organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

13c-(2-Chloro­eth­oxy)-1,13c-di­hydro-2,3-ep­oxy­dibenzo[a,kl]xanthan-1-one

aSchool of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
*Correspondence e-mail: czpwyq@yahoo.com.cn

(Received 6 September 2008; accepted 25 September 2008; online 4 October 2008)

The title compound, C22H15ClO4, containing three chiral C atoms, is an inter­mediate in the design of chiral alcohols. In the crystal structure, a chain structure is generated through C—H⋯O contacts and an intramolecular C—H⋯O interaction also occurs. The dihedral angle between the benzene ring and the naphthalene system is 16.5°.

Related literature

For related literature, see: Aronne et al. (2008[Aronne, A., Turco, M., Bagnasco, G., Ramis, G., Santacesaria, E., Di Serio, M., Marenna, E., Bevilacqua, M., Cammarano, C. & Fanelli, E. (2008). Appl. Catal. A, 347, 179-185.]); Sasidharan et al. (2002[Sasidharan, M., Wu, P. & Tatsumi, T. (2002). J. Catal. 205, 332-338.]); Tan et al. (2001[Tan, D. M., Li, H. H. & Wang, B. (2001). Chin. J. Chem. 19, 91-93.]); Wang et al. (2003[Wang, B., Kang, Y. R., Yang, L. M. & Suo, J. S. (2003). J. Mol. Catal. A, 203, 29-36.]); Yamazaki (2008[Yamazaki, S. (2008). Tetrahedron, 64, 9253-9257.]).

[Scheme 1]

Experimental

Crystal data
  • C22H15ClO4

  • Mr = 378.79

  • Orthorhombic, P 21 21 21

  • a = 7.7966 (13) Å

  • b = 10.4468 (18) Å

  • c = 21.349 (4) Å

  • V = 1738.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 193 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.930, Tmax = 0.966

  • 10185 measured reflections

  • 3416 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.06

  • 3416 reflections

  • 244 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) , 1440 Friedel pairs

  • Flack parameter: 0.00 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O2i 0.95 2.55 3.392 (4) 147
C19—H19A⋯O4 0.95 2.54 3.084 (3) 117
Symmetry code: (i) x, y+1, z.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Epoxides are well known as one of the most valuable building blocks used as intermediates and precursors for pharmaceuticals (Yamazaki, 2008; Aronne, et al., 2008). The title compound, (I), is a key intermediate in the preparation of chiral alcohols, which we are designing for potential use as antiviral agents. The structure of (I), Fig. 1, provides information on the potential stereoselectivity of its ring-opening reactions (Sasidharan et al., 2002; Wang et al., 2003). The molecule of (I) contains six fused rings with the three aromatic rings almost coplanar. The six-membered carbocyclic ring adopts a slightly twisted boat conformation and the pyran ring is nearly planar. The epoxy group points in the same direction as the OCH2CH2Cl group, having a syn relationship. In the crystal structure, molecules of (I) associate in a head-to-tail manner, parallel to the b axis, via O-H···O hydrogen bonds to form a 1D structure, Fig. 2 and Table 1.

Related literature top

For related literature, see: Aronne et al. (2008); Sasidharan et al. (2002); Tan et al. (2001); Wang et al. (2003); Yamazaki (2008).

Experimental top

Compound (I) was obtained by epoxidation of 13c-(2-chloroethyloxy)-1-oxo-1,13c-dihydrodibenzo[a,kl]xanthene in methanol with aqueous hydrogen peroxide (30%) under mild reaction conditions (Tan et al., 2001). Compound (I) was the main product, isolated in a yield of 92%. Crystals suitable for X-ray analysis were obtained from the slow evaporation of an acetone solution (m.p. 527–529 K). IR (KBr disk): 3409, 2905, 2359, 1720 (s, C=O), 1454, 1267, 1097, 776, 755, 508 cm-1. 1H NMR (300 MHz in CDCl3/TMS): 3.15–3.25 (m, 2H), 3.27–3.38 (m, 2H), 4.04 (d, J = 3.9 Hz, 1H), 4.34 (d, J = 3.9 Hz, 1H), 7.24–7.26 (m, 1H), 7.27 (d, J = 9.0 Hz, 1H), 7.34–7.49 (m, 4H), 7.78–7.79 (m, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.96–8.02 (m, 1H) p.p.m. FAB-MS (m/z): 299(M+ –OCH2CH2Cl).

Refinement top

The hydrogen atoms were placed in geometrically idealized positions with C—H = 0.95 - 1.00 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom labelling and 30% probability ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. One-dimensional chain aligned along the b axis in (I) consolidated by C-H···O contacts, shown as dashed lines.
13c-(2-Chloroethoxy)-1,13c-dihydro-2,3-epoxydibenzo[a,kl]xanthan-1-one top
Crystal data top
C22H15ClO4F(000) = 784
Mr = 378.79Dx = 1.447 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3462 reflections
a = 7.7966 (13) Åθ = 3.0–26.0°
b = 10.4468 (18) ŵ = 0.25 mm1
c = 21.349 (4) ÅT = 193 K
V = 1738.9 (5) Å3Block, white
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Rigaku Mercury
diffractometer
3416 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
Jacobson (1998)
h = 99
Tmin = 0.930, Tmax = 0.966k = 1212
10185 measured reflectionsl = 1926
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.074P)2 + 0.4256P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3416 reflectionsΔρmax = 0.59 e Å3
244 parametersΔρmin = 0.35 e Å3
19 restraintsAbsolute structure: (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (11)
Crystal data top
C22H15ClO4V = 1738.9 (5) Å3
Mr = 378.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7966 (13) ŵ = 0.25 mm1
b = 10.4468 (18) ÅT = 193 K
c = 21.349 (4) Å0.30 × 0.20 × 0.10 mm
Data collection top
Rigaku Mercury
diffractometer
3416 independent reflections
Absorption correction: multi-scan
Jacobson (1998)
2809 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.966Rint = 0.029
10185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.136Δρmax = 0.59 e Å3
S = 1.06Δρmin = 0.35 e Å3
3416 reflectionsAbsolute structure: (Flack, 1983)
244 parametersAbsolute structure parameter: 0.00 (11)
19 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46182 (15)0.38912 (11)0.01032 (4)0.0875 (3)
O10.1176 (2)0.3230 (2)0.16123 (9)0.0532 (5)
O20.2117 (3)0.0809 (2)0.15674 (11)0.0644 (6)
O30.3149 (3)0.5535 (3)0.24976 (11)0.0751 (7)
O40.2976 (2)0.31516 (16)0.11496 (8)0.0407 (4)
C10.0243 (3)0.2781 (2)0.16079 (11)0.0405 (5)
C20.0484 (4)0.1375 (3)0.16874 (14)0.0539 (7)
H2A0.05480.08210.16260.065*
C30.1656 (4)0.1034 (3)0.22079 (15)0.0639 (9)
H3A0.13370.02640.24600.077*
C40.2524 (4)0.2067 (4)0.25451 (14)0.0615 (8)
C50.3171 (5)0.1828 (5)0.31363 (17)0.0876 (14)
H5A0.31280.09830.33000.105*
C60.3871 (5)0.2784 (7)0.34885 (19)0.1044 (19)
H6A0.43460.25950.38880.125*
C70.3890 (5)0.4024 (6)0.32672 (18)0.0925 (15)
H7A0.43590.46960.35130.111*
C80.3208 (4)0.4275 (4)0.26739 (15)0.0637 (8)
C90.2571 (3)0.3325 (3)0.22965 (13)0.0503 (7)
C100.1881 (3)0.3613 (2)0.16413 (11)0.0398 (5)
C110.1543 (3)0.5025 (3)0.15546 (13)0.0467 (6)
C120.2211 (4)0.5882 (3)0.19788 (16)0.0621 (9)
C130.1977 (6)0.7205 (4)0.1912 (2)0.0874 (14)
H13A0.24460.77750.22130.105*
C140.1084 (6)0.7670 (4)0.1419 (3)0.0954 (17)
H14A0.09130.85670.13820.114*
C150.0399 (5)0.6845 (3)0.09575 (19)0.0747 (11)
C160.0529 (6)0.7314 (5)0.0437 (3)0.0975 (16)
H16A0.07490.82060.04070.117*
C170.1110 (5)0.6531 (6)0.0017 (3)0.1038 (18)
H17A0.17530.68750.03550.125*
C180.0773 (4)0.5204 (4)0.00048 (18)0.0763 (11)
H18A0.11550.46560.03220.092*
C190.0119 (4)0.4717 (3)0.05086 (14)0.0554 (7)
H19A0.03610.38270.05230.067*
C200.0683 (4)0.5505 (3)0.10016 (15)0.0512 (7)
C210.4673 (3)0.3628 (3)0.11653 (14)0.0581 (8)
H21A0.46560.45730.11960.070*
H21B0.52820.32850.15360.070*
C220.5569 (4)0.3234 (4)0.05865 (15)0.0674 (9)
H22A0.67810.35110.06100.081*
H22B0.55550.22880.05570.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0914 (7)0.1130 (8)0.0581 (5)0.0041 (6)0.0129 (5)0.0133 (5)
O10.0330 (9)0.0667 (12)0.0600 (12)0.0019 (9)0.0022 (8)0.0140 (10)
O20.0653 (14)0.0560 (11)0.0719 (14)0.0091 (10)0.0164 (11)0.0079 (10)
O30.0592 (12)0.1059 (17)0.0602 (13)0.0229 (13)0.0064 (11)0.0374 (12)
O40.0337 (8)0.0517 (9)0.0366 (9)0.0029 (7)0.0054 (7)0.0054 (8)
C10.0370 (13)0.0516 (13)0.0329 (12)0.0024 (11)0.0016 (10)0.0019 (10)
C20.0519 (15)0.0492 (15)0.0606 (17)0.0034 (13)0.0072 (14)0.0061 (13)
C30.0591 (19)0.0673 (19)0.065 (2)0.0146 (16)0.0136 (15)0.0207 (17)
C40.0418 (14)0.098 (2)0.0451 (15)0.0212 (16)0.0067 (12)0.0141 (16)
C50.057 (2)0.154 (4)0.052 (2)0.038 (2)0.0018 (17)0.028 (2)
C60.056 (2)0.207 (6)0.050 (2)0.024 (3)0.0092 (17)0.007 (3)
C70.0469 (19)0.177 (5)0.053 (2)0.004 (2)0.0046 (15)0.037 (3)
C80.0410 (14)0.101 (2)0.0493 (15)0.0078 (16)0.0034 (13)0.0233 (16)
C90.0310 (12)0.0801 (19)0.0399 (13)0.0032 (13)0.0049 (10)0.0050 (14)
C100.0349 (12)0.0495 (13)0.0349 (12)0.0024 (10)0.0053 (10)0.0018 (10)
C110.0391 (13)0.0501 (14)0.0509 (15)0.0063 (11)0.0139 (11)0.0050 (12)
C120.0526 (18)0.0618 (18)0.072 (2)0.0124 (15)0.0249 (16)0.0204 (16)
C130.088 (3)0.057 (2)0.117 (3)0.023 (2)0.052 (3)0.032 (2)
C140.099 (3)0.0414 (17)0.146 (4)0.004 (2)0.069 (3)0.004 (2)
C150.067 (2)0.0560 (18)0.101 (3)0.0121 (17)0.045 (2)0.0239 (19)
C160.082 (3)0.080 (3)0.131 (4)0.031 (2)0.044 (3)0.053 (3)
C170.063 (2)0.142 (4)0.107 (4)0.032 (3)0.021 (2)0.079 (3)
C180.0557 (18)0.109 (3)0.064 (2)0.0057 (19)0.0051 (15)0.034 (2)
C190.0439 (14)0.0697 (18)0.0527 (17)0.0014 (13)0.0030 (12)0.0148 (14)
C200.0399 (14)0.0498 (14)0.0638 (18)0.0016 (12)0.0183 (13)0.0121 (13)
C210.0337 (13)0.092 (2)0.0481 (15)0.0082 (14)0.0058 (12)0.0153 (15)
C220.0472 (16)0.094 (2)0.0613 (19)0.0008 (17)0.0121 (15)0.0086 (17)
Geometric parameters (Å, º) top
Cl1—C221.786 (4)C10—C111.509 (4)
O1—C11.201 (3)C11—C121.376 (4)
O2—C21.427 (4)C11—C201.448 (4)
O2—C31.433 (4)C12—C131.401 (5)
O3—C81.370 (5)C13—C141.353 (7)
O3—C121.376 (4)C13—H13A0.9500
O4—C211.414 (3)C14—C151.413 (6)
O4—C101.437 (3)C14—H14A0.9500
C1—C21.490 (4)C15—C161.413 (7)
C1—C101.546 (3)C15—C201.421 (4)
C2—C31.482 (4)C16—C171.347 (7)
C2—H2A1.0000C16—H16A0.9500
C3—C41.463 (5)C17—C181.411 (7)
C3—H3A1.0000C17—H17A0.9500
C4—C51.382 (5)C18—C191.378 (5)
C4—C91.418 (5)C18—H18A0.9500
C5—C61.364 (7)C19—C201.406 (5)
C5—H5A0.9500C19—H19A0.9500
C6—C71.379 (8)C21—C221.478 (4)
C6—H6A0.9500C21—H21A0.9900
C7—C81.399 (5)C21—H21B0.9900
C7—H7A0.9500C22—H22A0.9900
C8—C91.371 (4)C22—H22B0.9900
C9—C101.529 (4)
C2—O2—C362.4 (2)C12—C11—C20119.1 (3)
C8—O3—C12119.5 (2)C12—C11—C10119.3 (3)
C21—O4—C10114.88 (19)C20—C11—C10121.3 (2)
O1—C1—C2120.0 (3)C11—C12—O3124.0 (3)
O1—C1—C10122.7 (2)C11—C12—C13121.7 (4)
C2—C1—C10116.4 (2)O3—C12—C13114.3 (3)
O2—C2—C359.0 (2)C14—C13—C12120.1 (4)
O2—C2—C1120.0 (2)C14—C13—H13A120.0
C3—C2—C1113.6 (3)C12—C13—H13A120.0
O2—C2—H2A117.0C13—C14—C15121.1 (3)
C3—C2—H2A117.0C13—C14—H14A119.4
C1—C2—H2A117.0C15—C14—H14A119.4
O2—C3—C4118.3 (3)C14—C15—C16122.0 (4)
O2—C3—C258.6 (2)C14—C15—C20119.8 (4)
C4—C3—C2118.5 (3)C16—C15—C20118.2 (4)
O2—C3—H3A116.4C17—C16—C15121.8 (4)
C4—C3—H3A116.4C17—C16—H16A119.1
C2—C3—H3A116.4C15—C16—H16A119.1
C5—C4—C9120.0 (4)C16—C17—C18120.7 (4)
C5—C4—C3119.0 (4)C16—C17—H17A119.7
C9—C4—C3120.7 (3)C18—C17—H17A119.7
C6—C5—C4121.1 (5)C19—C18—C17118.8 (4)
C6—C5—H5A119.4C19—C18—H18A120.6
C4—C5—H5A119.4C17—C18—H18A120.6
C5—C6—C7120.2 (4)C18—C19—C20121.8 (3)
C5—C6—H6A119.9C18—C19—H19A119.1
C7—C6—H6A119.9C20—C19—H19A119.1
C6—C7—C8118.8 (4)C19—C20—C15118.6 (3)
C6—C7—H7A120.6C19—C20—C11123.6 (2)
C8—C7—H7A120.6C15—C20—C11117.9 (3)
O3—C8—C9121.5 (3)O4—C21—C22108.9 (2)
O3—C8—C7116.2 (4)O4—C21—H21A109.9
C9—C8—C7122.3 (4)C22—C21—H21A109.9
C8—C9—C4117.4 (3)O4—C21—H21B109.9
C8—C9—C10121.5 (3)C22—C21—H21B109.9
C4—C9—C10121.1 (3)H21A—C21—H21B108.3
O4—C10—C11110.00 (19)C21—C22—Cl1112.7 (2)
O4—C10—C9113.2 (2)C21—C22—H22A109.0
C11—C10—C9111.5 (2)Cl1—C22—H22A109.0
O4—C10—C1105.56 (18)C21—C22—H22B109.0
C11—C10—C1113.6 (2)Cl1—C22—H22B109.0
C9—C10—C1102.83 (19)H22A—C22—H22B107.8
C3—O2—C2—C1101.1 (3)C2—C1—C10—O459.2 (3)
O1—C1—C2—O2168.3 (3)O1—C1—C10—C1111.1 (3)
C10—C1—C2—O222.2 (4)C2—C1—C10—C11179.8 (2)
O1—C1—C2—C3125.0 (3)O1—C1—C10—C9109.5 (3)
C10—C1—C2—C344.4 (3)C2—C1—C10—C959.6 (3)
C2—O2—C3—C4107.8 (3)O4—C10—C11—C12112.0 (3)
C1—C2—C3—O2112.0 (3)C9—C10—C11—C1214.3 (3)
O2—C2—C3—C4107.5 (3)C1—C10—C11—C12129.9 (3)
C1—C2—C3—C44.5 (4)O4—C10—C11—C2061.6 (3)
O2—C3—C4—C5132.5 (3)C9—C10—C11—C20172.0 (2)
C2—C3—C4—C5159.9 (3)C1—C10—C11—C2056.4 (3)
O2—C3—C4—C953.1 (4)C20—C11—C12—O3175.6 (2)
C2—C3—C4—C914.5 (4)C10—C11—C12—O31.8 (4)
C9—C4—C5—C60.4 (5)C20—C11—C12—C134.5 (4)
C3—C4—C5—C6174.8 (3)C10—C11—C12—C13178.2 (3)
C4—C5—C6—C72.2 (6)C8—O3—C12—C1111.4 (4)
C5—C6—C7—C81.0 (6)C8—O3—C12—C13168.5 (3)
C12—O3—C8—C99.9 (4)C11—C12—C13—C140.3 (5)
C12—O3—C8—C7167.8 (3)O3—C12—C13—C14179.7 (3)
C6—C7—C8—O3175.5 (3)C12—C13—C14—C151.2 (6)
C6—C7—C8—C92.2 (5)C13—C14—C15—C16179.6 (3)
O3—C8—C9—C4173.6 (3)C13—C14—C15—C201.5 (5)
C7—C8—C9—C43.9 (4)C14—C15—C16—C17176.8 (4)
O3—C8—C9—C104.4 (4)C20—C15—C16—C171.4 (6)
C7—C8—C9—C10178.1 (3)C15—C16—C17—C181.5 (6)
C5—C4—C9—C82.7 (4)C16—C17—C18—C191.8 (6)
C3—C4—C9—C8171.7 (3)C17—C18—C19—C200.7 (5)
C5—C4—C9—C10179.4 (3)C18—C19—C20—C153.5 (4)
C3—C4—C9—C106.3 (4)C18—C19—C20—C11176.6 (3)
C21—O4—C10—C1167.8 (3)C14—C15—C20—C19174.5 (3)
C21—O4—C10—C957.6 (3)C16—C15—C20—C193.8 (4)
C21—O4—C10—C1169.3 (2)C14—C15—C20—C115.4 (4)
C8—C9—C10—O4108.7 (3)C16—C15—C20—C11176.3 (3)
C4—C9—C10—O473.4 (3)C12—C11—C20—C19173.0 (3)
C8—C9—C10—C1115.9 (3)C10—C11—C20—C190.7 (4)
C4—C9—C10—C11162.0 (2)C12—C11—C20—C156.9 (4)
C8—C9—C10—C1137.9 (2)C10—C11—C20—C15179.4 (2)
C4—C9—C10—C140.0 (3)C10—O4—C21—C22171.6 (2)
O1—C1—C10—O4131.7 (2)O4—C21—C22—Cl162.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.952.553.392 (4)147
C19—H19A···O40.952.543.084 (3)117
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H15ClO4
Mr378.79
Crystal system, space groupOrthorhombic, P212121
Temperature (K)193
a, b, c (Å)7.7966 (13), 10.4468 (18), 21.349 (4)
V3)1738.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
Jacobson (1998)
Tmin, Tmax0.930, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
10185, 3416, 2809
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.06
No. of reflections3416
No. of parameters244
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.35
Absolute structure(Flack, 1983)
Absolute structure parameter0.00 (11)

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.952.553.392 (4)147
C19—H19A···O40.952.543.084 (3)117
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Medical Scientific Research Foundation of Guangdong Province, China (grant No. B2006091) and the NSF of Guangdong Province, China (grant No. 7300449).

References

First citationAronne, A., Turco, M., Bagnasco, G., Ramis, G., Santacesaria, E., Di Serio, M., Marenna, E., Bevilacqua, M., Cammarano, C. & Fanelli, E. (2008). Appl. Catal. A, 347, 179–185.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSasidharan, M., Wu, P. & Tatsumi, T. (2002). J. Catal. 205, 332–338.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, D. M., Li, H. H. & Wang, B. (2001). Chin. J. Chem. 19, 91–93.  CrossRef CAS Google Scholar
First citationWang, B., Kang, Y. R., Yang, L. M. & Suo, J. S. (2003). J. Mol. Catal. A, 203, 29–36.  CrossRef CAS Google Scholar
First citationYamazaki, S. (2008). Tetrahedron, 64, 9253–9257.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds