetric molecule and two additional solvent molecules and has an infinite two-dimensional network extending parallel to (101). The Sn atom is six-coordinate with a distorted octa­hedral geometry. Additional O—H⋯O hydrogen bonding leads to stabilization of the crystal structure.

Related literature

For a related structure, see: Janas et al. (1991[Janas, Z., Sobota, P. & Lis, T. (1991). J. Chem. Soc. Dalton Trans. pp. 2429-2434.])

[Scheme 1]

Experimental

Crystal data
  • [Sn2Cl6(OH)2(H2O)2]·2C4H10O

  • Mr = 668.36

  • Monoclinic, P 21 /n

  • a = 10.1171 (15) Å

  • b = 10.0212 (15) Å

  • c = 11.2641 (18) Å

  • β = 103.536 (1)°

  • V = 1110.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 298 (2) K

  • 0.46 × 0.32 × 0.30 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.340, Tmax = 0.468 (expected range = 0.297–0.408)

  • 5168 measured reflections

  • 1909 independent reflections

  • 1685 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.063

  • S = 0.84

  • 1909 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.93 1.88 2.799 (3) 169
O2—H2D⋯O3ii 0.85 1.89 2.736 (3) 176
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have synthesized the title compound unexpectedly, (I), and present its crystal structure here. The title compound consist of a centrosymmetric dimer (Fig. 1) in which the tin atoms have a distorted octahedral arrangement formed by three chlorine atoms, two hydroxy oxygen bridges and one water molecule. A further two water molecules are hydrogen-bonded to the hydroxyl oxygen atoms of the µ-OH bridges. The Sn—O distances in (I) (Table 1), are similar to those in related organotin carboxylates. The Sn—Cl bond lengths and the interbond angles lie within the ranges observed for other related complexes. The Sn1—O1 (2.072 (2) Å) and Sn1—O2 distance (2.183 (2) Å), (Table 1), are close to those reported for organotin carboxylates (Janas et al., 1991).

Related literature top

For a related structure, see: Janas et al. (1991)

Experimental top

The reaction was carried out under nitrogen atmosphere. 3-Thiophenemalonic acid (1 mmol) and sodium ethoxide (2.2 mmol) were added to the solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Phenyltin trichloride (1 mmol) was then added to the reactor and the mixture was stirred for 12 h at 338 K.The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of diethylether/petroleum ether (1:1).Unexpectedly,a dimeric complex, was isolated from the filtrate. (yield 52%; m.p. 446 K). Analysis calculated (%) for C4H13Cl3O3Sn (Mr = 334.18): C,46.72; H, 4.49; O, 9.57. found: C, 46.52; H, 4.55; O, 9.62.

Refinement top

H atoms were positioned geometrically, with O—H = 0.85 and 0.93 Å and C—H = 0.96 and 0.97 Å for aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O) where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The infinite two-dimensional network structure of (I), H atoms have been omitted for clarity.
Di-µ-hydroxido-bis[aquatrichloridotin(IV)] diethyl ether disolvate top
Crystal data top
[Sn2Cl6(OH)2(H2O)2]·2C4H10OF(000) = 648
Mr = 668.36Dx = 1.999 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.1171 (15) ÅCell parameters from 4261 reflections
b = 10.0212 (15) Åθ = 2.4–28.2°
c = 11.2641 (18) ŵ = 2.99 mm1
β = 103.536 (1)°T = 298 K
V = 1110.3 (3) Å3Block, colorless
Z = 20.46 × 0.32 × 0.30 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1909 independent reflections
Radiation source: fine-focus sealed tube1685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.340, Tmax = 0.468k = 1111
5168 measured reflectionsl = 713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.9726P]
where P = (Fo2 + 2Fc2)/3
1909 reflections(Δ/σ)max = 0.001
102 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Sn2Cl6(OH)2(H2O)2]·2C4H10OV = 1110.3 (3) Å3
Mr = 668.36Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.1171 (15) ŵ = 2.99 mm1
b = 10.0212 (15) ÅT = 298 K
c = 11.2641 (18) Å0.46 × 0.32 × 0.30 mm
β = 103.536 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1909 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1685 reflections with I > 2σ(I)
Tmin = 0.340, Tmax = 0.468Rint = 0.027
5168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 0.84Δρmax = 1.05 e Å3
1909 reflectionsΔρmin = 0.68 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.53184 (2)0.46950 (2)0.361848 (19)0.02338 (10)
Cl10.66543 (10)0.58991 (10)0.25532 (9)0.0421 (2)
Cl20.70089 (10)0.30829 (10)0.44565 (9)0.0434 (2)
Cl30.41097 (10)0.33403 (10)0.20324 (9)0.0470 (2)
O10.4121 (2)0.4148 (2)0.48000 (19)0.0261 (5)
H10.34470.34970.46510.031*
O20.3762 (3)0.6222 (3)0.3036 (2)0.0402 (6)
H2D0.35430.66360.23600.048*
H2E0.34250.66440.35490.048*
O30.8141 (2)0.7541 (2)0.5809 (2)0.0367 (6)
C10.7894 (5)0.8615 (4)0.4926 (4)0.0518 (11)
H1A0.77980.82600.41090.062*
H1B0.86530.92330.50910.062*
C20.6621 (6)0.9321 (5)0.5016 (5)0.0660 (14)
H2A0.58840.86940.48950.099*
H2B0.64151.00030.44020.099*
H2C0.67460.97200.58100.099*
C30.9279 (4)0.6715 (5)0.5690 (4)0.0537 (12)
H3A1.00750.72670.57300.064*
H3B0.90660.62630.49070.064*
C40.9561 (5)0.5717 (6)0.6692 (5)0.0720 (15)
H4A0.97150.61680.74640.108*
H4B1.03550.52100.66500.108*
H4C0.87970.51280.66100.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02419 (15)0.02519 (15)0.02104 (15)0.00006 (8)0.00583 (10)0.00080 (8)
Cl10.0446 (5)0.0476 (5)0.0398 (5)0.0069 (4)0.0216 (4)0.0052 (4)
Cl20.0438 (5)0.0454 (5)0.0423 (5)0.0216 (4)0.0127 (4)0.0053 (4)
Cl30.0515 (6)0.0523 (6)0.0348 (5)0.0129 (5)0.0053 (4)0.0163 (4)
O10.0273 (12)0.0281 (12)0.0234 (12)0.0074 (10)0.0069 (9)0.0028 (9)
O20.0460 (15)0.0483 (15)0.0274 (13)0.0203 (12)0.0108 (11)0.0104 (11)
O30.0334 (13)0.0435 (14)0.0355 (14)0.0047 (11)0.0125 (11)0.0029 (11)
C10.071 (3)0.047 (2)0.037 (2)0.023 (2)0.013 (2)0.0013 (19)
C20.076 (4)0.048 (2)0.063 (3)0.002 (2)0.008 (3)0.011 (2)
C30.034 (2)0.074 (3)0.056 (3)0.002 (2)0.015 (2)0.025 (2)
C40.056 (3)0.064 (3)0.088 (4)0.020 (3)0.003 (3)0.012 (3)
Geometric parameters (Å, º) top
Sn1—O12.072 (2)C1—C21.493 (7)
Sn1—O1i2.090 (2)C1—H1A0.9700
Sn1—O22.183 (2)C1—H1B0.9700
Sn1—Cl12.3413 (9)C2—H2A0.9600
Sn1—Cl32.3469 (9)C2—H2B0.9600
Sn1—Cl22.3813 (9)C2—H2C0.9600
O1—Sn1i2.090 (2)C3—C41.485 (7)
O1—H10.9300C3—H3A0.9700
O2—H2D0.8500C3—H3B0.9700
O2—H2E0.8500C4—H4A0.9600
O3—C11.447 (5)C4—H4B0.9600
O3—C31.449 (5)C4—H4C0.9600
O1—Sn1—O1i71.48 (9)O3—C1—H1A110.0
O1—Sn1—O283.66 (9)C2—C1—H1A110.0
O1i—Sn1—O284.28 (9)O3—C1—H1B110.0
O1—Sn1—Cl1163.72 (7)C2—C1—H1B110.0
O1i—Sn1—Cl194.40 (6)H1A—C1—H1B108.4
O2—Sn1—Cl186.96 (7)C1—C2—H2A109.5
O1—Sn1—Cl393.27 (6)C1—C2—H2B109.5
O1i—Sn1—Cl3163.56 (6)H2A—C2—H2B109.5
O2—Sn1—Cl388.04 (8)C1—C2—H2C109.5
Cl1—Sn1—Cl399.69 (4)H2A—C2—H2C109.5
O1—Sn1—Cl292.27 (7)H2B—C2—H2C109.5
O1i—Sn1—Cl290.68 (7)O3—C3—C4109.3 (4)
O2—Sn1—Cl2174.32 (7)O3—C3—H3A109.8
Cl1—Sn1—Cl296.06 (4)C4—C3—H3A109.8
Cl3—Sn1—Cl296.16 (4)O3—C3—H3B109.8
Sn1—O1—Sn1i108.52 (9)C4—C3—H3B109.8
Sn1—O1—H1125.7H3A—C3—H3B108.3
Sn1i—O1—H1125.7C3—C4—H4A109.5
Sn1—O2—H2D129.1C3—C4—H4B109.5
Sn1—O2—H2E121.4H4A—C4—H4B109.5
H2D—O2—H2E107.7C3—C4—H4C109.5
C1—O3—C3112.0 (3)H4A—C4—H4C109.5
O3—C1—C2108.6 (3)H4B—C4—H4C109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.931.882.799 (3)169
O2—H2D···O3ii0.851.892.736 (3)176
O2—H2E···Cl2i0.852.403.179 (3)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Sn2Cl6(OH)2(H2O)2]·2C4H10O
Mr668.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.1171 (15), 10.0212 (15), 11.2641 (18)
β (°) 103.536 (1)
V3)1110.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.46 × 0.32 × 0.30
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.340, 0.468
No. of measured, independent and
observed [I > 2σ(I)] reflections
5168, 1909, 1685
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 0.84
No. of reflections1909
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.68

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.931.882.799 (3)168.5
O2—H2D···O3ii0.851.892.736 (3)175.5
O2—H2E···Cl2i0.852.403.179 (3)152.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z1/2.
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant No. 20771053) for financial support.

References

First citationJanas, Z., Sobota, P. & Lis, T. (1991). J. Chem. Soc. Dalton Trans. pp. 2429–2434.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds