organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2,4,6-tri­methyl-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 1 October 2008; accepted 8 October 2008; online 15 October 2008)

In the title compound, C12H13BrO2S, there are two symmetry-independent mol­ecules, A and B, in the asymmetric unit. The crystal studied was an inversion twin with a 0.70 (2):0.30 (2) domain ratio. The methyl­sulfinyl group in mol­ecule B is disordered over two positions with site-occupancy factors fixed at 0.6 and 0.4. The crystal structure is stabilized by C—H⋯O hydrogen bonds and inter­molecular C—H⋯π inter­actions. In addition, the crystal structure exhibits C—Br⋯π inter­actions, with C—Br⋯Cg1 = 3.646 (8) Å where Cg1 is the centroid of the furan ring.

Related literature

For the crystal structures of similar 3-methyl­sulfinyl-1-benzofuran compounds, see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o521-o522.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o1823-o1824.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13BrO2S

  • Mr = 301.19

  • Monoclinic, C c

  • a = 28.128 (4) Å

  • b = 11.013 (1) Å

  • c = 8.052 (1) Å

  • β = 102.290 (2)°

  • V = 2437.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.53 mm−1

  • T = 298 (2) K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.269, Tmax = 0.345

  • 7147 measured reflections

  • 4360 independent reflections

  • 3737 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.09

  • 4360 reflections

  • 317 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.90 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1736 Friedel pairs

  • Flack parameter: 0.70 (2)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.96 2.34 3.298 (9) 179
C12—H12C⋯O4Bii 0.96 2.42 3.168 (12) 134
C24A—H24A⋯O4Aiii 0.96 2.35 3.199 (13) 148
C9—H9ACg2iii 0.96 3.30 3.943 (9) 124
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our previous communications on the synthesis and structure of 3-methylsulfinyl-1-benzofuran analogues, viz. 5-bromo-2-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2,5-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007b). Here we report the crystal structure of the title compound, 5-bromo-2,4,6-trimethyl-3-methylsulfinyl-1-benzofuran which crystallizes with two unique molecules, A & B in the asymmetric unit (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 (6) Å for A and 0.0022 (7) Å for B, respectively, from the least-squares plane defined by the nine constituent atoms. The crystal studied was an inversion twin with a 0.70 (2):0.30 (2) domain ratio. The O4=S2—C24H3 group in molecule B is disordered over two positions with site-occupancy factors fixed at 0.4 (for atoms labelled A) and 0.6 (for atoms labelled B) in Fig. 1. The crystal structure is stabilized by three intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 1; symmetry codes as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by a intermolecular C—H···π interactions, with a C9—H9A···Cg2iii separation of 3.30 Å (Fig. 2 and Table 1; Cg2 is the centroid of the C2—C7 benzene ring, symmetry code as in Fig. 2). In addition, the molecular packing exhibits an intermolecular C—Br···π interaction between the Br atom and the furan ring, with a C16—Br2···Cg1iv separation of 3.646 (8) Å (Fig. 2; Cg1 is the centroid of C13—C14/C19/O3/C20 furan ring, symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 3-methylsulfinyl-1-benzofuran compounds, see: Choi et al. (2007a,b). Cg2 is the centroid of the C2–C7 benzene ring.

Experimental top

3-Chloroperoxybenzoic acid, 77% (197 mg, 0.88 mmol) was added in small portions to a stirred solution of 3-methylsulfanyl-2-phenyl-1-benzofuran (228 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After stirring for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 79%, m.p. 400–401 K; Rf = 0.61 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.51 (s, 3H), 2.68 (s, 3H), 2.83 (s, 3H), 2.95 (s, 3H), 7.21 (s, 1H); EI—MS 302 [M+2], 300 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms, 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

The crystal studied was an inversion twin with a 0.70 (2):0.30 (2) domain ratio. The O4=S2—C24H3 group in molecule B is disordered over two positions with site-occupancy factors fixed at 0.40 (for atoms labelled A) and 0.60 (for atoms labelled B) in the final refinement. Atomic and anisotropic displacement parameters of C24A and C24B were restrained using the commands EXYZ and EADP.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids drawn at the 30% probability level. Bonds to atoms of the major disorder component of the disordered methylsulfinyl group are drawn as double dashed lines.
[Figure 2] Fig. 2. C—H···O, C—H···π and C—Br···π interactions (dotted lines) in the title compound. Cg denotes a ring centroid. [Symmetry code: (i) x, -y, z - 1/2; (ii) x - 1/2, -y + 1/2, z + 1/2; (iii) x, -y + 1, z + 1/2; (iv) x, -y, z - 1/2.]
5-Bromo-2,4,6-trimethyl-3-methylsulfinyl-1-benzofuran top
Crystal data top
C12H13BrO2SF(000) = 1216
Mr = 301.19Dx = 1.642 Mg m3
Monoclinic, CcMelting point = 401–400 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 28.128 (4) ÅCell parameters from 3249 reflections
b = 11.013 (1) Åθ = 2.9–26.1°
c = 8.052 (1) ŵ = 3.53 mm1
β = 102.290 (2)°T = 298 K
V = 2437.1 (5) Å3Block, colorless
Z = 80.40 × 0.40 × 0.30 mm
Data collection top
Bruker SMART CCD
diffractometer
4360 independent reflections
Radiation source: fine-focus sealed tube3737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.5°
ϕ and ω scansh = 3528
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1412
Tmin = 0.269, Tmax = 0.345l = 910
7147 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0294P)2 + 6.0617P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4360 reflectionsΔρmax = 0.45 e Å3
317 parametersΔρmin = 0.90 e Å3
2 restraintsAbsolute structure: Flack (1983), 1736 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.70 (2)
Crystal data top
C12H13BrO2SV = 2437.1 (5) Å3
Mr = 301.19Z = 8
Monoclinic, CcMo Kα radiation
a = 28.128 (4) ŵ = 3.53 mm1
b = 11.013 (1) ÅT = 298 K
c = 8.052 (1) Å0.40 × 0.40 × 0.30 mm
β = 102.290 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4360 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
3737 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 0.345Rint = 0.020
7147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.45 e Å3
S = 1.09Δρmin = 0.90 e Å3
4360 reflectionsAbsolute structure: Flack (1983), 1736 Friedel pairs
317 parametersAbsolute structure parameter: 0.70 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.21922 (3)0.71294 (6)0.66785 (9)0.0659 (2)
Br20.50554 (3)0.18594 (8)0.33653 (9)0.0854 (3)
S10.17522 (7)0.15294 (19)0.6928 (2)0.0577 (5)
S2A0.5460 (2)0.4107 (6)0.3537 (10)0.0523 (16)0.40
O4A0.5400 (5)0.4962 (11)0.2811 (18)0.067 (4)0.40
C24A0.5884 (2)0.3483 (7)0.5252 (9)0.0616 (19)0.40
H24A0.57900.36780.62980.092*0.40
H24B0.62010.38130.52650.092*0.40
H24C0.58930.26170.51260.092*0.40
S2B0.5499 (2)0.3607 (6)0.3149 (7)0.081 (2)0.60
O4B0.5586 (3)0.3734 (12)0.1963 (14)0.099 (4)0.60
C24B0.5884 (2)0.3483 (7)0.5252 (9)0.0616 (19)0.60
H24D0.59450.42780.57400.092*0.60
H24E0.61870.31090.51730.092*0.60
H24F0.57240.29960.59570.092*0.60
O10.30391 (17)0.2256 (4)0.5845 (6)0.0485 (11)
O20.1830 (2)0.0201 (6)0.7294 (9)0.097 (3)
O30.42047 (19)0.2988 (4)0.4257 (7)0.0614 (14)
C10.2298 (2)0.2149 (5)0.6484 (9)0.0366 (15)
C20.2427 (2)0.3433 (5)0.6439 (7)0.0354 (12)
C30.2204 (3)0.4548 (5)0.6687 (10)0.0403 (12)
C40.2487 (2)0.5563 (5)0.6445 (8)0.0413 (14)
C50.2937 (3)0.5551 (5)0.6073 (8)0.0462 (16)
C60.3146 (2)0.4447 (6)0.5866 (9)0.0467 (15)
H60.34510.43980.56030.056*
C70.2887 (2)0.3417 (5)0.6061 (8)0.0412 (14)
C80.2665 (3)0.1512 (6)0.6131 (9)0.0485 (17)
C90.1720 (2)0.4603 (6)0.7129 (10)0.0507 (17)
H9A0.17290.51720.80380.076*
H9B0.16350.38140.74830.076*
H9C0.14810.48580.61540.076*
C100.3211 (3)0.6695 (7)0.5822 (11)0.075 (3)
H10A0.30190.71710.49260.112*
H10B0.35140.64820.55260.112*
H10C0.32750.71580.68560.112*
C110.2774 (3)0.0181 (6)0.5924 (12)0.071 (3)
H11A0.25690.03050.64680.107*
H11B0.31090.00220.64360.107*
H11C0.27150.00170.47370.107*
C120.1395 (2)0.1660 (6)0.4814 (9)0.0512 (15)
H12A0.15240.11300.40720.077*
H12B0.14050.24830.44310.077*
H12C0.10650.14370.48060.077*
C130.4940 (3)0.3120 (8)0.3690 (11)0.064 (2)
C140.4821 (3)0.1834 (6)0.3652 (8)0.0507 (17)
C150.5031 (3)0.0711 (7)0.3397 (11)0.0552 (16)
C160.4782 (3)0.0334 (7)0.3580 (10)0.0565 (19)
C170.4301 (3)0.0306 (7)0.4013 (10)0.059 (2)
C180.4098 (3)0.0785 (7)0.4214 (10)0.060 (2)
H180.37880.08340.44470.072*
C190.4362 (2)0.1824 (7)0.4064 (9)0.0511 (17)
C200.4563 (3)0.3746 (8)0.4063 (11)0.065 (2)
C210.5530 (3)0.0662 (10)0.2927 (12)0.084 (3)
H21A0.57670.03610.38770.126*
H21B0.56220.14620.26390.126*
H21C0.55150.01310.19710.126*
C220.4033 (3)0.1465 (8)0.4158 (11)0.079 (3)
H22A0.37160.12820.43550.118*
H22B0.42110.19360.50890.118*
H22C0.40010.19200.31230.118*
C230.4473 (4)0.5046 (8)0.4241 (14)0.085 (3)
H23A0.42740.53470.32040.128*
H23B0.47780.54730.44770.128*
H23C0.43090.51680.51580.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0783 (5)0.0482 (3)0.0674 (4)0.0096 (4)0.0070 (3)0.0056 (3)
Br20.0915 (7)0.0859 (5)0.0720 (6)0.0122 (5)0.0022 (5)0.0039 (4)
S10.0518 (11)0.0758 (13)0.0445 (10)0.0326 (9)0.0081 (8)0.0092 (8)
S2A0.026 (2)0.063 (4)0.063 (4)0.006 (2)0.000 (2)0.000 (3)
O4A0.067 (8)0.048 (6)0.085 (10)0.015 (6)0.011 (7)0.037 (6)
C24A0.044 (4)0.080 (4)0.056 (5)0.009 (3)0.001 (3)0.005 (3)
S2B0.075 (3)0.112 (5)0.053 (3)0.062 (3)0.006 (2)0.018 (3)
O4B0.065 (6)0.163 (11)0.075 (7)0.021 (6)0.027 (5)0.026 (7)
C24B0.044 (4)0.080 (4)0.056 (5)0.009 (3)0.001 (3)0.005 (3)
O10.040 (3)0.041 (2)0.066 (3)0.0064 (17)0.013 (2)0.0089 (19)
O20.091 (5)0.082 (4)0.103 (5)0.044 (4)0.015 (4)0.058 (4)
O30.038 (3)0.068 (3)0.075 (4)0.005 (2)0.005 (2)0.004 (2)
C10.035 (4)0.040 (3)0.036 (3)0.013 (2)0.009 (3)0.006 (2)
C20.024 (3)0.046 (3)0.033 (3)0.008 (2)0.000 (2)0.002 (2)
C30.029 (3)0.055 (3)0.034 (3)0.006 (3)0.000 (2)0.001 (3)
C40.041 (4)0.045 (3)0.036 (3)0.009 (3)0.005 (3)0.000 (2)
C50.049 (4)0.044 (3)0.043 (4)0.013 (3)0.003 (3)0.002 (2)
C60.030 (3)0.059 (4)0.052 (4)0.014 (3)0.010 (3)0.004 (3)
C70.037 (3)0.041 (3)0.044 (3)0.005 (2)0.006 (3)0.004 (2)
C80.051 (4)0.043 (4)0.045 (4)0.006 (3)0.003 (3)0.003 (3)
C90.041 (4)0.058 (4)0.055 (4)0.000 (3)0.015 (3)0.008 (3)
C100.069 (6)0.061 (4)0.090 (6)0.035 (4)0.010 (5)0.016 (4)
C110.078 (6)0.045 (4)0.082 (6)0.005 (4)0.002 (5)0.007 (4)
C120.038 (4)0.058 (3)0.056 (4)0.012 (3)0.008 (3)0.007 (3)
C130.043 (5)0.084 (5)0.058 (5)0.020 (3)0.004 (4)0.016 (4)
C140.042 (4)0.069 (4)0.040 (4)0.021 (3)0.004 (3)0.009 (3)
C150.043 (4)0.087 (5)0.035 (3)0.005 (4)0.008 (3)0.008 (4)
C160.046 (4)0.070 (4)0.046 (4)0.001 (3)0.005 (3)0.003 (3)
C170.047 (5)0.066 (4)0.061 (5)0.017 (3)0.003 (4)0.011 (3)
C180.038 (4)0.072 (5)0.067 (5)0.022 (3)0.007 (3)0.009 (3)
C190.029 (3)0.070 (4)0.051 (4)0.015 (3)0.001 (3)0.007 (3)
C200.047 (4)0.081 (5)0.066 (5)0.014 (4)0.006 (4)0.006 (4)
C210.055 (5)0.132 (9)0.069 (6)0.004 (5)0.023 (4)0.006 (5)
C220.073 (6)0.089 (6)0.068 (5)0.039 (5)0.004 (4)0.014 (4)
C230.096 (7)0.070 (6)0.089 (7)0.019 (5)0.018 (6)0.001 (5)
Geometric parameters (Å, º) top
Br1—C41.941 (6)C9—H9C0.9600
Br2—C161.871 (8)C10—H10A0.9600
S1—O21.499 (7)C10—H10B0.9600
S1—C11.783 (6)C10—H10C0.9600
S1—C121.788 (7)C11—H11A0.9600
S2A—O4A1.102 (13)C11—H11B0.9600
S2A—C24A1.761 (10)C11—H11C0.9600
S2A—C131.848 (10)C12—H12A0.9600
C24A—H24A0.9600C12—H12B0.9600
C24A—H24B0.9600C12—H12C0.9600
C24A—H24C0.9600C13—C201.352 (14)
S2B—O4B1.044 (11)C13—C141.454 (10)
S2B—C131.801 (10)C14—C191.401 (10)
O1—C71.372 (7)C14—C151.405 (11)
O1—C81.392 (9)C15—C161.372 (10)
O3—C201.344 (10)C15—C211.530 (12)
O3—C191.375 (10)C16—C171.469 (12)
C1—C81.328 (10)C17—C181.355 (11)
C1—C21.462 (7)C17—C221.498 (10)
C2—C71.389 (9)C18—C191.383 (9)
C2—C31.413 (9)C18—H180.9300
C3—C41.411 (9)C20—C231.466 (12)
C3—C91.479 (11)C21—H21A0.9600
C4—C51.362 (10)C21—H21B0.9600
C5—C61.375 (9)C21—H21C0.9600
C5—C101.513 (8)C22—H22A0.9600
C6—C71.375 (8)C22—H22B0.9600
C6—H60.9300C22—H22C0.9600
C8—C111.514 (10)C23—H23A0.9600
C9—H9A0.9600C23—H23B0.9600
C9—H9B0.9600C23—H23C0.9600
O2—S1—C1108.4 (4)S1—C12—H12A109.5
O2—S1—C12107.1 (4)S1—C12—H12B109.5
C1—S1—C1296.4 (3)H12A—C12—H12B109.5
O4A—S2A—C24A138.7 (9)S1—C12—H12C109.5
O4A—S2A—C13120.3 (8)H12A—C12—H12C109.5
C24A—S2A—C1397.6 (5)H12B—C12—H12C109.5
O4B—S2B—C13130.4 (7)C20—C13—C14108.3 (7)
C7—O1—C8105.1 (5)C20—C13—S2B132.0 (7)
C20—O3—C19107.4 (7)C14—C13—S2B119.6 (8)
C8—C1—C2107.2 (5)C20—C13—S2A112.6 (7)
C8—C1—S1125.6 (4)C14—C13—S2A138.9 (8)
C2—C1—S1127.2 (5)C19—C14—C15117.8 (6)
C7—C2—C3120.3 (5)C19—C14—C13102.9 (7)
C7—C2—C1104.1 (5)C15—C14—C13139.3 (7)
C3—C2—C1135.7 (6)C16—C15—C14118.8 (7)
C4—C3—C2112.8 (7)C16—C15—C21120.9 (8)
C4—C3—C9125.2 (6)C14—C15—C21120.3 (7)
C2—C3—C9122.0 (5)C15—C16—C17121.8 (7)
C5—C4—C3127.0 (6)C15—C16—Br2120.9 (6)
C5—C4—Br1117.8 (4)C17—C16—Br2117.3 (5)
C3—C4—Br1115.2 (5)C18—C17—C16118.6 (6)
C4—C5—C6118.4 (5)C18—C17—C22121.0 (8)
C4—C5—C10123.1 (6)C16—C17—C22120.3 (8)
C6—C5—C10118.5 (7)C17—C18—C19118.4 (7)
C7—C6—C5117.7 (6)C17—C18—H18120.8
C7—C6—H6121.1C19—C18—H18120.8
C5—C6—H6121.1O3—C19—C18124.8 (7)
O1—C7—C6124.5 (6)O3—C19—C14110.7 (6)
O1—C7—C2111.7 (5)C18—C19—C14124.5 (8)
C6—C7—C2123.7 (6)O3—C20—C13110.6 (7)
C1—C8—O1112.0 (5)O3—C20—C23116.5 (8)
C1—C8—C11136.1 (7)C13—C20—C23132.8 (8)
O1—C8—C11111.9 (7)C15—C21—H21A109.5
C3—C9—H9A109.5C15—C21—H21B109.5
C3—C9—H9B109.5H21A—C21—H21B109.5
H9A—C9—H9B109.5C15—C21—H21C109.5
C3—C9—H9C109.5H21A—C21—H21C109.5
H9A—C9—H9C109.5H21B—C21—H21C109.5
H9B—C9—H9C109.5C17—C22—H22A109.5
C5—C10—H10A109.5C17—C22—H22B109.5
C5—C10—H10B109.5H22A—C22—H22B109.5
H10A—C10—H10B109.5C17—C22—H22C109.5
C5—C10—H10C109.5H22A—C22—H22C109.5
H10A—C10—H10C109.5H22B—C22—H22C109.5
H10B—C10—H10C109.5C20—C23—H23A109.5
C8—C11—H11A109.5C20—C23—H23B109.5
C8—C11—H11B109.5H23A—C23—H23B109.5
H11A—C11—H11B109.5C20—C23—H23C109.5
C8—C11—H11C109.5H23A—C23—H23C109.5
H11A—C11—H11C109.5H23B—C23—H23C109.5
H11B—C11—H11C109.5
O2—S1—C1—C814.9 (8)O4A—S2A—C13—C14139.6 (14)
C12—S1—C1—C895.6 (7)C24A—S2A—C13—C1457.7 (11)
O2—S1—C1—C2165.0 (6)O4A—S2A—C13—S2B115.7 (17)
C12—S1—C1—C284.5 (6)C24A—S2A—C13—S2B81.5 (10)
C8—C1—C2—C70.7 (7)C20—C13—C14—C191.2 (9)
S1—C1—C2—C7179.2 (5)S2B—C13—C14—C19177.5 (6)
C8—C1—C2—C3179.8 (8)S2A—C13—C14—C19173.1 (9)
S1—C1—C2—C30.3 (11)C20—C13—C14—C15178.4 (9)
C7—C2—C3—C42.2 (9)S2B—C13—C14—C155.3 (14)
C1—C2—C3—C4178.3 (7)S2A—C13—C14—C154.2 (18)
C7—C2—C3—C9178.6 (7)C19—C14—C15—C160.7 (11)
C1—C2—C3—C90.9 (12)C13—C14—C15—C16176.2 (9)
C2—C3—C4—C52.3 (11)C19—C14—C15—C21179.4 (7)
C9—C3—C4—C5178.5 (7)C13—C14—C15—C213.6 (15)
C2—C3—C4—Br1177.7 (5)C14—C15—C16—C170.7 (11)
C9—C3—C4—Br11.5 (10)C21—C15—C16—C17179.4 (8)
C3—C4—C5—C61.5 (11)C14—C15—C16—Br2176.9 (6)
Br1—C4—C5—C6178.6 (4)C21—C15—C16—Br23.0 (10)
C3—C4—C5—C10179.5 (7)C15—C16—C17—C180.9 (11)
Br1—C4—C5—C100.5 (9)Br2—C16—C17—C18178.6 (5)
C4—C5—C6—C70.5 (9)C15—C16—C17—C22178.4 (7)
C10—C5—C6—C7178.6 (6)Br2—C16—C17—C223.9 (10)
C8—O1—C7—C6178.8 (6)C16—C17—C18—C192.4 (11)
C8—O1—C7—C21.2 (7)C22—C17—C18—C19179.9 (7)
C5—C6—C7—O1177.9 (6)C20—O3—C19—C18178.4 (7)
C5—C6—C7—C20.6 (10)C20—O3—C19—C143.1 (8)
C3—C2—C7—O1179.2 (6)C17—C18—C19—O3179.2 (7)
C1—C2—C7—O11.2 (7)C17—C18—C19—C142.6 (11)
C3—C2—C7—C61.5 (10)C15—C14—C19—O3179.4 (6)
C1—C2—C7—C6178.8 (6)C13—C14—C19—O32.6 (8)
C2—C1—C8—O10.0 (8)C15—C14—C19—C181.0 (11)
S1—C1—C8—O1179.9 (5)C13—C14—C19—C18178.9 (7)
C2—C1—C8—C11178.3 (8)C19—O3—C20—C132.2 (9)
S1—C1—C8—C111.8 (13)C19—O3—C20—C23179.3 (7)
C7—O1—C8—C10.7 (8)C14—C13—C20—O30.6 (10)
C7—O1—C8—C11179.5 (6)S2B—C13—C20—O3175.1 (7)
O4B—S2B—C13—C2094.9 (16)S2A—C13—C20—O3176.5 (6)
O4B—S2B—C13—C1480.3 (15)C14—C13—C20—C23178.7 (9)
O4B—S2B—C13—S2A117.4 (19)S2B—C13—C20—C233.1 (16)
O4A—S2A—C13—C2046.3 (13)S2A—C13—C20—C235.3 (13)
C24A—S2A—C13—C20116.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.962.343.298 (9)179
C12—H12C···O4Bii0.962.423.168 (12)134
C24A—H24A···O4Aiii0.962.353.199 (13)148
C9—H9A···Cg2iii0.963.303.943 (9)124
Symmetry codes: (i) x, y, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H13BrO2S
Mr301.19
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)28.128 (4), 11.013 (1), 8.052 (1)
β (°) 102.290 (2)
V3)2437.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)3.53
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.269, 0.345
No. of measured, independent and
observed [I > 2σ(I)] reflections
7147, 4360, 3737
Rint0.020
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.09
No. of reflections4360
No. of parameters317
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.90
Absolute structureFlack (1983), 1736 Friedel pairs
Absolute structure parameter0.70 (2)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.962.343.298 (9)178.6
C12—H12C···O4Bii0.962.423.168 (12)134.4
C24A—H24A···O4Aiii0.962.353.199 (13)147.8
C9—H9A···Cg2iii0.963.303.943 (9)123.6
Symmetry codes: (i) x, y, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z+1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o521–o522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o1823–o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds