metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(N,N-di­ethyl­di­thio­carbamato-κ2S:S′)phenyl­bis­muth(III)]-μ-chlorido]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@sohu.com

(Received 16 September 2008; accepted 10 October 2008; online 22 October 2008)

In the title compound, [Bi(C6H5)(C5H10NS2)Cl]n, the Bi atom is coordinated by two S atoms of the dithio­carbamate ligand, one C atom of the phenyl group and one Cl atom in a four-coordinated tetra­hedral configuration. Mol­ecules are linked by Cl atoms to form a zigzag chain extending in the c direction.

Related literature

For related literature see: Yin et al. (2003[Yin, H. D., Wang, C. H. & Xing, Q. J. (2003). Chin. J. Inorg. Chem. 19, 955-958.]); Bardaji et al. (1994[Bardaji, M., Connelly, N. G., Gimeno, M. C., Jimenez, J., Jones, P. G., Laguna, A. & Laguna, M. (1994). J. Chem. Soc. Dalton Trans. pp. 1163-1168.]); Xu et al. (2001[Xu, L. Z., Zhao, P. S. & Zhang, S. S. (2001). Chin. J. Chem. 19, 436-440.]).

[Scheme 1]

Experimental

Crystal data
  • [Bi(C6H5)(C5H10NS2)Cl]

  • Mr = 469.79

  • Monoclinic, P 21 /c

  • a = 9.2029 (9) Å

  • b = 18.1432 (17) Å

  • c = 9.0779 (8) Å

  • β = 106.811 (2)°

  • V = 1451.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.60 mm−1

  • T = 298 (2) K

  • 0.23 × 0.22 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.160, Tmax = 0.177 (expected range = 0.064–0.071)

  • 6443 measured reflections

  • 2444 independent reflections

  • 1877 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.149

  • S = 0.92

  • 2444 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 2.04 e Å−3

  • Δρmin = −2.84 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dithiocarbamates have been known as effective ligands for many years. They can form chelates (Xu et al., 2001) or act as bridging ligands (Bardaji et al., 1994). However, the chemistry of main-group metal complexes with dithiocarbamates has been less extensively studied, and only a few reports describing bismuth dithiocarbamate complexes have appeared (Yin et al., 2003). As a continuation of our interest in sulfur-containing ligands, we report here the synthesis and structure of the title compound.

The molecular structure of the title compound is illustrated in Fig. 1. The geometry of the Bi atom is four-coordinated tetrahedral. Two Bi—S bonds distance are not similar, the Bi1—S1 bond length is 2.647 (3) Å and the Bi1—S2 bond length is 2.690 (4) Å. The molecules are linked by the chlorine atom Cl1 [Bi1-Cl1 = 2.908 (3) Å and Bi1···Cl1i = 2.920 (3); (i) = x, -y+0.5, z+0.5] to form a one-dimensional zig-zag polymer chain extending in the c direction (Fig. 2).

Related literature top

For related literature see: Yin et al. (2003); Bardaji et al. (1994); Xu et al. (2001).

Experimental top

A mixture of (N,N-diethylcarbamato-1k2 S:S)sodium (0.2 mmol) and phenylbismuth dichloride (0.1 mmol) in absolute THF was heated under reflux with stirring for 24 h. Diethyl ether and hexane were added to this solution to precipitate the product, which was then recrystallized from a dichloromethane-hexane mixture (1:1 v/v). After 14 days large colorless block-shaped crystals of the title complex, suitable for X-ray diffraction analysis, were obtained.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms, with methylene C—H distances of 0.97Å and aromatic C—H distances of 0.93Å. The Uiso(H) values were set at 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The moleculare structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the a axis.
catena-Poly[[(N,N-diethyldithiocarbamato- κ2S:S')phenylbismuth(III)]-µ-chlorido] top
Crystal data top
[Bi(C6H5)(C5H10NS2)Cl]F(000) = 880
Mr = 469.79Dx = 2.151 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2029 (9) ÅCell parameters from 3883 reflections
b = 18.1432 (17) Åθ = 2.3–28.2°
c = 9.0779 (8) ŵ = 12.60 mm1
β = 106.811 (2)°T = 298 K
V = 1451.0 (2) Å3Block, colorless
Z = 40.23 × 0.22 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2444 independent reflections
Radiation source: fine-focus sealed tube1877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.160, Tmax = 0.177k = 2119
6443 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0942P)2]
where P = (Fo2 + 2Fc2)/3
2444 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 2.04 e Å3
0 restraintsΔρmin = 2.84 e Å3
Crystal data top
[Bi(C6H5)(C5H10NS2)Cl]V = 1451.0 (2) Å3
Mr = 469.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2029 (9) ŵ = 12.60 mm1
b = 18.1432 (17) ÅT = 298 K
c = 9.0779 (8) Å0.23 × 0.22 × 0.21 mm
β = 106.811 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2444 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1877 reflections with I > 2σ(I)
Tmin = 0.160, Tmax = 0.177Rint = 0.095
6443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.92Δρmax = 2.04 e Å3
2444 reflectionsΔρmin = 2.84 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.83539 (5)0.19587 (2)0.77837 (4)0.0353 (2)
Cl10.8497 (4)0.32758 (19)0.6005 (3)0.0448 (8)
N10.7954 (11)0.0056 (5)0.4907 (10)0.036 (2)
S10.8233 (4)0.14036 (18)0.5054 (3)0.0435 (8)
S20.8036 (4)0.0484 (2)0.7681 (3)0.0462 (8)
C10.8051 (13)0.0546 (7)0.5771 (12)0.040 (3)
C20.7991 (16)0.0000 (7)0.3290 (12)0.051 (3)
H2A0.83090.04700.29760.061*
H2B0.87370.03660.32250.061*
C30.6464 (14)0.0208 (8)0.2196 (11)0.053 (4)
H3A0.57210.01540.22550.079*
H3B0.65400.02270.11640.079*
H3C0.61630.06820.24770.079*
C40.7770 (14)0.0790 (7)0.5486 (14)0.045 (3)
H4A0.82830.08070.65810.054*
H4B0.82520.11480.49850.054*
C50.6136 (17)0.0998 (9)0.5216 (18)0.069 (4)
H5A0.56450.06370.56790.103*
H5B0.60780.14720.56670.103*
H5C0.56410.10200.41300.103*
C61.0885 (14)0.1853 (6)0.8490 (12)0.035 (3)
C71.1620 (16)0.1381 (8)0.9745 (13)0.052 (4)
H71.10500.11241.02710.063*
C81.3156 (18)0.1310 (9)1.0167 (15)0.063 (4)
H81.36240.10021.09850.076*
C91.4023 (18)0.1673 (9)0.9431 (17)0.064 (4)
H91.50740.16260.97610.077*
C101.3332 (13)0.2117 (8)0.8179 (18)0.055 (4)
H101.39190.23510.76390.066*
C111.1787 (15)0.2213 (7)0.7736 (15)0.048 (3)
H111.13390.25240.69150.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0391 (4)0.0378 (4)0.0300 (3)0.00102 (19)0.0113 (2)0.00018 (16)
Cl10.059 (2)0.0432 (18)0.0374 (14)0.0086 (16)0.0221 (14)0.0032 (13)
N10.035 (6)0.034 (6)0.039 (5)0.008 (5)0.009 (4)0.003 (4)
S10.064 (2)0.0374 (18)0.0303 (13)0.0063 (16)0.0152 (13)0.0013 (12)
S20.061 (2)0.043 (2)0.0348 (14)0.0054 (17)0.0142 (14)0.0066 (13)
C10.040 (7)0.043 (8)0.037 (6)0.002 (6)0.010 (5)0.005 (5)
C20.073 (10)0.043 (8)0.039 (6)0.014 (7)0.022 (6)0.003 (5)
C30.060 (10)0.048 (9)0.046 (7)0.008 (7)0.008 (6)0.003 (5)
C40.039 (8)0.030 (7)0.063 (7)0.001 (6)0.012 (6)0.002 (6)
C50.073 (11)0.052 (10)0.093 (10)0.010 (9)0.042 (9)0.009 (8)
C60.041 (8)0.032 (7)0.037 (6)0.009 (5)0.019 (5)0.002 (5)
C70.058 (9)0.057 (10)0.043 (6)0.021 (7)0.016 (6)0.005 (6)
C80.069 (11)0.068 (11)0.051 (7)0.031 (9)0.016 (7)0.004 (7)
C90.046 (9)0.067 (11)0.071 (9)0.006 (8)0.000 (8)0.028 (9)
C100.012 (7)0.059 (10)0.094 (10)0.009 (6)0.016 (7)0.006 (8)
C110.055 (9)0.039 (8)0.055 (7)0.012 (7)0.023 (6)0.000 (6)
Geometric parameters (Å, º) top
Bi1—C62.238 (13)C4—C51.500 (17)
Bi1—S12.647 (3)C4—H4A0.9700
Bi1—S22.690 (4)C4—H4B0.9700
Bi1—Cl12.908 (3)C5—H5A0.9600
Bi1—Cl1i2.920 (3)C5—H5B0.9600
Cl1—Bi1ii2.920 (3)C5—H5C0.9600
N1—C11.332 (15)C6—C111.383 (16)
N1—C41.459 (14)C6—C71.429 (16)
N1—C21.481 (13)C7—C81.360 (19)
S1—C11.714 (13)C7—H70.9300
S2—C11.742 (10)C8—C91.35 (2)
C2—C31.516 (15)C8—H80.9300
C2—H2A0.9700C9—C101.39 (2)
C2—H2B0.9700C9—H90.9300
C3—H3A0.9600C10—C111.373 (16)
C3—H3B0.9600C10—H100.9300
C3—H3C0.9600C11—H110.9300
C6—Bi1—S189.7 (3)N1—C4—C5112.7 (11)
C6—Bi1—S291.1 (3)N1—C4—H4A109.0
S1—Bi1—S267.33 (9)C5—C4—H4A109.0
C6—Bi1—Cl191.1 (3)N1—C4—H4B109.0
S1—Bi1—Cl177.84 (9)C5—C4—H4B109.0
S2—Bi1—Cl1145.09 (8)H4A—C4—H4B107.8
C6—Bi1—Cl1i87.6 (3)C4—C5—H5A109.5
S1—Bi1—Cl1i149.27 (10)C4—C5—H5B109.5
S2—Bi1—Cl1i82.11 (8)H5A—C5—H5B109.5
Cl1—Bi1—Cl1i132.80 (6)C4—C5—H5C109.5
Bi1—Cl1—Bi1ii116.11 (11)H5A—C5—H5C109.5
C1—N1—C4122.1 (9)H5B—C5—H5C109.5
C1—N1—C2120.7 (10)C11—C6—C7117.6 (12)
C4—N1—C2117.2 (9)C11—C6—Bi1122.8 (9)
C1—S1—Bi188.4 (4)C7—C6—Bi1119.5 (9)
C1—S2—Bi186.5 (4)C8—C7—C6119.7 (13)
N1—C1—S1121.2 (8)C8—C7—H7120.2
N1—C1—S2121.0 (9)C6—C7—H7120.2
S1—C1—S2117.8 (7)C7—C8—C9122.0 (14)
N1—C2—C3112.5 (10)C7—C8—H8119.0
N1—C2—H2A109.1C9—C8—H8119.0
C3—C2—H2A109.1C8—C9—C10119.4 (15)
N1—C2—H2B109.1C8—C9—H9120.3
C3—C2—H2B109.1C10—C9—H9120.3
H2A—C2—H2B107.8C11—C10—C9120.2 (14)
C2—C3—H3A109.5C11—C10—H10119.9
C2—C3—H3B109.5C9—C10—H10119.9
H3A—C3—H3B109.5C6—C11—C10121.0 (13)
C2—C3—H3C109.5C6—C11—H11119.5
H3A—C3—H3C109.5C10—C11—H11119.5
H3B—C3—H3C109.5
C6—Bi1—Cl1—Bi1ii90.5 (3)C1—N1—C2—C381.2 (14)
S1—Bi1—Cl1—Bi1ii1.09 (12)C4—N1—C2—C397.5 (13)
S2—Bi1—Cl1—Bi1ii2.9 (2)C1—N1—C4—C589.4 (14)
Cl1i—Bi1—Cl1—Bi1ii178.29 (5)C2—N1—C4—C589.2 (13)
C6—Bi1—S1—C191.2 (5)S1—Bi1—C6—C1160.6 (10)
S2—Bi1—S1—C10.1 (4)S2—Bi1—C6—C11127.9 (10)
Cl1—Bi1—S1—C1177.6 (4)Cl1—Bi1—C6—C1117.2 (10)
Cl1i—Bi1—S1—C16.4 (5)Cl1i—Bi1—C6—C11150.0 (10)
C6—Bi1—S2—C189.1 (5)S1—Bi1—C6—C7117.6 (9)
S1—Bi1—S2—C10.1 (4)S2—Bi1—C6—C750.3 (9)
Cl1—Bi1—S2—C14.3 (4)Cl1—Bi1—C6—C7164.6 (9)
Cl1i—Bi1—S2—C1176.6 (4)Cl1i—Bi1—C6—C731.8 (9)
C4—N1—C1—S1178.9 (8)C11—C6—C7—C81.0 (19)
C2—N1—C1—S10.3 (15)Bi1—C6—C7—C8179.3 (10)
C4—N1—C1—S22.4 (15)C6—C7—C8—C90 (2)
C2—N1—C1—S2179.0 (8)C7—C8—C9—C102 (2)
Bi1—S1—C1—N1178.6 (10)C8—C9—C10—C113 (2)
Bi1—S1—C1—S20.1 (7)C7—C6—C11—C100.1 (19)
Bi1—S2—C1—N1178.6 (10)Bi1—C6—C11—C10178.2 (10)
Bi1—S2—C1—S10.1 (6)C9—C10—C11—C62 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Bi(C6H5)(C5H10NS2)Cl]
Mr469.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.2029 (9), 18.1432 (17), 9.0779 (8)
β (°) 106.811 (2)
V3)1451.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)12.60
Crystal size (mm)0.23 × 0.22 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.160, 0.177
No. of measured, independent and
observed [I > 2σ(I)] reflections
6443, 2444, 1877
Rint0.095
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.149, 0.92
No. of reflections2444
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.04, 2.84

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (grant No. 20771053), and the Natural Science Foundation of Shandong Province (grant No. 2005ZX09) for financial support.

References

First citationBardaji, M., Connelly, N. G., Gimeno, M. C., Jimenez, J., Jones, P. G., Laguna, A. & Laguna, M. (1994). J. Chem. Soc. Dalton Trans. pp. 1163–1168.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L. Z., Zhao, P. S. & Zhang, S. S. (2001). Chin. J. Chem. 19, 436–440.  CrossRef CAS Google Scholar
First citationYin, H. D., Wang, C. H. & Xing, Q. J. (2003). Chin. J. Inorg. Chem. 19, 955–958.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds