organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z,Z)-1,4-Di­iodo-1,4-bis­­(tri­methyl­silyl)buta-1,3-diene

aInstitut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, bInstitut für Anorganische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and cInstitut für Reine und Angewandte Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26129 Oldenburg, Germany
*Correspondence e-mail: bats@chemie.uni-frankfurt.de

(Received 23 October 2008; accepted 24 October 2008; online 31 October 2008)

The asymmetric unit of the title compound, C10H20I2Si2, contains two half-mol­ecules. Both complete molecules are generated by crystallographic inversion centers located at the mid-points of the central C—C single bonds; the butadiene groups are planar, with a trans conformation about the central C—C bond. The mol­ecules show short intra­molecular H⋯I contacts of 2.89 and 2.92 Å. The crystal packing shows no short inter­molecular contacts.

Related literature

For the synthesis of the title compound, see: Yamaguchi et al. (1998[Yamaguchi, S., Jin, R.-Z., Tamao, K. & Sato, F. (1998). J. Org. Chem. 63, 10060-10062.]). For related structures, see: Saito et al. (2007[Saito, M., Nakamura, M., Tajima, T. & Yoshioka, M. (2007). Angew. Chem. Int. Ed. 46, 1504-1507.]); Yamamoto et al. (2002[Yamamoto, Y., Ohno, T. & Itoh, K. (2002). Chem. Eur. J. 8, 4734-4741.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C10H20I2Si2

  • Mr = 450.24

  • Triclinic, [P \overline 1]

  • a = 6.3553 (17) Å

  • b = 11.502 (2) Å

  • c = 11.698 (2) Å

  • α = 103.027 (13)°

  • β = 90.555 (17)°

  • γ = 90.99 (2)°

  • V = 832.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.89 mm−1

  • T = 155 (2) K

  • 0.46 × 0.36 × 0.28 mm

Data collection
  • Siemens SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.275, Tmax = 0.336

  • 15331 measured reflections

  • 5837 independent reflections

  • 5272 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.059

  • S = 1.03

  • 5837 reflections

  • 134 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯I1i 0.95 2.92 3.394 (2) 112
C6—H6⋯I2ii 0.95 2.89 3.378 (2) 113
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound crystallized with two independent centrosymmetric molecules in the unit cell (Fig.1). Each molecule has a crystallographic inversion center at the midpoint of the central C—C single bond. The geometrical parameters of both molecules are similar. The butadiene groups are planar with a trans-conformation about the central C—C bond. The trimethylsilyl groups adopt orientations with a methyl group syn-periplanar with the nearest C=C double bond: torsion angles C3—Si1—C2—C1 = -12.1 (2)° and C9—Si2—C7—C6 = -21.2 (2)°. The molecules show intramolecular H···I contacts of 2.89 Å and 2.92 Å (Table 1), which are shorter than the van der Waals contact distance of 3.18 Å (Bondi, 1964).

The crystal packing of the title compound (Fig. 2) shows no short intermolecular contacts. The shortest intermolecular I···I distances of 3.876 (1) Å [I1···I2i; symmetry operation i) = 1+x, y, z] and 3.973 (1) Å [I1···I2] are comparable to the van der Waals contact distance of 3.96 Å.

Related literature top

For the synthesis of the title compound, see: Yamaguchi et al. (1998). For related structures, see: Saito et al. (2007); Yamamoto et al. (2002). For van der Waals radii, see: Bondi (1964).

Experimental top

The title compound was prepared as described by Yamaguchi et al. (1998), and recrystallized from n-hexane at 153 K.

Refinement top

H atoms were geometrically positioned and treated as riding atoms: Cplanar—H = 0.95 Å, Cmethyl—H=0.98 Å, with Uiso(H)= 1.2Ueq(Cbutene) and = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules of the title compound, with displacement ellipsoids drawn at the 50% probability level (Unlabeled atoms are related to labeled atoms by inversion centers at the midpoints of the molecules).
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis (the displacement ellipsoids are drawn at the 50% probability level).
(Z,Z)-1,4-Diiodo-1,4-bis(trimethylsilyl)buta-1,3-diene top
Crystal data top
C10H20I2Si2Z = 2
Mr = 450.24F(000) = 428
Triclinic, P1Dx = 1.795 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3553 (17) ÅCell parameters from 124 reflections
b = 11.502 (2) Åθ = 3–23°
c = 11.698 (2) ŵ = 3.89 mm1
α = 103.027 (13)°T = 155 K
β = 90.555 (17)°Block, colorless
γ = 90.99 (2)°0.46 × 0.36 × 0.28 mm
V = 832.9 (3) Å3
Data collection top
Siemens SMART 1K CCD
diffractometer
5837 independent reflections
Radiation source: normal-focus sealed tube5272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 32.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 99
Tmin = 0.275, Tmax = 0.336k = 1717
15331 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
5837 reflectionsΔρmax = 1.12 e Å3
134 parametersΔρmin = 0.94 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (5)
Crystal data top
C10H20I2Si2γ = 90.99 (2)°
Mr = 450.24V = 832.9 (3) Å3
Triclinic, P1Z = 2
a = 6.3553 (17) ÅMo Kα radiation
b = 11.502 (2) ŵ = 3.89 mm1
c = 11.698 (2) ÅT = 155 K
α = 103.027 (13)°0.46 × 0.36 × 0.28 mm
β = 90.555 (17)°
Data collection top
Siemens SMART 1K CCD
diffractometer
5837 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
5272 reflections with I > 2σ(I)
Tmin = 0.275, Tmax = 0.336Rint = 0.021
15331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.03Δρmax = 1.12 e Å3
5837 reflectionsΔρmin = 0.94 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.631493 (18)0.679368 (10)0.508829 (10)0.02900 (4)
I20.124665 (17)0.825214 (9)0.402449 (9)0.02623 (4)
Si10.76330 (7)0.63323 (4)0.77198 (4)0.02223 (9)
Si20.47343 (7)0.86551 (4)0.19545 (4)0.02225 (9)
C10.9715 (3)0.51656 (14)0.56130 (13)0.0211 (3)
H11.05020.48040.61290.025*
C20.8224 (2)0.59143 (13)0.61143 (13)0.0198 (3)
C30.9030 (3)0.53065 (18)0.84764 (16)0.0321 (4)
H3A0.85750.54460.92930.048*
H3B1.05520.54550.84580.048*
H3C0.87020.44780.80770.048*
C40.8577 (4)0.79022 (18)0.8278 (2)0.0405 (5)
H4A0.82700.81570.91160.061*
H4B0.78580.84220.78480.061*
H4C1.00980.79530.81650.061*
C50.4740 (3)0.62065 (18)0.79288 (17)0.0322 (4)
H5A0.44560.62500.87590.048*
H5B0.42060.54420.74570.048*
H5C0.40370.68620.76800.048*
C60.5181 (3)0.98312 (14)0.43727 (13)0.0221 (3)
H60.63911.01800.41030.027*
C70.4013 (3)0.90828 (14)0.35421 (13)0.0210 (3)
C80.6036 (3)0.71790 (16)0.16638 (17)0.0332 (4)
H8A0.72520.72200.21940.050*
H8B0.65060.69740.08490.050*
H8C0.50340.65670.17960.050*
C90.6592 (3)0.98330 (18)0.16797 (18)0.0361 (4)
H9A0.78460.98700.21820.054*
H9B0.59011.06070.18590.054*
H9C0.70050.96410.08540.054*
C100.2345 (3)0.85504 (18)0.09994 (16)0.0342 (4)
H10A0.27590.83700.01740.051*
H10B0.16130.93120.11820.051*
H10C0.14040.79140.11390.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02999 (7)0.03118 (7)0.02837 (7)0.01194 (4)0.00029 (5)0.01117 (5)
I20.02378 (7)0.02802 (7)0.02598 (6)0.00570 (4)0.00083 (4)0.00471 (4)
Si10.0211 (2)0.0241 (2)0.01973 (19)0.00282 (16)0.00184 (15)0.00115 (16)
Si20.0263 (2)0.0217 (2)0.01793 (19)0.00165 (16)0.00037 (16)0.00277 (15)
C10.0221 (7)0.0224 (7)0.0191 (6)0.0036 (5)0.0002 (5)0.0049 (5)
C20.0193 (7)0.0203 (7)0.0200 (6)0.0019 (5)0.0005 (5)0.0046 (5)
C30.0302 (9)0.0438 (10)0.0248 (8)0.0096 (7)0.0031 (7)0.0123 (7)
C40.0426 (12)0.0312 (9)0.0408 (11)0.0023 (8)0.0044 (9)0.0063 (8)
C50.0224 (9)0.0423 (10)0.0307 (9)0.0045 (7)0.0053 (7)0.0050 (7)
C60.0213 (7)0.0223 (7)0.0217 (7)0.0019 (5)0.0011 (5)0.0030 (5)
C70.0219 (7)0.0203 (7)0.0207 (7)0.0013 (5)0.0008 (5)0.0045 (5)
C80.0414 (11)0.0279 (9)0.0284 (8)0.0081 (7)0.0002 (7)0.0021 (7)
C90.0410 (11)0.0339 (9)0.0349 (9)0.0020 (8)0.0109 (8)0.0108 (8)
C100.0387 (11)0.0388 (10)0.0245 (8)0.0034 (8)0.0048 (7)0.0060 (7)
Geometric parameters (Å, º) top
I1—C22.1207 (16)C4—H4B0.9800
I2—C72.1276 (17)C4—H4C0.9800
Si1—C31.8591 (19)C5—H5A0.9800
Si1—C41.863 (2)C5—H5B0.9800
Si1—C51.8647 (19)C5—H5C0.9800
Si1—C21.8742 (16)C6—C71.350 (2)
Si2—C101.863 (2)C6—C6ii1.453 (3)
Si2—C81.8644 (19)C6—H60.9500
Si2—C91.866 (2)C8—H8A0.9800
Si2—C71.8744 (16)C8—H8B0.9800
C1—C21.339 (2)C8—H8C0.9800
C1—C1i1.450 (3)C9—H9A0.9800
C1—H10.9500C9—H9B0.9800
C3—H3A0.9800C9—H9C0.9800
C3—H3B0.9800C10—H10A0.9800
C3—H3C0.9800C10—H10B0.9800
C4—H4A0.9800C10—H10C0.9800
C3—Si1—C4110.85 (10)Si1—C5—H5A109.5
C3—Si1—C5109.79 (9)Si1—C5—H5B109.5
C4—Si1—C5110.45 (10)H5A—C5—H5B109.5
C3—Si1—C2109.04 (8)Si1—C5—H5C109.5
C4—Si1—C2107.21 (9)H5A—C5—H5C109.5
C5—Si1—C2109.45 (8)H5B—C5—H5C109.5
C10—Si2—C8109.30 (9)C7—C6—C6ii128.06 (19)
C10—Si2—C9110.53 (10)C7—C6—H6116.0
C8—Si2—C9110.39 (10)C6ii—C6—H6116.0
C10—Si2—C7110.61 (9)C6—C7—Si2123.88 (12)
C8—Si2—C7108.94 (8)C6—C7—I2119.83 (12)
C9—Si2—C7107.04 (8)Si2—C7—I2116.23 (8)
C2—C1—C1i128.56 (19)Si2—C8—H8A109.5
C2—C1—H1115.7Si2—C8—H8B109.5
C1i—C1—H1115.7H8A—C8—H8B109.5
C1—C2—Si1126.01 (12)Si2—C8—H8C109.5
C1—C2—I1120.61 (12)H8A—C8—H8C109.5
Si1—C2—I1113.35 (8)H8B—C8—H8C109.5
Si1—C3—H3A109.5Si2—C9—H9A109.5
Si1—C3—H3B109.5Si2—C9—H9B109.5
H3A—C3—H3B109.5H9A—C9—H9B109.5
Si1—C3—H3C109.5Si2—C9—H9C109.5
H3A—C3—H3C109.5H9A—C9—H9C109.5
H3B—C3—H3C109.5H9B—C9—H9C109.5
Si1—C4—H4A109.5Si2—C10—H10A109.5
Si1—C4—H4B109.5Si2—C10—H10B109.5
H4A—C4—H4B109.5H10A—C10—H10B109.5
Si1—C4—H4C109.5Si2—C10—H10C109.5
H4A—C4—H4C109.5H10A—C10—H10C109.5
H4B—C4—H4C109.5H10B—C10—H10C109.5
C1i—C1—C2—Si1178.07 (17)C6ii—C6—C7—Si2176.55 (18)
C1i—C1—C2—I10.2 (3)C6ii—C6—C7—I20.6 (3)
C3—Si1—C2—C112.13 (17)C10—Si2—C7—C6141.69 (15)
C4—Si1—C2—C1107.93 (16)C8—Si2—C7—C698.15 (16)
C5—Si1—C2—C1132.25 (15)C9—Si2—C7—C621.21 (17)
C3—Si1—C2—I1169.49 (8)C10—Si2—C7—I241.11 (11)
C4—Si1—C2—I170.44 (11)C8—Si2—C7—I279.04 (11)
C5—Si1—C2—I149.37 (11)C9—Si2—C7—I2161.59 (9)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.952.923.394 (2)112
C6—H6···I2ii0.952.893.378 (2)113
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H20I2Si2
Mr450.24
Crystal system, space groupTriclinic, P1
Temperature (K)155
a, b, c (Å)6.3553 (17), 11.502 (2), 11.698 (2)
α, β, γ (°)103.027 (13), 90.555 (17), 90.99 (2)
V3)832.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.89
Crystal size (mm)0.46 × 0.36 × 0.28
Data collection
DiffractometerSiemens SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.275, 0.336
No. of measured, independent and
observed [I > 2σ(I)] reflections
15331, 5837, 5272
Rint0.021
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.059, 1.03
No. of reflections5837
No. of parameters134
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.94

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.952.923.394 (2)112
C6—H6···I2ii0.952.893.378 (2)113
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.
 

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationSaito, M., Nakamura, M., Tajima, T. & Yoshioka, M. (2007). Angew. Chem. Int. Ed. 46, 1504–1507.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYamaguchi, S., Jin, R.-Z., Tamao, K. & Sato, F. (1998). J. Org. Chem. 63, 10060–10062.  Web of Science CrossRef CAS Google Scholar
First citationYamamoto, Y., Ohno, T. & Itoh, K. (2002). Chem. Eur. J. 8, 4734–4741.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds