metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1392-m1393

catena-Poly[[[aqua­tri­pyridine­cobalt(II)]-μ-5-amino-2,4,6-tri­iodoisophthalato-κ2O1:O3] pyridine solvate]

aDepartment of Chemistry, Huaiyin Teachers College, Huai'an 223300, Jiangsu, People's Republic of China
*Correspondence e-mail: yuzhang@hytc.edu.cn

(Received 20 September 2008; accepted 5 October 2008; online 15 October 2008)

The reaction of cobalt(II) nitrate with 5-amino-2,4,6-tri­iodo­isophthalic acid (ATPA) in pyridine solution leads to the formation of the title compound, {[Co(C8H2I3NO4)(C5H5N)3(H2O)]·C5H5N}n. The Co2+ ion is six-coordinated by three N atoms, one water O atom and two O atoms from two ATPA ligands to form a distorted octa­hedral geometry. The two carboxyl­ate groups of ATPA act as bridging ligands connecting the CoII metal centers to form one-dimensional zigzag chains along the c axis, with Co—O distances in the range 2.104 (4)–2.135 (4) Å. The average Co—N distance is 2.171 Å. A classical O—H⋯N hydrogen bond is formed by the coordinating water mol­ecule and the pyridine solvent mol­ecule. The structure was refined from a racemically twinned crystal with a twin ratio of approximately 8:1.

Related literature

For the structure of a monohydrate of ATPA, see: Beck & Sheldrick (2008[Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.]). For the Co coordination polymer of 1,3,5-benzene­tricarboxyl­ate, see: Livage et al. (2001[Livage, C., Guillou, N., Marrot, J. & Férey, G. (2001). Chem. Mater. 13, 4387-4392.]). For the structure of diaqua­diformatodipyridine CoII, see: Zhu et al. (2004[Zhu, Z.-B., Gao, S., Liu, J.-W., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m808-m810.]). For a reduction of the organic iodine contrast agents in wastewater load, see: Ziegler et al. (1997[Ziegler, M., Schulze-Karal, C., Steiof, M. & Rüden, H. (1997). Korresp. Abwasser, 44, 1404-1408.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H2I3NO4)(C5H5N)3(H2O)]·C5H5N

  • Mr = 950.15

  • Orthorhombic, P 21 21 21

  • a = 9.7759 (2) Å

  • b = 16.9083 (4) Å

  • c = 19.3380 (4) Å

  • V = 3196.45 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.48 mm−1

  • T = 296 (2) K

  • 0.30 × 0.25 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.38, Tmax = 0.75

  • 16692 measured reflections

  • 6038 independent reflections

  • 4577 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.065

  • S = 1.04

  • 6038 reflections

  • 379 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.67 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2515 Friedel pairs

  • Flack parameter: 0.13 (2)

Table 1
Selected geometric parameters (Å, °)

Co1—O1i 2.104 (4)
Co1—O5 2.106 (3)
Co1—O3 2.135 (4)
Co1—N2 2.161 (5)
Co1—N3 2.173 (5)
Co1—N4 2.180 (5)
O1i—Co1—O3 170.52 (16)
O1i—Co1—N3 102.93 (17)
O5—Co1—N3 172.68 (17)
N2—Co1—N4 178.48 (19)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯N5ii 0.85 1.94 2.748 (7) 159
Symmetry code: (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The crystal structure of ATPA (Beck & Sheldrick, 2008) is the precursor of the synthesis of a wide range of contrast agents with different amide-bound aliphatic side chains, which modulate their physical and physiological properties (Ziegler et al. 1997). However, to the best of our knowledge, there is no information about the structural characterization of its transition metal complexes.

The molecular structure of the title complex comprises of polymeric chains which extend along the c-axis. In the chain, each Co atom shows a distorted octahedron environment with a [3N+3O] coordination: three nitrogen atoms originate from pyridines, one oxygen from a water molecule and two oxygen atoms from two ATPA ligands. The two CO2- groups of the ATPA ligand coordinate to Co2+, bridging the Co metal centers. The bond lengths of the distorted octahedron are presented in Table 1. The average Co—N bond distance of the three pyridine ligands is 2.171 Å. The Co—O bond lengths in the title complex are slightly longer than those in the reported coordination polymers of cobalt and 1,3,5-benzenetricarboxylate (2.055 (2) Å) (Livage et al., 2001). The bond angles shown in Table 1 demonstrate the distorted octahedron in the Co coordination center. Compared with the data of the free ligand ATPA (Beck & Sheldrick, 2008), the C—O bond lengths are lengthened, the C—I and C—N bond distances are almost unchanged and the O—C—O bond angles are slightly expanded when the carboxylate groups are coordinated to central cations. The Co—N(py) and Co—O(H2O) distances are in good agreement with those in diaqua-diformato-dipyridine-cobalt(II) (Zhu et al., 2004), where they are equal to 2.159 (4) Å and 2.143 (3) Å, respectively. A classic O—H···N hydrogen bond is formed by the coordinating water and the uncoordinated pyridine molecule (Table 2).

Related literature top

For the structure of a monohydrate of ATPA, see: Beck & Sheldrick (2008). For the Co coordination polymer of 1,3,5-benzenetricarboxylate, see: Livage et al. (2001). For the structure of diaquadiformatodipyridine CoII, see: Zhu et al. (2004). For a reduction of the organic iodine contrast agents in wastewater load, see: Ziegler et al. (1997).

Experimental top

0.29 g (1 mmol) Co(NO3)2.6H2O was dissolved in 10 ml ethanol, 0.54 g (1 mmol) 5-amino-2, 4, 6-triiodoisophthalic acid was dissolved in 10 ml pyridine. To mix two solutions gave a pale purple solution which was stirred at room temperature for 2 h, then filtered. After several days well formed light purple single crystals were obtained.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H distances = 0.93 Å, N—H distances = 0.86 Å, and O—H distances = 0.85 Å with Uiso(H) = 1.2 times Ueq(C, N, O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. Atoms labelled with an A belong to the symmetry-related ligand ATPA with symmetry code [A = -x + 3/2, -y, z + 1/2)].
catena-Poly[[[aquatripyridinecobalt(II)]-µ-5-amino-2,4,6- triiodoisophthalato-κ2O1:O3] pyridine solvate] top
Crystal data top
[Co(C8H2I3NO4)(C5H5N)3(H2O)]·C5H5NF(000) = 1812
Mr = 950.15Dx = 1.974 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7120 reflections
a = 9.7759 (2) Åθ = 4.7–43.0°
b = 16.9083 (4) ŵ = 3.48 mm1
c = 19.3380 (4) ÅT = 296 K
V = 3196.45 (12) Å3Sheet, light purple
Z = 40.30 × 0.25 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
6038 independent reflections
Radiation source: fine-focus sealed tube4577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 129
Tmin = 0.38, Tmax = 0.75k = 1320
16692 measured reflectionsl = 1523
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0243P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6038 reflectionsΔρmax = 0.68 e Å3
379 parametersΔρmin = 0.67 e Å3
3 restraintsAbsolute structure: Flack (1983), with 2515 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (2)
Crystal data top
[Co(C8H2I3NO4)(C5H5N)3(H2O)]·C5H5NV = 3196.45 (12) Å3
Mr = 950.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.7759 (2) ŵ = 3.48 mm1
b = 16.9083 (4) ÅT = 296 K
c = 19.3380 (4) Å0.30 × 0.25 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
6038 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4577 reflections with I > 2σ(I)
Tmin = 0.38, Tmax = 0.75Rint = 0.027
16692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.68 e Å3
S = 1.04Δρmin = 0.67 e Å3
6038 reflectionsAbsolute structure: Flack (1983), with 2515 Friedel pairs
379 parametersAbsolute structure parameter: 0.13 (2)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8251 (6)0.2139 (3)0.8550 (3)0.0319 (15)
C20.8423 (6)0.2494 (3)0.7900 (3)0.0344 (16)
C30.7752 (6)0.2152 (3)0.7335 (3)0.0299 (15)
C40.6949 (6)0.1483 (3)0.7390 (3)0.0229 (14)
C50.6819 (6)0.1159 (3)0.8047 (3)0.0286 (15)
C60.7445 (6)0.1478 (3)0.8629 (3)0.0243 (14)
C70.6216 (7)0.1144 (3)0.6765 (3)0.0276 (15)
C80.7222 (7)0.1122 (3)0.9341 (3)0.0305 (15)
C90.9902 (7)0.0943 (4)1.1534 (4)0.052 (2)
H91.04680.05011.15400.063*
C101.0171 (8)0.1565 (5)1.1968 (4)0.067 (2)
H101.09090.15281.22700.080*
C110.9406 (10)0.2230 (5)1.1973 (4)0.078 (3)
H110.96070.26511.22660.093*
C120.8332 (9)0.2254 (5)1.1531 (4)0.078 (3)
H120.77680.26971.15200.093*
C130.8073 (7)0.1626 (4)1.1100 (4)0.060 (2)
H130.73420.16611.07930.072*
C141.1101 (6)0.0851 (4)1.0269 (3)0.0397 (18)
H141.06190.12791.04470.048*
C151.2437 (7)0.0963 (4)1.0090 (3)0.0488 (19)
H151.28590.14511.01510.059*
C161.3142 (7)0.0329 (5)0.9817 (3)0.053 (2)
H161.40440.03910.96740.064*
C171.2528 (6)0.0377 (4)0.9759 (3)0.0471 (19)
H171.30000.08150.95920.057*
C181.1168 (7)0.0434 (4)0.9955 (3)0.0448 (18)
H181.07330.09210.99110.054*
C190.6591 (7)0.1424 (4)0.9923 (4)0.0470 (19)
H190.61140.13051.03260.056*
C200.6061 (7)0.1985 (4)0.9494 (4)0.057 (2)
H200.52490.22400.96080.068*
C210.6717 (9)0.2166 (4)0.8905 (4)0.069 (2)
H210.63570.25360.85990.082*
C220.7916 (9)0.1797 (4)0.8766 (4)0.063 (2)
H220.84160.19250.83720.076*
C230.8384 (7)0.1222 (4)0.9223 (4)0.052 (2)
H230.91880.09560.91130.062*
C240.0436 (7)0.0013 (4)0.7430 (5)0.062 (2)
H240.13090.02020.74650.074*
C250.0132 (9)0.0325 (5)0.8004 (4)0.064 (2)
H250.03370.03210.84220.076*
C260.1384 (11)0.0640 (5)0.7959 (5)0.096 (3)
H260.18040.08550.83480.115*
C270.2020 (9)0.0641 (6)0.7351 (5)0.101 (3)
H270.28840.08670.73090.121*
C280.1404 (9)0.0313 (5)0.6790 (4)0.082 (3)
H280.18620.03110.63690.098*
Co10.83021 (7)0.00406 (5)1.04654 (4)0.0312 (2)
I10.92570 (5)0.26385 (3)0.94026 (2)0.05269 (14)
I20.78262 (5)0.27575 (3)0.63848 (2)0.05874 (16)
I30.56454 (5)0.01146 (3)0.81795 (2)0.05039 (14)
N10.9245 (6)0.3143 (3)0.7821 (3)0.0630 (17)
H1A0.93570.33490.74180.076*
H1B0.96490.33450.81740.076*
N20.8833 (5)0.0964 (3)1.1102 (2)0.0393 (14)
N31.0452 (5)0.0175 (3)1.0205 (2)0.0348 (13)
N40.7763 (6)0.1033 (3)0.9799 (3)0.0379 (14)
N50.0172 (7)0.0004 (4)0.6829 (3)0.0660 (19)
O10.6899 (4)0.0730 (2)0.6366 (2)0.0386 (11)
O20.5004 (5)0.1311 (3)0.6709 (2)0.0555 (14)
O30.8147 (4)0.0677 (2)0.95601 (19)0.0329 (10)
O40.6139 (4)0.1298 (2)0.9646 (2)0.0460 (12)
O50.6191 (3)0.0161 (2)1.05937 (18)0.0423 (11)
H5B0.59510.06031.04230.051*
H5A0.59630.01431.10180.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (4)0.029 (4)0.026 (4)0.003 (3)0.003 (3)0.007 (3)
C20.043 (4)0.029 (4)0.032 (4)0.014 (3)0.003 (3)0.004 (3)
C30.038 (3)0.029 (4)0.023 (3)0.005 (3)0.004 (3)0.001 (3)
C40.026 (4)0.022 (3)0.020 (3)0.004 (3)0.001 (3)0.007 (3)
C50.032 (3)0.032 (4)0.022 (4)0.002 (3)0.003 (3)0.003 (3)
C60.033 (4)0.022 (3)0.017 (3)0.006 (3)0.004 (3)0.002 (3)
C70.041 (4)0.020 (4)0.021 (4)0.010 (3)0.005 (3)0.004 (3)
C80.045 (4)0.027 (4)0.019 (4)0.006 (3)0.005 (4)0.007 (3)
C90.050 (4)0.053 (5)0.053 (5)0.004 (4)0.023 (4)0.006 (4)
C100.078 (6)0.071 (6)0.052 (5)0.045 (5)0.022 (5)0.004 (5)
C110.122 (8)0.054 (6)0.058 (5)0.033 (6)0.009 (6)0.022 (5)
C120.103 (7)0.056 (6)0.075 (6)0.004 (5)0.025 (5)0.024 (5)
C130.067 (5)0.054 (5)0.059 (5)0.011 (5)0.006 (5)0.020 (4)
C140.042 (4)0.043 (4)0.035 (4)0.004 (4)0.001 (3)0.000 (4)
C150.046 (5)0.057 (5)0.043 (5)0.020 (4)0.002 (4)0.008 (4)
C160.028 (4)0.088 (6)0.044 (5)0.013 (4)0.003 (3)0.009 (4)
C170.032 (4)0.064 (6)0.045 (4)0.008 (4)0.001 (3)0.010 (4)
C180.046 (5)0.041 (4)0.048 (5)0.001 (4)0.003 (4)0.004 (4)
C190.048 (5)0.037 (4)0.056 (5)0.005 (4)0.003 (4)0.004 (4)
C200.047 (5)0.043 (5)0.080 (6)0.017 (4)0.010 (4)0.001 (5)
C210.088 (7)0.050 (5)0.068 (5)0.009 (5)0.026 (5)0.008 (5)
C220.085 (6)0.060 (6)0.046 (5)0.000 (5)0.004 (5)0.028 (4)
C230.055 (5)0.051 (5)0.049 (5)0.011 (4)0.006 (4)0.005 (4)
C240.041 (5)0.061 (5)0.083 (6)0.005 (4)0.005 (5)0.002 (6)
C250.078 (6)0.067 (6)0.046 (5)0.019 (5)0.010 (5)0.001 (5)
C260.115 (9)0.122 (8)0.050 (6)0.044 (7)0.034 (6)0.010 (6)
C270.059 (6)0.167 (10)0.078 (7)0.047 (6)0.011 (6)0.020 (8)
C280.063 (6)0.131 (9)0.051 (6)0.003 (6)0.014 (5)0.023 (6)
Co10.0333 (4)0.0350 (5)0.0254 (5)0.0001 (4)0.0013 (4)0.0022 (5)
I10.0737 (3)0.0481 (3)0.0363 (3)0.0171 (3)0.0127 (3)0.0058 (2)
I20.0883 (4)0.0569 (3)0.0311 (3)0.0191 (3)0.0001 (3)0.0134 (3)
I30.0633 (3)0.0495 (3)0.0384 (3)0.0231 (3)0.0053 (2)0.0067 (2)
N10.092 (4)0.062 (4)0.035 (3)0.045 (4)0.014 (4)0.007 (3)
N20.048 (4)0.042 (4)0.027 (3)0.004 (3)0.000 (3)0.001 (3)
N30.031 (3)0.038 (3)0.035 (3)0.002 (3)0.003 (2)0.006 (3)
N40.043 (3)0.039 (4)0.031 (3)0.003 (3)0.002 (3)0.002 (3)
N50.063 (4)0.089 (5)0.047 (4)0.014 (4)0.012 (4)0.011 (4)
O10.047 (3)0.041 (3)0.028 (2)0.001 (2)0.002 (2)0.013 (2)
O20.048 (3)0.075 (4)0.044 (3)0.015 (3)0.012 (3)0.020 (3)
O30.037 (3)0.036 (3)0.026 (2)0.001 (2)0.005 (2)0.007 (2)
O40.049 (3)0.064 (3)0.025 (3)0.021 (2)0.010 (2)0.001 (2)
O50.045 (3)0.048 (3)0.034 (2)0.007 (2)0.006 (2)0.010 (2)
Geometric parameters (Å, º) top
C1—C61.376 (7)C18—N31.336 (7)
C1—C21.404 (7)C18—H180.9300
C1—I12.097 (6)C19—N41.344 (7)
C2—N11.368 (7)C19—C201.363 (9)
C2—C31.400 (7)C19—H190.9300
C3—C41.381 (7)C20—C211.342 (9)
C3—I22.105 (5)C20—H200.9300
C4—C51.389 (7)C21—C221.355 (9)
C4—C71.517 (8)C21—H210.9300
C5—C61.390 (7)C22—C231.391 (8)
C5—I32.122 (6)C22—H220.9300
C6—C81.519 (4)C23—N41.309 (7)
C7—O21.223 (6)C23—H230.9300
C7—O11.238 (6)C24—N51.306 (8)
C8—O41.248 (6)C24—C251.348 (9)
C8—O31.250 (6)C24—H240.9300
C9—N21.337 (7)C25—C261.338 (10)
C9—C101.372 (9)C25—H250.9300
C9—H90.9300C26—C271.331 (11)
C10—C111.350 (10)C26—H260.9300
C10—H100.9300C27—C281.359 (11)
C11—C121.355 (10)C27—H270.9300
C11—H110.9300C28—N51.321 (9)
C12—C131.373 (9)C28—H280.9300
C12—H120.9300Co1—O1i2.104 (4)
C13—N21.345 (7)Co1—O52.106 (3)
C13—H130.9300Co1—O32.135 (4)
C14—N31.312 (7)Co1—N22.161 (5)
C14—C151.365 (8)Co1—N32.173 (5)
C14—H140.9300Co1—N42.180 (5)
C15—C161.379 (9)N1—H1A0.8600
C15—H150.9300N1—H1B0.8600
C16—C171.342 (8)O1—Co1ii2.104 (4)
C16—H160.9300O5—H5B0.8500
C17—C181.386 (8)O5—H5A0.8499
C17—H170.9300
C6—C1—C2121.0 (5)C19—C20—H20120.2
C6—C1—I1120.6 (4)C20—C21—C22118.4 (8)
C2—C1—I1118.4 (4)C20—C21—H21120.8
N1—C2—C3121.3 (5)C22—C21—H21120.8
N1—C2—C1120.9 (5)C21—C22—C23118.7 (8)
C3—C2—C1117.8 (5)C21—C22—H22120.6
C4—C3—C2123.0 (5)C23—C22—H22120.6
C4—C3—I2119.1 (4)N4—C23—C22124.0 (7)
C2—C3—I2117.7 (4)N4—C23—H23118.0
C3—C4—C5116.5 (5)C22—C23—H23118.0
C3—C4—C7121.1 (5)N5—C24—C25123.6 (7)
C5—C4—C7122.5 (5)N5—C24—H24118.2
C4—C5—C6123.2 (5)C25—C24—H24118.2
C4—C5—I3119.2 (4)C26—C25—C24118.6 (8)
C6—C5—I3117.6 (4)C26—C25—H25120.7
C1—C6—C5118.5 (5)C24—C25—H25120.7
C1—C6—C8120.3 (5)C27—C26—C25119.0 (9)
C5—C6—C8121.1 (5)C27—C26—H26120.5
O2—C7—O1126.7 (7)C25—C26—H26120.5
O2—C7—C4116.2 (6)C26—C27—C28119.9 (8)
O1—C7—C4117.2 (5)C26—C27—H27120.1
O4—C8—O3126.7 (5)C28—C27—H27120.1
O4—C8—C6117.0 (6)N5—C28—C27121.6 (8)
O3—C8—C6116.2 (5)N5—C28—H28119.2
N2—C9—C10120.7 (7)C27—C28—H28119.2
N2—C9—H9119.6O1i—Co1—O584.29 (15)
C10—C9—H9119.6O1i—Co1—O3170.52 (16)
C11—C10—C9122.5 (8)O5—Co1—O386.29 (15)
C11—C10—H10118.7O1i—Co1—N289.21 (16)
C9—C10—H10118.7O5—Co1—N292.37 (17)
C10—C11—C12116.7 (8)O3—Co1—N292.18 (17)
C10—C11—H11121.7O1i—Co1—N3102.93 (17)
C12—C11—H11121.7O5—Co1—N3172.68 (17)
C11—C12—C13120.2 (8)O3—Co1—N386.47 (17)
C11—C12—H12119.9N2—Co1—N388.95 (19)
C13—C12—H12119.9O1i—Co1—N492.29 (17)
N2—C13—C12122.7 (7)O5—Co1—N487.53 (18)
N2—C13—H13118.7O3—Co1—N486.31 (16)
C12—C13—H13118.7N2—Co1—N4178.48 (19)
N3—C14—C15124.1 (6)N3—Co1—N491.0 (2)
N3—C14—H14118.0C2—N1—H1A120.0
C15—C14—H14118.0C2—N1—H1B120.0
C14—C15—C16117.8 (7)H1A—N1—H1B120.0
C14—C15—H15121.1C9—N2—C13117.2 (6)
C16—C15—H15121.1C9—N2—Co1121.5 (5)
C17—C16—C15120.0 (6)C13—N2—Co1121.3 (5)
C17—C16—H16120.0C14—N3—C18116.9 (5)
C15—C16—H16120.0C14—N3—Co1122.5 (4)
C16—C17—C18117.9 (7)C18—N3—Co1120.7 (4)
C16—C17—H17121.0C23—N4—C19115.3 (6)
C18—C17—H17121.0C23—N4—Co1125.4 (5)
N3—C18—C17123.2 (6)C19—N4—Co1118.7 (5)
N3—C18—H18118.4C24—N5—C28117.2 (7)
C17—C18—H18118.4C7—O1—Co1ii141.2 (4)
N4—C19—C20123.9 (7)C8—O3—Co1132.1 (4)
N4—C19—H19118.0Co1—O5—H5B111.5
C20—C19—H19118.0Co1—O5—H5A111.4
C21—C20—C19119.6 (7)H5B—O5—H5A109.4
C21—C20—H20120.2
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+3/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N5iii0.851.942.748 (7)159
Symmetry code: (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C8H2I3NO4)(C5H5N)3(H2O)]·C5H5N
Mr950.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.7759 (2), 16.9083 (4), 19.3380 (4)
V3)3196.45 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.48
Crystal size (mm)0.30 × 0.25 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.38, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
16692, 6038, 4577
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.065, 1.04
No. of reflections6038
No. of parameters379
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.67
Absolute structureFlack (1983), with 2515 Friedel pairs
Absolute structure parameter0.13 (2)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Co1—O1i2.104 (4)Co1—N22.161 (5)
Co1—O52.106 (3)Co1—N32.173 (5)
Co1—O32.135 (4)Co1—N42.180 (5)
O1i—Co1—O3170.52 (16)O5—Co1—N3172.68 (17)
O1i—Co1—N3102.93 (17)N2—Co1—N4178.48 (19)
Symmetry code: (i) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N5ii0.851.942.748 (7)159
Symmetry code: (ii) x+1/2, y, z+1/2.
 

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province Education Office (grant No. 04KJB150015). We also thank Dr Zaichao Zhang for his support.

References

First citationBeck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLivage, C., Guillou, N., Marrot, J. & Férey, G. (2001). Chem. Mater. 13, 4387–4392.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Z.-B., Gao, S., Liu, J.-W., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m808–m810.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZiegler, M., Schulze-Karal, C., Steiof, M. & Rüden, H. (1997). Korresp. Abwasser, 44, 1404–1408.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1392-m1393
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds