organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Meth­oxy­phen­yl)-3-methyl-1H-1,2,4-triazol-5(4H)-one

aSchool of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China, bTianjin Key Laboratory of Molecular Design and Drug Discovery, Tijin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China, and cTianjin Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tijin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: wangrunling2008@yahoo.cn

(Received 28 September 2008; accepted 2 October 2008; online 11 October 2008)

In the title compound, C10H11N3O2, the triazole ring has a dihedral angle of 11.55 (2)° relative to the benzene ring. The crystal packing is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, and by weak ππ stacking inter­actions [centroid-to-centroid distance = 3.545 (3) Å].

Related literature

For related literature on the biological activity of the title compound, see: Kitazaki et al. (1996[Kitazaki, T., Tamura, N., Tasaka, A., Matsushita, Y., Hayashi, R., Konogi, K. & Itoh, K. (1996). Chem. Pharm. Bull. 44, 314-327.]); John (1996[John, W. L. (1996). Synth. Commun. 16, 163-167.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O2

  • Mr = 205.22

  • Orthorhombic, P b c a

  • a = 13.244 (3) Å

  • b = 8.4865 (17) Å

  • c = 17.518 (4) Å

  • V = 1968.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 (2) K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.973, Tmax = 0.988

  • 12523 measured reflections

  • 2163 independent reflections

  • 1923 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 1.09

  • 2163 reflections

  • 143 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O1i 0.96 2.57 3.4918 (18) 160
N1—H1⋯O1ii 0.938 (18) 1.825 (19) 2.7561 (16) 171.9 (16)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-Aryl-1,5-dihydro-1,2,4-triazol-5-ones are a class of important intermediates in the synthesis of some biologically active compounds (Kitazaki et al., 1996; John, 1996). In our effort to study this class of compounds as anticancer agents, the title compound (I) was prepared as an important intermediate.

In (I) (Fig. 1), all bond lengths are normal (Allen et al., 1987).The triazole ring (C1/C2/N1/N2/N3) make a dihedral angles of 11.55 (2)° with the phenyl ring (C4—C9). The crystal packing is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds. The relatively short distance of 3.545 (3) between the centroids of benzene ring C4—C9 and triazole ring C1/C2/N1/N2/N3 [at -x,1 - y,-z] indicates the presence of weak π-π interactions, which contribute to the stability of the crystal packing.

Related literature top

For related literature on the biological activity of the title compound, see: Kitazaki et al. (1996); John (1996).

For related literature, see: Allen et al. (1987).

Experimental top

Pyruvic acid (2.21 g, 25 mmol) was added to a 20 ml of aqueous solution of (4-Methoxyphenyl)hydrazine hydrochloride (4.0 g, 23 mmol). The solution was stirred for 1 h. The precipitate was collected by filtration, washed with water and dried over P2O5 to give 2-[(4-Methoxyphenyl) hydrazono]propionic acid (3.45 g, yield 72.4%) as a yellow powder. 2-[(4-Methoxyphenyl)-hydrazono]propionic acid (3.45 g, 16.5 mmol) was suspended in toluene, and triethylamine (1.67 g, 16.5 mmol) and diphenylphosphoryl azide [(PHO)2PON3, 4.5 g, 16.5 mmol] were added to the suspension. The resulting mixture was heated at 120 ° C for 3 h. It was then cooled and extracted with 10% aqueous NaOH (30 ml). The aqueous extract was acidified (to pH = 1) with concentrated HCl. The crystals were collected by filtration and recrystallized from CH3CN to give the title compound (2.8 g, 82%) as a colorless power. The single-crystal suitable for X-ray diffraction was obtained by slow evaporation of a solution of the title compound in CH2Cl2 and cyclohexane (V:V 1:1).

Refinement top

All H atoms were found in difference maps. The N—H atoms were refined freely, giving an N—H bond distance of 0.94 Å. The remaining H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 (1.5 for methyl) times Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram of the molecule of the title compound, viewed down a axis. Hydrogen bonds are shown as dashed lines.
1-(4-Methoxyphenyl)-3-methyl-1H-1,2,4-triazol-5(4H)-one top
Crystal data top
C10H11N3O2F(000) = 864
Mr = 205.22Dx = 1.385 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4443 reflections
a = 13.244 (3) Åθ = 1.5–27.1°
b = 8.4865 (17) ŵ = 0.10 mm1
c = 17.518 (4) ÅT = 113 K
V = 1968.9 (7) Å3Block, colorless
Z = 80.16 × 0.14 × 0.12 mm
Data collection top
Rigaku Saturn
diffractometer
2163 independent reflections
Radiation source: rotating anode1923 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.046
Detector resolution: 7.31 pixels mm-1θmax = 27.1°, θmin = 2.8°
ω scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.973, Tmax = 0.988l = 1922
12523 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.2559P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2163 reflectionsΔρmax = 0.19 e Å3
143 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C10H11N3O2V = 1968.9 (7) Å3
Mr = 205.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.244 (3) ŵ = 0.10 mm1
b = 8.4865 (17) ÅT = 113 K
c = 17.518 (4) Å0.16 × 0.14 × 0.12 mm
Data collection top
Rigaku Saturn
diffractometer
2163 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1923 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.988Rint = 0.046
12523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.19 e Å3
2163 reflectionsΔρmin = 0.21 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50756 (8)0.83446 (11)0.57225 (5)0.0310 (3)
O20.39300 (8)0.14256 (11)0.72040 (6)0.0292 (3)
N10.41360 (9)0.87270 (14)0.46051 (6)0.0263 (3)
N20.33167 (9)0.64616 (13)0.45502 (6)0.0252 (3)
N30.39458 (9)0.65123 (13)0.51918 (6)0.0229 (3)
C10.44607 (11)0.79085 (16)0.52321 (7)0.0249 (3)
C20.34610 (11)0.78137 (16)0.42171 (7)0.0249 (3)
C30.29407 (12)0.83520 (17)0.35153 (8)0.0328 (4)
H3A0.24560.75740.33610.049*
H3B0.34270.85000.31150.049*
H3C0.26020.93310.36150.049*
C40.39649 (10)0.52033 (15)0.56989 (7)0.0219 (3)
C50.44275 (11)0.53031 (16)0.64158 (7)0.0253 (3)
H50.47530.62240.65660.030*
C60.43944 (11)0.40130 (17)0.68989 (7)0.0264 (3)
H60.46950.40770.73780.032*
C70.39175 (10)0.26195 (15)0.66796 (7)0.0234 (3)
C80.34760 (10)0.25219 (16)0.59617 (7)0.0248 (3)
H80.31630.15940.58070.030*
C90.35032 (10)0.38157 (16)0.54756 (7)0.0242 (3)
H90.32080.37480.49950.029*
C100.33849 (11)0.00276 (17)0.70166 (8)0.0292 (3)
H10A0.26990.02950.68940.044*
H10B0.33930.06790.74450.044*
H10C0.36950.04740.65850.044*
H10.4346 (14)0.975 (2)0.4473 (9)0.041 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0328 (6)0.0288 (6)0.0313 (5)0.0098 (4)0.0025 (4)0.0006 (4)
O20.0286 (6)0.0272 (5)0.0317 (5)0.0030 (4)0.0064 (4)0.0062 (4)
N10.0305 (7)0.0222 (6)0.0263 (6)0.0032 (5)0.0027 (5)0.0011 (5)
N20.0273 (7)0.0236 (6)0.0246 (6)0.0019 (5)0.0012 (4)0.0018 (4)
N30.0231 (6)0.0224 (6)0.0233 (6)0.0019 (5)0.0001 (4)0.0014 (4)
C10.0267 (8)0.0232 (7)0.0248 (6)0.0018 (6)0.0055 (5)0.0013 (5)
C20.0273 (8)0.0226 (7)0.0247 (6)0.0026 (5)0.0043 (5)0.0033 (5)
C30.0466 (10)0.0244 (7)0.0273 (7)0.0038 (7)0.0018 (6)0.0007 (5)
C40.0192 (7)0.0219 (7)0.0247 (6)0.0014 (5)0.0039 (5)0.0003 (5)
C50.0219 (7)0.0243 (7)0.0297 (7)0.0028 (5)0.0010 (5)0.0030 (5)
C60.0222 (7)0.0310 (7)0.0260 (7)0.0009 (6)0.0036 (5)0.0009 (6)
C70.0186 (7)0.0243 (7)0.0272 (7)0.0025 (5)0.0005 (5)0.0019 (5)
C80.0241 (7)0.0220 (7)0.0283 (7)0.0004 (5)0.0018 (5)0.0022 (5)
C90.0235 (7)0.0249 (7)0.0242 (6)0.0006 (5)0.0013 (5)0.0018 (5)
C100.0278 (8)0.0254 (8)0.0344 (7)0.0007 (6)0.0007 (6)0.0045 (6)
Geometric parameters (Å, º) top
O1—C11.2402 (17)C4—C91.3833 (19)
O2—C71.3677 (16)C4—C51.3999 (18)
O2—C101.4270 (17)C5—C61.3845 (19)
N1—C21.3644 (18)C5—H50.9300
N1—C11.3689 (18)C6—C71.3946 (19)
N1—H10.938 (18)C6—H60.9300
N2—C21.3014 (18)C7—C81.3894 (18)
N2—N31.3997 (16)C8—C91.3900 (19)
N3—C11.3689 (18)C8—H80.9300
N3—C41.4226 (17)C9—H90.9300
C2—C31.4816 (19)C10—H10A0.9600
C3—H3A0.9600C10—H10B0.9600
C3—H3B0.9600C10—H10C0.9600
C3—H3C0.9600
C7—O2—C10117.08 (10)C5—C4—N3121.38 (12)
C2—N1—C1108.50 (12)C6—C5—C4119.12 (12)
C2—N1—H1126.5 (10)C6—C5—H5120.4
C1—N1—H1125.0 (10)C4—C5—H5120.4
C2—N2—N3104.21 (11)C5—C6—C7121.10 (12)
C1—N3—N2111.38 (11)C5—C6—H6119.4
C1—N3—C4129.40 (11)C7—C6—H6119.4
N2—N3—C4119.21 (10)O2—C7—C8124.67 (12)
O1—C1—N3128.40 (13)O2—C7—C6115.96 (11)
O1—C1—N1127.64 (13)C8—C7—C6119.37 (12)
N3—C1—N1103.96 (12)C7—C8—C9119.77 (12)
N2—C2—N1111.95 (12)C7—C8—H8120.1
N2—C2—C3125.14 (13)C9—C8—H8120.1
N1—C2—C3122.88 (12)C4—C9—C8120.71 (12)
C2—C3—H3A109.5C4—C9—H9119.6
C2—C3—H3B109.5C8—C9—H9119.6
H3A—C3—H3B109.5O2—C10—H10A109.5
C2—C3—H3C109.5O2—C10—H10B109.5
H3A—C3—H3C109.5H10A—C10—H10B109.5
H3B—C3—H3C109.5O2—C10—H10C109.5
C9—C4—C5119.91 (12)H10A—C10—H10C109.5
C9—C4—N3118.71 (12)H10B—C10—H10C109.5
C2—N2—N3—C10.01 (14)C1—N3—C4—C511.1 (2)
C2—N2—N3—C4179.21 (11)N2—N3—C4—C5167.89 (12)
N2—N3—C1—O1179.91 (13)C9—C4—C5—C61.45 (19)
C4—N3—C1—O10.8 (2)N3—C4—C5—C6177.74 (12)
N2—N3—C1—N10.27 (14)C4—C5—C6—C70.6 (2)
C4—N3—C1—N1178.83 (12)C10—O2—C7—C84.83 (19)
C2—N1—C1—O1179.92 (14)C10—O2—C7—C6175.59 (12)
C2—N1—C1—N30.44 (14)C5—C6—C7—O2179.84 (12)
N3—N2—C2—N10.31 (14)C5—C6—C7—C80.6 (2)
N3—N2—C2—C3178.37 (13)O2—C7—C8—C9179.62 (12)
C1—N1—C2—N20.49 (16)C6—C7—C8—C90.8 (2)
C1—N1—C2—C3178.61 (12)C5—C4—C9—C81.2 (2)
C1—N3—C4—C9169.66 (13)N3—C4—C9—C8178.00 (12)
N2—N3—C4—C911.31 (18)C7—C8—C9—C40.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···O1i0.962.573.4918 (18)160
N1—H1···O1ii0.938 (18)1.825 (19)2.7561 (16)171.9 (16)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H11N3O2
Mr205.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)13.244 (3), 8.4865 (17), 17.518 (4)
V3)1968.9 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.973, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
12523, 2163, 1923
Rint0.046
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.09
No. of reflections2163
No. of parameters143
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···O1i0.962.573.4918 (18)159.8
N1—H1···O1ii0.938 (18)1.825 (19)2.7561 (16)171.9 (16)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationJohn, W. L. (1996). Synth. Commun. 16, 163–167.  Google Scholar
First citationKitazaki, T., Tamura, N., Tasaka, A., Matsushita, Y., Hayashi, R., Konogi, K. & Itoh, K. (1996). Chem. Pharm. Bull. 44, 314–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds