organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11H-Dibenzo[b,e]azepine-6-carbo­nitrile

aCollege of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China, and bCollege of Pharmaceutical Sciences, Taishan Medical College, Tai'an 271016, People's Republic of China
*Correspondence e-mail: duanguiyun@yahoo.cn

(Received 5 October 2008; accepted 13 October 2008; online 18 October 2008)

The title compound, C15H10N2, crystallizes with two independent mol­ecules in the asymmetric unit. The two benzene rings make dihedral angles of 60.32 (2) and 61.35 (3)°. The crystal packing is stabilized by weak ππ stacking inter­actions [centroid-to-centroid distances = 3.673 (4) and 3.793 (4) Å].

Related literature

For discussions of the biological activity of the title compound, see: Bakker et al. (2000[Bakker, R. A., Wieland, K., Timmerman, H. & Leurs, R. (2000). Eur. J. Pharmacol. 387, R5-R7.]); Bielory & Ghafoor (2005[Bielory, L. & Ghafoor, S. (2005). Curr. Opin. Allergy Clin. Immunol. 5, 437-440.]); Schmutz et al. (1967[Schmutz, J., Hunziker, F. & Kunzle, F. (1967). Helv. Chim. Acta, 50, 245-248.]). For a similar structure, see: Li et al. (2006[Li, Q.-B., Yang, W.-C., Han, Y.-J. & Zhao, X.-J. (2006). Acta Cryst. E62, o3021-o3022.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10N2

  • Mr = 218.25

  • Triclinic, [P \overline 1]

  • a = 10.125 (2) Å

  • b = 10.275 (2) Å

  • c = 12.749 (3) Å

  • α = 105.96 (3)°

  • β = 99.18 (2)°

  • γ = 109.04 (3)°

  • V = 1159.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 (2) K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.989, Tmax = 0.993

  • 12026 measured reflections

  • 4084 independent reflections

  • 3382 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.03

  • 4084 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Selected interatomic distances (Å)

Cg1 is the centroid of the ring C8–C13 and Cg2 is the centroid of the ring C23–C28.

Cg1⋯Cg1i 3.673 (4)
Cg2⋯Cg2ii 3.793 (4)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (1), is an intermediate in the synthesis of Epinastine which is an antihistamine agent (Bakker et al., 2000; Bielory & Ghafoor, 2005), and was first synthesized in 1967 (Schmutz et al., 1967).

Compound (1) crystallizes with two independent molecules in the asymmetric unit (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Li et al., 2006). The dihedral angles between the planes of benzene rings in the two independent molecules are 60.32 (2) and 61.35 (3)°. ππ stacking interactions (Table 1) are present in the structure (Cg1: C8–C13; Cg2: C23–C28).

Related literature top

For discussions of the biological activity of the title compound, see: Bakker et al. (2000); Bielory & Ghafoor (2005); Schmutz et al. (1967). For a similar structure, see: Li et al. (2006).

Experimental top

Compound (1) was synthesized from 6-chlor-11H-dibenzo[b,e]azepine (1 mmol, 0.23 g) and sodium cyanade (1.1 mmol, 0.05 g) in 10 ml DMSO as solvent at 363 K for 5 h to afford the title compound (Yield 73%, 0.16 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution at room temperature for one week.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 35% probability level.
11H-Dibenzo[b,e]azepine-6-carbonitrile top
Crystal data top
C15H10N2Z = 4
Mr = 218.25F(000) = 456
Triclinic, P1Dx = 1.251 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.125 (2) ÅCell parameters from 4851 reflections
b = 10.275 (2) Åθ = 2.2–28.0°
c = 12.749 (3) ŵ = 0.08 mm1
α = 105.96 (3)°T = 273 K
β = 99.18 (2)°Block, brown
γ = 109.04 (3)°0.15 × 0.12 × 0.10 mm
V = 1159.2 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4084 independent reflections
Radiation source: fine-focus sealed tube3382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.989, Tmax = 0.993k = 1212
12026 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.1613P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4084 reflectionsΔρmax = 0.19 e Å3
308 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (2)
Crystal data top
C15H10N2γ = 109.04 (3)°
Mr = 218.25V = 1159.2 (6) Å3
Triclinic, P1Z = 4
a = 10.125 (2) ÅMo Kα radiation
b = 10.275 (2) ŵ = 0.08 mm1
c = 12.749 (3) ÅT = 273 K
α = 105.96 (3)°0.15 × 0.12 × 0.10 mm
β = 99.18 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4084 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3382 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.993Rint = 0.021
12026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
4084 reflectionsΔρmin = 0.13 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.93668 (11)0.20617 (11)0.18911 (9)0.0486 (3)
N21.10390 (18)0.47578 (17)0.10411 (14)0.0874 (4)
N30.33399 (10)0.33411 (11)0.30617 (9)0.0474 (3)
N40.42697 (16)0.69062 (15)0.35893 (13)0.0816 (4)
C10.87147 (12)0.11423 (13)0.24622 (10)0.0466 (3)
C20.93247 (14)0.01429 (14)0.25883 (12)0.0568 (3)
H2A1.00960.01050.22880.068*
C30.87991 (17)0.07883 (16)0.31523 (14)0.0699 (4)
H3B0.92380.14250.32610.084*
C40.76259 (18)0.07763 (18)0.35547 (14)0.0747 (5)
H4A0.72750.13990.39440.090*
C50.69679 (16)0.01499 (17)0.33859 (13)0.0679 (4)
H5A0.61510.01220.36400.082*
C60.74956 (13)0.11314 (15)0.28418 (11)0.0532 (3)
C70.67936 (14)0.21544 (17)0.26432 (13)0.0644 (4)
H7A0.65530.20130.18410.077*
H7B0.59000.19360.28710.077*
C80.78013 (14)0.37191 (16)0.33094 (11)0.0549 (3)
C90.74955 (18)0.4600 (2)0.41954 (13)0.0707 (4)
H9A0.66530.42100.44030.085*
C100.8421 (2)0.6044 (2)0.47717 (14)0.0800 (5)
H10A0.82040.66150.53690.096*
C110.9659 (2)0.66483 (19)0.44740 (13)0.0732 (4)
H11A1.02710.76300.48590.088*
C120.99953 (16)0.58006 (15)0.36048 (12)0.0596 (4)
H12A1.08320.62130.33980.071*
C130.90890 (13)0.43261 (14)0.30305 (10)0.0486 (3)
C140.95118 (13)0.34087 (14)0.21488 (10)0.0469 (3)
C151.03427 (15)0.41783 (15)0.14911 (12)0.0549 (3)
C160.30864 (12)0.18357 (13)0.26934 (11)0.0457 (3)
C170.32200 (14)0.12481 (16)0.35496 (12)0.0570 (3)
H17A0.34850.18540.43050.068*
C180.29646 (18)0.02147 (18)0.32903 (16)0.0717 (4)
H18A0.30870.05910.38670.086*
C190.2528 (2)0.11204 (18)0.21765 (17)0.0804 (5)
H19A0.23440.21150.19970.097*
C200.23630 (18)0.05569 (16)0.13243 (15)0.0703 (4)
H20A0.20600.11840.05730.084*
C210.26371 (13)0.09205 (14)0.15582 (11)0.0508 (3)
C220.24469 (15)0.15472 (15)0.06392 (11)0.0577 (4)
H22A0.17730.20290.07390.069*
H22B0.20460.07620.00950.069*
C230.38852 (15)0.26340 (15)0.06805 (11)0.0518 (3)
C240.45555 (19)0.23862 (18)0.01782 (13)0.0684 (4)
H24A0.41140.15150.08000.082*
C250.5865 (2)0.3412 (2)0.01221 (15)0.0777 (5)
H25A0.63020.32220.07040.093*
C260.65358 (17)0.4714 (2)0.07818 (15)0.0715 (4)
H26A0.74200.54020.08110.086*
C270.58889 (15)0.49905 (16)0.16430 (13)0.0583 (4)
H27A0.63260.58790.22490.070*
C280.45808 (13)0.39437 (14)0.16093 (11)0.0467 (3)
C290.39603 (13)0.42144 (13)0.25784 (10)0.0459 (3)
C300.41483 (15)0.57366 (16)0.31439 (12)0.0566 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0475 (6)0.0505 (6)0.0503 (6)0.0185 (5)0.0175 (5)0.0198 (5)
N20.0998 (11)0.0880 (10)0.0966 (11)0.0383 (9)0.0484 (9)0.0511 (9)
N30.0454 (5)0.0503 (6)0.0456 (6)0.0166 (5)0.0171 (5)0.0152 (5)
N40.0931 (10)0.0557 (8)0.0875 (10)0.0253 (7)0.0296 (8)0.0140 (7)
C10.0414 (6)0.0468 (7)0.0461 (7)0.0105 (5)0.0116 (5)0.0163 (6)
C20.0511 (7)0.0501 (8)0.0691 (9)0.0171 (6)0.0189 (6)0.0229 (7)
C30.0716 (9)0.0565 (9)0.0850 (11)0.0206 (7)0.0198 (8)0.0363 (8)
C40.0769 (10)0.0655 (10)0.0781 (11)0.0102 (8)0.0259 (9)0.0385 (9)
C50.0525 (8)0.0725 (10)0.0725 (10)0.0095 (7)0.0263 (7)0.0289 (8)
C60.0393 (6)0.0592 (8)0.0535 (8)0.0112 (6)0.0119 (6)0.0184 (6)
C70.0404 (7)0.0874 (11)0.0719 (10)0.0274 (7)0.0195 (7)0.0325 (8)
C80.0533 (7)0.0761 (9)0.0526 (8)0.0391 (7)0.0175 (6)0.0299 (7)
C90.0765 (10)0.1060 (14)0.0618 (9)0.0620 (10)0.0305 (8)0.0389 (10)
C100.1131 (14)0.1013 (14)0.0517 (9)0.0765 (12)0.0237 (9)0.0231 (9)
C110.1017 (13)0.0676 (10)0.0545 (9)0.0487 (9)0.0093 (9)0.0153 (8)
C120.0703 (9)0.0566 (8)0.0564 (8)0.0307 (7)0.0122 (7)0.0224 (7)
C130.0523 (7)0.0573 (8)0.0453 (7)0.0300 (6)0.0120 (6)0.0219 (6)
C140.0445 (6)0.0529 (8)0.0474 (7)0.0200 (6)0.0141 (5)0.0220 (6)
C150.0579 (8)0.0502 (8)0.0647 (9)0.0220 (6)0.0287 (7)0.0244 (7)
C160.0411 (6)0.0497 (7)0.0527 (8)0.0192 (5)0.0220 (5)0.0205 (6)
C170.0569 (8)0.0671 (9)0.0591 (8)0.0262 (7)0.0290 (6)0.0303 (7)
C180.0836 (11)0.0774 (11)0.0891 (12)0.0452 (9)0.0474 (9)0.0513 (10)
C190.1060 (13)0.0592 (9)0.1064 (15)0.0445 (9)0.0607 (11)0.0415 (10)
C200.0872 (11)0.0526 (8)0.0744 (10)0.0277 (8)0.0401 (9)0.0163 (8)
C210.0508 (7)0.0489 (7)0.0543 (8)0.0194 (6)0.0234 (6)0.0155 (6)
C220.0639 (8)0.0562 (8)0.0450 (7)0.0212 (7)0.0119 (6)0.0103 (6)
C230.0657 (8)0.0585 (8)0.0451 (7)0.0332 (7)0.0212 (6)0.0246 (6)
C240.0968 (11)0.0771 (10)0.0546 (9)0.0472 (9)0.0390 (8)0.0314 (8)
C250.1023 (13)0.1026 (14)0.0778 (12)0.0643 (11)0.0602 (10)0.0559 (11)
C260.0680 (9)0.0919 (12)0.0898 (12)0.0400 (9)0.0441 (9)0.0609 (11)
C270.0586 (8)0.0636 (9)0.0660 (9)0.0257 (7)0.0236 (7)0.0365 (7)
C280.0509 (7)0.0541 (7)0.0481 (7)0.0268 (6)0.0193 (6)0.0262 (6)
C290.0439 (6)0.0474 (7)0.0453 (7)0.0183 (5)0.0119 (5)0.0144 (6)
C300.0591 (8)0.0516 (8)0.0559 (8)0.0182 (6)0.0200 (6)0.0156 (7)
Geometric parameters (Å, º) top
N1—C141.2833 (16)C12—H12A0.9300
N1—C11.4082 (16)C13—C141.4728 (18)
N2—C151.1062 (17)C14—C151.4805 (19)
N3—C291.2804 (16)C16—C171.3940 (19)
N3—C161.4077 (16)C16—C211.3956 (19)
N4—C301.1348 (18)C17—C181.372 (2)
C1—C21.3909 (19)C17—H17A0.9300
C1—C61.3936 (18)C18—C191.372 (3)
C2—C31.373 (2)C18—H18A0.9300
C2—H2A0.9300C19—C201.377 (2)
C3—C41.369 (2)C19—H19A0.9300
C3—H3B0.9300C20—C211.386 (2)
C4—C51.370 (2)C20—H20A0.9300
C4—H4A0.9300C21—C221.4994 (19)
C5—C61.391 (2)C22—C231.5008 (19)
C5—H5A0.9300C22—H22A0.9700
C6—C71.500 (2)C22—H22B0.9700
C7—C81.500 (2)C23—C241.3858 (19)
C7—H7A0.9700C23—C281.396 (2)
C7—H7B0.9700C24—C251.374 (2)
C8—C91.387 (2)C24—H24A0.9300
C8—C131.3980 (19)C25—C261.374 (3)
C9—C101.375 (3)C25—H25A0.9300
C9—H9A0.9300C26—C271.377 (2)
C10—C111.369 (3)C26—H26A0.9300
C10—H10A0.9300C27—C281.3927 (19)
C11—C121.373 (2)C27—H27A0.9300
C11—H11A0.9300C28—C291.4735 (18)
C12—C131.393 (2)C29—C301.4642 (19)
Cg1···Cg1i3.673 (4)Cg2···Cg2ii3.793 (4)
C14—N1—C1123.45 (11)N2—C15—C14175.67 (16)
C29—N3—C16123.40 (10)C17—C16—C21119.88 (12)
C2—C1—C6119.79 (12)C17—C16—N3115.52 (12)
C2—C1—N1115.43 (11)C21—C16—N3124.48 (12)
C6—C1—N1124.70 (12)C18—C17—C16120.68 (14)
C3—C2—C1120.61 (14)C18—C17—H17A119.7
C3—C2—H2A119.7C16—C17—H17A119.7
C1—C2—H2A119.7C17—C18—C19119.75 (15)
C4—C3—C2119.76 (15)C17—C18—H18A120.1
C4—C3—H3B120.1C19—C18—H18A120.1
C2—C3—H3B120.1C18—C19—C20120.00 (15)
C3—C4—C5120.23 (14)C18—C19—H19A120.0
C3—C4—H4A119.9C20—C19—H19A120.0
C5—C4—H4A119.9C19—C20—C21121.66 (15)
C4—C5—C6121.38 (14)C19—C20—H20A119.2
C4—C5—H5A119.3C21—C20—H20A119.2
C6—C5—H5A119.3C20—C21—C16118.00 (13)
C5—C6—C1118.08 (14)C20—C21—C22122.27 (13)
C5—C6—C7122.46 (13)C16—C21—C22119.73 (12)
C1—C6—C7119.45 (12)C21—C22—C23109.89 (11)
C8—C7—C6110.19 (11)C21—C22—H22A109.7
C8—C7—H7A109.6C23—C22—H22A109.7
C6—C7—H7A109.6C21—C22—H22B109.7
C8—C7—H7B109.6C23—C22—H22B109.7
C6—C7—H7B109.6H22A—C22—H22B108.2
H7A—C7—H7B108.1C24—C23—C28118.32 (13)
C9—C8—C13118.34 (15)C24—C23—C22122.21 (13)
C9—C8—C7122.16 (14)C28—C23—C22119.47 (12)
C13—C8—C7119.49 (12)C25—C24—C23120.81 (16)
C10—C9—C8120.89 (16)C25—C24—H24A119.6
C10—C9—H9A119.6C23—C24—H24A119.6
C8—C9—H9A119.6C26—C25—C24120.87 (14)
C11—C10—C9120.64 (15)C26—C25—H25A119.6
C11—C10—H10A119.7C24—C25—H25A119.6
C9—C10—H10A119.7C25—C26—C27119.47 (15)
C10—C11—C12119.79 (16)C25—C26—H26A120.3
C10—C11—H11A120.1C27—C26—H26A120.3
C12—C11—H11A120.1C26—C27—C28120.16 (15)
C11—C12—C13120.34 (15)C26—C27—H27A119.9
C11—C12—H12A119.8C28—C27—H27A119.9
C13—C12—H12A119.8C27—C28—C23120.32 (12)
C12—C13—C8119.93 (13)C27—C28—C29119.32 (12)
C12—C13—C14119.64 (12)C23—C28—C29120.34 (11)
C8—C13—C14120.42 (12)N3—C29—C30113.12 (11)
N1—C14—C13131.09 (12)N3—C29—C28130.40 (12)
N1—C14—C15113.18 (11)C30—C29—C28116.35 (11)
C13—C14—C15115.56 (11)N4—C30—C29178.61 (15)
C14—N1—C1—C2144.10 (13)C29—N3—C16—C17144.15 (12)
C14—N1—C1—C639.14 (19)C29—N3—C16—C2139.94 (18)
C6—C1—C2—C34.5 (2)C21—C16—C17—C182.36 (19)
N1—C1—C2—C3178.60 (12)N3—C16—C17—C18178.47 (12)
C1—C2—C3—C42.7 (2)C16—C17—C18—C192.1 (2)
C2—C3—C4—C50.7 (3)C17—C18—C19—C200.7 (2)
C3—C4—C5—C62.2 (3)C18—C19—C20—C210.4 (3)
C4—C5—C6—C10.4 (2)C19—C20—C21—C160.2 (2)
C4—C5—C6—C7179.82 (14)C19—C20—C21—C22179.33 (14)
C2—C1—C6—C52.86 (19)C17—C16—C21—C201.19 (18)
N1—C1—C6—C5179.49 (12)N3—C16—C21—C20176.93 (12)
C2—C1—C6—C7176.53 (12)C17—C16—C21—C22177.98 (12)
N1—C1—C6—C70.1 (2)N3—C16—C21—C222.23 (18)
C5—C6—C7—C8114.56 (15)C20—C21—C22—C23116.19 (15)
C1—C6—C7—C866.07 (17)C16—C21—C22—C2364.68 (15)
C6—C7—C8—C9113.97 (14)C21—C22—C23—C24113.44 (15)
C6—C7—C8—C1366.57 (16)C21—C22—C23—C2866.68 (15)
C13—C8—C9—C101.2 (2)C28—C23—C24—C250.7 (2)
C7—C8—C9—C10178.22 (14)C22—C23—C24—C25179.17 (14)
C8—C9—C10—C110.7 (2)C23—C24—C25—C260.6 (2)
C9—C10—C11—C121.1 (2)C24—C25—C26—C270.2 (2)
C10—C11—C12—C130.5 (2)C25—C26—C27—C281.4 (2)
C11—C12—C13—C82.5 (2)C26—C27—C28—C232.72 (19)
C11—C12—C13—C14176.18 (12)C26—C27—C28—C29175.55 (12)
C9—C8—C13—C122.84 (19)C24—C23—C28—C272.32 (19)
C7—C8—C13—C12176.64 (12)C22—C23—C28—C27177.56 (12)
C9—C8—C13—C14175.83 (12)C24—C23—C28—C29175.94 (12)
C7—C8—C13—C144.68 (18)C22—C23—C28—C294.19 (18)
C1—N1—C14—C130.1 (2)C16—N3—C29—C30177.84 (11)
C1—N1—C14—C15175.05 (11)C16—N3—C29—C282.2 (2)
C12—C13—C14—N1142.00 (14)C27—C28—C29—N3139.03 (14)
C8—C13—C14—N136.7 (2)C23—C28—C29—N339.2 (2)
C12—C13—C14—C1532.90 (17)C27—C28—C29—C3036.50 (17)
C8—C13—C14—C15148.42 (12)C23—C28—C29—C30145.22 (12)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H10N2
Mr218.25
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)10.125 (2), 10.275 (2), 12.749 (3)
α, β, γ (°)105.96 (3), 99.18 (2), 109.04 (3)
V3)1159.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.989, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
12026, 4084, 3382
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.03
No. of reflections4084
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.13

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Selected interatomic distances (Å) top
Cg1···Cg1i3.673 (4)Cg2···Cg2ii3.793 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
 

References

First citationBakker, R. A., Wieland, K., Timmerman, H. & Leurs, R. (2000). Eur. J. Pharmacol. 387, R5–R7.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBielory, L. & Ghafoor, S. (2005). Curr. Opin. Allergy Clin. Immunol. 5, 437–440.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin.  Google Scholar
First citationLi, Q.-B., Yang, W.-C., Han, Y.-J. & Zhao, X.-J. (2006). Acta Cryst. E62, o3021–o3022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmutz, J., Hunziker, F. & Kunzle, F. (1967). Helv. Chim. Acta, 50, 245–248.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds