organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2,5-Di­hexyl­oxyphen­yl)benzoic acid

aSchool of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: lihong@zzuli.edu.cn

(Received 29 September 2008; accepted 6 October 2008; online 11 October 2008)

In the title compound, C25H34O4, one n-hexyl chain of the hex­yloxy group adopts a fully extended all-trans conformation, and the other n-hexyl chain displays disorder with site occupancies of 0.470 (3) and 0.530 (3). The dihedral angle between the benzene rings is 44.5 (3)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds form dimers via crystallographic inversion centres.

Related literature

For a review of applications of Suzuki–Miyura cross-coupling reactions in organic syntheses, see: Kotha et al. (2002[Kotha, S., Lahiri, K. & Kashinath, D. (2002). Tetrahedron, 58, 9633-9695.]). For the structure of 1,4-dibromo-2,5-bis­(hex­yloxy)benzene, see: Li et al. (2008[Li, Y.-F., Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2008). Acta Cryst. E64, o1930.]). For the syntheses of related compounds, see: Maruyama & Kawanishi (2002[Maruyama, S. & Kawanishi, Y. (2002). J. Mater. Chem. 12, 2245-2249.]); Zhang et al. (2006[Zhang, P. P., Zhang, T. Y., Zhu, C. F., Diao, Y. X., Wan, Y. Z., Xie, P. & Zhang, R. B. (2006). Chin. J. Polym. Sci. 24, 333-339.]).

[Scheme 1]

Experimental

Crystal data
  • C25H34O4

  • Mr = 398.52

  • Monoclinic, P 21 /n

  • a = 7.2936 (12) Å

  • b = 14.689 (2) Å

  • c = 22.137 (4) Å

  • β = 95.283 (3)°

  • V = 2361.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 (2) K

  • 0.35 × 0.15 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.996

  • 15777 measured reflections

  • 4359 independent reflections

  • 1432 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.194

  • S = 0.97

  • 4359 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.632 (4) 174
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Palladium-catalyzed Suzuki coupling reaction has become an extremely powerful method in synthesis for the formation of carbon-carbon bond (Kotha et al., 2002). For example, 1,4-Dibromide-2,5-bis(hexyloxy)benzene was reacted with 4-carboxyphenylboronic acid in the presence of Pd(PPh3)4 to give coupling product 2,5-bis(hexyloxy)-1,4-di(4'-carboxyphenyl)benzene (Zhang et al., 2006). In the above reaction, we obtained the title compound as a side product.

A view of the molecular structure of the title compound is given in Fig.1. The dihedral angle between benzene rings is 44.5 (3)°. One n-hexyl chain of the hexyloxyl group has the same fully extended all - trans conformation as the 1,4-Dibromide-2,5-bis(hexyloxy)benzene (Li, et al., 2008), while the other n-hexyl chain displays disorder with site occupancies 0.470 (3) and 0.530 (3). In the crystal structure, centrosymmetric dimers arise from pairs of O—H···O hydrogen bonds involving the carboxylic acid groups (Fig.2, Table 1).

Related literature top

For a review of applications of Suzuki–Miyura cross-coupling reactions in organic syntheses, see: Kotha et al. (2002). For the structure of 1,4-dibromo-2,5-bis(hexyloxy)benzene, see: Li et al. (2008). For the syntheses of related compounds, see: Maruyama & Kawanishi (2002); Zhang et al. (2006).

Experimental top

1,4-Dibromo-2,5-bis(hexyloxy)benzene was prepared as described in the literature (Maruyama & Kawanishi 2002). The title compound was obtained as a side-product from the Suzuki coupling reaction of 1,4-Dibromo-2,5-bis(hexyloxy)benzene and 4-carboxyphenylboronic acid as described in the literature (Zhang et al., 2006) and recrystallized from ethanol at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement top

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93 (aromatic CH), or 0.96 Å (methyl CH3), and 0.97 Å (methylene CH2) and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) (1.5Ueq for methyl H).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level. The disordered components are shown.
[Figure 2] Fig. 2. The dimeric structure of the title compound linked by the O—H···O hydrogen bonds.
4-(2,5-Dihexyloxyphenyl)benzoic acid top
Crystal data top
C25H34O4F(000) = 864
Mr = 398.52Dx = 1.121 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2936 (12) ÅCell parameters from 918 reflections
b = 14.689 (2) Åθ = 2.8–17.8°
c = 22.137 (4) ŵ = 0.07 mm1
β = 95.283 (3)°T = 295 K
V = 2361.7 (7) Å3Block, colourless
Z = 40.35 × 0.15 × 0.06 mm
Data collection top
Bruker SMART CCD
diffractometer
4359 independent reflections
Radiation source: fine-focus sealed tube1432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.975, Tmax = 0.996k = 1717
15777 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.194 w = 1/[σ2(Fo2) + (0.0705P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
4359 reflectionsΔρmax = 0.16 e Å3
257 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (13)
Crystal data top
C25H34O4V = 2361.7 (7) Å3
Mr = 398.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2936 (12) ŵ = 0.07 mm1
b = 14.689 (2) ÅT = 295 K
c = 22.137 (4) Å0.35 × 0.15 × 0.06 mm
β = 95.283 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4359 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1432 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.996Rint = 0.087
15777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 0.97Δρmax = 0.16 e Å3
4359 reflectionsΔρmin = 0.14 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C200.7088 (7)0.0256 (3)0.2574 (2)0.1007 (16)0.470 (3)
H20A0.79860.02080.27030.121*0.470 (3)
H20B0.68370.02160.21360.121*0.470 (3)
C210.5320 (5)0.0098 (4)0.28753 (19)0.108 (3)0.470 (3)
H21A0.43500.04760.26790.129*0.470 (3)
H21B0.49490.05330.28210.129*0.470 (3)
C220.5551 (5)0.0315 (5)0.35456 (16)0.137 (4)0.470 (3)
H22A0.59290.09460.35940.165*0.470 (3)
H22B0.65420.00580.37340.165*0.470 (3)
C230.3866 (6)0.0171 (4)0.3885 (2)0.155 (4)0.470 (3)
H23A0.33710.04290.37870.187*0.470 (3)
H23B0.42410.01830.43170.187*0.470 (3)
C240.2371 (8)0.0856 (3)0.3751 (2)0.162 (3)0.470 (3)
H24A0.19010.07950.33280.195*0.470 (3)
H24B0.29020.14600.38030.195*0.470 (3)
C250.0785 (8)0.0786 (4)0.4134 (2)0.153 (3)0.470 (3)
H25A0.01920.04450.39200.229*0.470 (3)
H25B0.03530.13860.42190.229*0.470 (3)
H25C0.11800.04830.45080.229*0.470 (3)
C20'0.7495 (6)0.0177 (3)0.2742 (2)0.1007 (16)0.530 (3)
H20C0.86590.01350.28350.121*0.530 (3)
H20D0.69870.00160.23420.121*0.530 (3)
C21'0.6199 (6)0.0085 (3)0.3200 (2)0.108 (3)0.530 (3)
H21C0.58380.07140.31290.129*0.530 (3)
H21D0.68610.00530.36000.129*0.530 (3)
C22'0.4489 (5)0.0478 (2)0.32045 (16)0.137 (4)0.530 (3)
H22C0.48390.10830.33470.165*0.530 (3)
H22D0.39420.05370.27900.165*0.530 (3)
C23'0.3055 (5)0.0122 (3)0.3584 (2)0.155 (4)0.530 (3)
H23C0.19840.00480.33150.187*0.530 (3)
H23D0.35270.04270.37850.187*0.530 (3)
C24'0.2443 (6)0.0752 (3)0.4053 (2)0.162 (3)0.530 (3)
H24C0.20900.13250.38580.195*0.530 (3)
H24D0.34870.08730.43460.195*0.530 (3)
C25'0.0875 (7)0.0431 (4)0.4391 (3)0.153 (3)0.530 (3)
H25D0.02750.00730.41800.229*0.530 (3)
H25E0.00090.09180.44190.229*0.530 (3)
H25F0.13360.02420.47920.229*0.530 (3)
O10.7303 (4)0.4749 (2)0.48474 (13)0.1015 (9)
H10.66430.49510.50970.152*
O20.4582 (4)0.45546 (17)0.43055 (11)0.0937 (9)
O31.3854 (4)0.25963 (18)0.17662 (11)0.0957 (9)
O40.7809 (4)0.11432 (17)0.27390 (12)0.1056 (10)
C10.6290 (7)0.4451 (3)0.43801 (19)0.0811 (12)
C20.7271 (6)0.3934 (2)0.39327 (17)0.0735 (10)
C30.6246 (5)0.3488 (3)0.34666 (18)0.0766 (11)
H30.49690.35350.34320.092*
C40.7099 (6)0.2974 (2)0.30537 (16)0.0774 (11)
H40.63840.26840.27410.093*
C50.9002 (6)0.2878 (2)0.30924 (16)0.0692 (10)
C61.0009 (5)0.3342 (3)0.35605 (18)0.0835 (12)
H61.12870.33030.35930.100*
C70.9163 (6)0.3863 (3)0.39816 (17)0.0832 (11)
H70.98690.41600.42930.100*
C80.9934 (5)0.2331 (3)0.26465 (15)0.0720 (10)
C90.9291 (6)0.1468 (3)0.24652 (17)0.0810 (11)
C101.0170 (6)0.0979 (3)0.20426 (17)0.0909 (12)
H100.97340.04060.19230.109*
C111.1685 (6)0.1332 (3)0.17971 (17)0.0892 (12)
H111.22520.10010.15090.107*
C121.2361 (6)0.2173 (3)0.19762 (17)0.0791 (11)
C131.1469 (5)0.2661 (3)0.23992 (15)0.0761 (11)
H131.19220.32310.25200.091*
C141.4854 (6)0.2112 (3)0.13414 (17)0.0936 (12)
H14A1.40470.19590.09830.112*
H14B1.53510.15520.15220.112*
C151.6382 (5)0.2718 (3)0.11761 (17)0.0939 (12)
H15A1.71970.28420.15380.113*
H15B1.58630.32930.10290.113*
C161.7496 (6)0.2318 (3)0.06986 (17)0.1004 (13)
H16A1.66980.22250.03280.120*
H16B1.79640.17270.08350.120*
C171.9103 (6)0.2919 (3)0.05617 (17)0.0987 (13)
H17A1.86270.35020.04130.118*
H17B1.98720.30280.09360.118*
C182.0261 (6)0.2524 (3)0.01070 (19)0.1182 (16)
H18A1.94850.24010.02640.142*
H18B2.07570.19470.02600.142*
C192.1840 (6)0.3126 (3)0.0042 (2)0.1344 (18)
H19A2.13600.36760.02300.202*
H19B2.25690.28120.03150.202*
H19C2.25910.32730.03240.202*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C200.121 (4)0.072 (3)0.111 (4)0.021 (3)0.019 (3)0.011 (3)
C210.089 (7)0.075 (4)0.163 (8)0.001 (4)0.031 (6)0.007 (5)
C220.124 (8)0.105 (5)0.191 (10)0.015 (5)0.057 (7)0.039 (6)
C230.119 (7)0.115 (5)0.241 (10)0.004 (5)0.063 (7)0.002 (6)
C240.217 (8)0.172 (7)0.096 (7)0.008 (6)0.006 (6)0.023 (6)
C250.112 (5)0.173 (8)0.175 (8)0.034 (5)0.020 (5)0.026 (7)
C20'0.121 (4)0.072 (3)0.111 (4)0.021 (3)0.019 (3)0.011 (3)
C21'0.089 (7)0.075 (4)0.163 (8)0.001 (4)0.031 (6)0.007 (5)
C22'0.124 (8)0.105 (5)0.191 (10)0.015 (5)0.057 (7)0.039 (6)
C23'0.119 (7)0.115 (5)0.241 (10)0.004 (5)0.063 (7)0.002 (6)
C24'0.217 (8)0.172 (7)0.096 (7)0.008 (6)0.006 (6)0.023 (6)
C25'0.112 (5)0.173 (8)0.175 (8)0.034 (5)0.020 (5)0.026 (7)
O10.102 (2)0.112 (2)0.094 (2)0.0008 (18)0.0274 (17)0.0269 (18)
O20.095 (2)0.103 (2)0.0856 (19)0.0112 (18)0.0216 (17)0.0026 (16)
O30.099 (2)0.097 (2)0.0964 (19)0.0086 (17)0.0363 (17)0.0176 (16)
O40.120 (2)0.0675 (18)0.137 (2)0.0163 (17)0.052 (2)0.0183 (17)
C10.096 (4)0.082 (3)0.069 (3)0.008 (3)0.022 (3)0.002 (2)
C20.084 (3)0.069 (2)0.070 (3)0.001 (2)0.023 (2)0.003 (2)
C30.080 (3)0.074 (3)0.077 (3)0.000 (2)0.017 (2)0.003 (2)
C40.081 (3)0.075 (3)0.078 (3)0.007 (2)0.011 (2)0.002 (2)
C50.080 (3)0.057 (2)0.071 (3)0.001 (2)0.009 (2)0.001 (2)
C60.070 (3)0.089 (3)0.093 (3)0.001 (2)0.017 (2)0.012 (2)
C70.087 (3)0.087 (3)0.078 (3)0.006 (2)0.017 (2)0.014 (2)
C80.083 (3)0.063 (3)0.071 (2)0.004 (2)0.014 (2)0.007 (2)
C90.094 (3)0.068 (3)0.084 (3)0.004 (2)0.023 (2)0.005 (2)
C100.120 (4)0.069 (3)0.087 (3)0.010 (3)0.024 (3)0.014 (2)
C110.108 (3)0.085 (3)0.078 (3)0.001 (3)0.026 (2)0.013 (2)
C120.083 (3)0.077 (3)0.080 (3)0.002 (3)0.017 (2)0.005 (2)
C130.084 (3)0.071 (3)0.075 (2)0.002 (2)0.012 (2)0.012 (2)
C140.106 (3)0.093 (3)0.086 (3)0.005 (3)0.031 (3)0.012 (2)
C150.095 (3)0.100 (3)0.089 (3)0.004 (3)0.021 (3)0.004 (3)
C160.099 (3)0.110 (3)0.096 (3)0.002 (3)0.028 (3)0.020 (3)
C170.100 (3)0.104 (3)0.096 (3)0.002 (3)0.031 (3)0.016 (2)
C180.110 (4)0.129 (4)0.121 (4)0.001 (3)0.041 (3)0.030 (3)
C190.117 (4)0.154 (5)0.139 (4)0.019 (3)0.049 (3)0.025 (3)
Geometric parameters (Å, º) top
C20—O41.440 (5)O3—C141.432 (4)
C20—C211.5236 (17)O4—C91.372 (4)
C20—H20A0.9700C1—C21.483 (5)
C20—H20B0.9700C2—C71.378 (4)
C21—C221.5119 (17)C2—C31.383 (4)
C21—H21A0.9700C3—C41.378 (4)
C21—H21B0.9700C3—H30.9300
C22—C231.5129 (17)C4—C51.390 (4)
C22—H22A0.9700C4—H40.9300
C22—H22B0.9700C5—C61.392 (4)
C23—C241.4930 (17)C5—C81.486 (4)
C23—H23A0.9700C6—C71.393 (4)
C23—H23B0.9700C6—H60.9300
C24—C251.4994 (17)C7—H70.9300
C24—H24A0.9700C8—C131.379 (4)
C24—H24B0.9700C8—C91.397 (5)
C25—H25A0.9600C9—C101.383 (5)
C25—H25B0.9600C10—C111.377 (5)
C25—H25C0.9600C10—H100.9300
C20'—O41.438 (4)C11—C121.374 (5)
C20'—C21'1.4978 (17)C11—H110.9300
C20'—H20C0.9700C12—C131.388 (4)
C20'—H20D0.9700C13—H130.9300
C21'—C22'1.4966 (17)C14—C151.498 (5)
C21'—H21C0.9700C14—H14A0.9700
C21'—H21D0.9700C14—H14B0.9700
C22'—C23'1.4938 (17)C15—C161.510 (4)
C22'—H22C0.9700C15—H15A0.9700
C22'—H22D0.9700C15—H15B0.9700
C23'—C24'1.4906 (17)C16—C171.520 (5)
C23'—H23C0.9700C16—H16A0.9700
C23'—H23D0.9700C16—H16B0.9700
C24'—C25'1.4994 (17)C17—C181.490 (4)
C24'—H24C0.9700C17—H17A0.9700
C24'—H24D0.9700C17—H17B0.9700
C25'—H25D0.9600C18—C191.513 (5)
C25'—H25E0.9600C18—H18A0.9700
C25'—H25F0.9600C18—H18B0.9700
O1—C11.291 (4)C19—H19A0.9600
O1—H10.8200C19—H19B0.9600
O2—C11.251 (4)C19—H19C0.9600
O3—C121.372 (4)
O4—C20—C21109.3 (2)C7—C2—C3119.4 (4)
O4—C20—H20A109.8C7—C2—C1121.8 (4)
C21—C20—H20A109.8C3—C2—C1118.7 (4)
O4—C20—H20B109.8C4—C3—C2120.6 (4)
C21—C20—H20B109.8C4—C3—H3119.7
H20A—C20—H20B108.3C2—C3—H3119.7
C22—C21—C20112.1C3—C4—C5121.6 (4)
C22—C21—H21A109.2C3—C4—H4119.2
C20—C21—H21A109.2C5—C4—H4119.2
C22—C21—H21B109.2C4—C5—C6116.9 (3)
C20—C21—H21B109.2C4—C5—C8121.9 (4)
H21A—C21—H21B107.9C6—C5—C8121.2 (4)
C21—C22—C23115.8C5—C6—C7122.1 (4)
C21—C22—H22A108.3C5—C6—H6119.0
C23—C22—H22A108.3C7—C6—H6119.0
C21—C22—H22B108.3C2—C7—C6119.4 (4)
C23—C22—H22B108.3C2—C7—H7120.3
H22A—C22—H22B107.4C6—C7—H7120.3
C24—C23—C22114.8C13—C8—C9118.0 (3)
C24—C23—H23A108.6C13—C8—C5120.7 (4)
C22—C23—H23A108.6C9—C8—C5121.3 (4)
C24—C23—H23B108.6O4—C9—C10123.4 (4)
C22—C23—H23B108.6O4—C9—C8116.5 (4)
H23A—C23—H23B107.5C10—C9—C8120.1 (4)
C23—C24—C25115.4C11—C10—C9120.7 (4)
C23—C24—H24A108.4C11—C10—H10119.7
C25—C24—H24A108.4C9—C10—H10119.7
C23—C24—H24B108.4C12—C11—C10120.3 (4)
C25—C24—H24B108.4C12—C11—H11119.9
H24A—C24—H24B107.5C10—C11—H11119.9
O4—C20'—C21'111.6 (2)O3—C12—C11125.8 (4)
O4—C20'—H20C109.3O3—C12—C13115.5 (4)
C21'—C20'—H20C109.3C11—C12—C13118.7 (4)
O4—C20'—H20D109.3C8—C13—C12122.3 (4)
C21'—C20'—H20D109.3C8—C13—H13118.9
H20C—C20'—H20D108.0C12—C13—H13118.9
C22'—C21'—C20'116.2O3—C14—C15107.5 (3)
C22'—C21'—H21C108.2O3—C14—H14A110.2
C20'—C21'—H21C108.2C15—C14—H14A110.2
C22'—C21'—H21D108.2O3—C14—H14B110.2
C20'—C21'—H21D108.2C15—C14—H14B110.2
H21C—C21'—H21D107.4H14A—C14—H14B108.5
C23'—C22'—C21'116.0C14—C15—C16113.6 (4)
C23'—C22'—H22C108.3C14—C15—H15A108.9
C21'—C22'—H22C108.3C16—C15—H15A108.9
C23'—C22'—H22D108.3C14—C15—H15B108.9
C21'—C22'—H22D108.3C16—C15—H15B108.9
H22C—C22'—H22D107.4H15A—C15—H15B107.7
C24'—C23'—C22'116.4C15—C16—C17112.8 (3)
C24'—C23'—H23C108.2C15—C16—H16A109.0
C22'—C23'—H23C108.2C17—C16—H16A109.0
C24'—C23'—H23D108.2C15—C16—H16B109.0
C22'—C23'—H23D108.2C17—C16—H16B109.0
H23C—C23'—H23D107.3H16A—C16—H16B107.8
C23'—C24'—C25'116.4C18—C17—C16113.8 (4)
C23'—C24'—H24C108.2C18—C17—H17A108.8
C25'—C24'—H24C108.2C16—C17—H17A108.8
C23'—C24'—H24D108.2C18—C17—H17B108.8
C25'—C24'—H24D108.2C16—C17—H17B108.8
H24C—C24'—H24D107.4H17A—C17—H17B107.7
C24'—C25'—H25D109.5C17—C18—C19114.2 (4)
C24'—C25'—H25E109.5C17—C18—H18A108.7
H25D—C25'—H25E109.5C19—C18—H18A108.7
C24'—C25'—H25F109.5C17—C18—H18B108.7
H25D—C25'—H25F109.5C19—C18—H18B108.7
H25E—C25'—H25F109.5H18A—C18—H18B107.6
C1—O1—H1109.5C18—C19—H19A109.5
C12—O3—C14117.7 (3)C18—C19—H19B109.5
C9—O4—C20'118.6 (3)H19A—C19—H19B109.5
C9—O4—C20119.1 (3)C18—C19—H19C109.5
O2—C1—O1123.6 (4)H19A—C19—H19C109.5
O2—C1—C2120.7 (4)H19B—C19—H19C109.5
O1—C1—C2115.7 (4)
O4—C20—C21—C2249.3 (6)C6—C5—C8—C1343.6 (5)
C20—C21—C22—C23179.6C4—C5—C8—C945.5 (5)
C21—C22—C23—C2472.3C6—C5—C8—C9136.4 (4)
C22—C23—C24—C25173.4C20'—O4—C9—C1020.1 (6)
O4—C20'—C21'—C22'46.6 (6)C20—O4—C9—C101.4 (6)
C20'—C21'—C22'—C23'169.9C20'—O4—C9—C8158.2 (3)
C21'—C22'—C23'—C24'124.5C20—O4—C9—C8179.7 (3)
C22'—C23'—C24'—C25'174.2C13—C8—C9—O4177.3 (3)
C21'—C20'—O4—C9163.6 (3)C5—C8—C9—O42.6 (5)
C21'—C20'—O4—C2099.5 (2)C13—C8—C9—C101.0 (5)
C21—C20—O4—C9173.0 (3)C5—C8—C9—C10179.1 (3)
C21—C20—O4—C20'93.5 (2)O4—C9—C10—C11178.1 (3)
O2—C1—C2—C7175.5 (4)C8—C9—C10—C110.1 (6)
O1—C1—C2—C76.7 (5)C9—C10—C11—C121.0 (6)
O2—C1—C2—C36.8 (5)C14—O3—C12—C112.8 (5)
O1—C1—C2—C3171.1 (3)C14—O3—C12—C13178.3 (3)
C7—C2—C3—C40.1 (5)C10—C11—C12—O3180.0 (3)
C1—C2—C3—C4177.7 (3)C10—C11—C12—C131.1 (6)
C2—C3—C4—C50.6 (5)C9—C8—C13—C120.9 (5)
C3—C4—C5—C61.3 (5)C5—C8—C13—C12179.2 (3)
C3—C4—C5—C8179.6 (3)O3—C12—C13—C8179.2 (3)
C4—C5—C6—C71.4 (5)C11—C12—C13—C80.2 (5)
C8—C5—C6—C7179.7 (3)C12—O3—C14—C15179.1 (3)
C3—C2—C7—C60.0 (5)O3—C14—C15—C16176.5 (3)
C1—C2—C7—C6177.7 (3)C14—C15—C16—C17176.9 (3)
C5—C6—C7—C20.8 (5)C15—C16—C17—C18178.0 (3)
C4—C5—C8—C13134.6 (4)C16—C17—C18—C19178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.632 (4)174
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H34O4
Mr398.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.2936 (12), 14.689 (2), 22.137 (4)
β (°) 95.283 (3)
V3)2361.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.35 × 0.15 × 0.06
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
15777, 4359, 1432
Rint0.087
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.194, 0.97
No. of reflections4359
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.632 (4)173.5
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Doctoral Foundation of Zhengzhou University of Light Industry.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKotha, S., Lahiri, K. & Kashinath, D. (2002). Tetrahedron, 58, 9633–9695.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y.-F., Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2008). Acta Cryst. E64, o1930.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMaruyama, S. & Kawanishi, Y. (2002). J. Mater. Chem. 12, 2245–2249.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, P. P., Zhang, T. Y., Zhu, C. F., Diao, Y. X., Wan, Y. Z., Xie, P. & Zhang, R. B. (2006). Chin. J. Polym. Sci. 24, 333–339.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds