organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(4-acetamido­phen­oxy­methyl)methanol 0.7-hydrate

aLaboratory for the Structure of Matter, Code 6030, Naval Research Laboratory, Washington, DC 20375, USA, bWashington College, 300 Washington Avenue, Chestertown, MD 21620, USA, and cGeocenters, Inc., Building 3028, Picatinny Arsenal, NJ 07806-5000, USA
*Correspondence e-mail: damon.parrish@nrl.navy.mil

(Received 12 September 2008; accepted 6 October 2008; online 25 October 2008)

The asymmetric unit of the title compound, C28H31N3O7·0.7H2O, contains a mol­ecule of tris­(4-acetamido­phenoxy­meth­yl)methanol and 0.7 of a water mol­ecule. An extensive hydrogen-bonding network includes inter­actions between all components of the crystal structure.

Related literature

For related structures, see: Haisa et al. (1980[Haisa, M., Kashino, S., Ueno, T., Shinozaki, N. & Matsuzaki, Y. (1980). Acta Cryst. B36, 2306-2311.]).

[Scheme 1]

Experimental

Crystal data
  • C28H31N3O7·0.7H2O

  • Mr = 534.17

  • Monoclinic, P 21 /c

  • a = 9.4900 (9) Å

  • b = 29.992 (3) Å

  • c = 9.3879 (9) Å

  • β = 90.257 (2)°

  • V = 2672.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 103 (2) K

  • 0.19 × 0.16 × 0.01 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 1.000 (expected range = 0.748–0.999)

  • 21154 measured reflections

  • 4527 independent reflections

  • 3113 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.131

  • S = 1.10

  • 4527 reflections

  • 363 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O13Ai 0.84 1.97 2.798 (3) 167
O1S—H1SB⋯O13Aii 0.85 (4) 2.00 (4) 2.842 (4) 168 (4)
N10C—H10A⋯O13Ciii 0.88 1.95 2.812 (4) 167
N10B—H10B⋯O13Biv 0.88 1.95 2.824 (4) 175
N10A—H10C⋯O3Cv 0.88 2.36 3.197 (3) 159
O1S—H1SA⋯O13C 0.85 (4) 1.98 (5) 2.817 (5) 167 (5)
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and XPREP (Bruker, 2005[Bruker (2005). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tris(4-acetamidophenoxymethyl) methanol is one of the key ingredients of a cast-curable explosive formulation. The material exists as a liquid when hot and can be poured into a mold of any desired shape. Upon cooling, the material forms a highly stable solid explosive. The title compound has been characterized crystallographically as a 0.7 water solvate, (I), Fig. 1. The derived geometric parameters are comparable to those observed for the related compound N-(4-Methoxyphenyl)acetamide (Haisa et al., 1980). The crystal structure of (I) is stabilized by an extensive network of hydrogen bonding interactions, Table 1.

Related literature top

For related structures, see: Haisa et al. (1980).

Experimental top

4-Acetamidophenol (179 mg, 1.19 mmol) and 2,2-bis(chloromethyloxirane) (54 mg, 0.38 mmol) were heated at 90 °C in the presence of K2CO3 (197 mg, 1.43 mmol) in acetonitrile (5 ml) for 22 h. After cooling to room temperature, the reaction mixture was poured into water (5 ml) and the precipitate was extracted with ethyl acetate (3 × 20 ml, if the precipitate can not be dissolved in ethyl acetate completely, about 5 ml of acetone was added to improve the solubility). The organic phase was washed with water (10 ml) and dried over Na2SO4. The solvent was evaporated in vacuo and the residue was recrystallized from hot ethyl acetate. The molecule was obtained as a white solid, 82 mg (44%); m.p. = 486 K, 1H NMR (DMSO-d6) δ 9.75 (s, 3H), 7.45 (d, J = 8.8 Hz, 6H), 6.88 (d, J = 8.8 Hz, 6H), 5.50 (bs, 1H), 4.09 (s, 6H), 1.99 (s, 9H) p.p.m. 13C NMR (CDCl3) δ 168.1, 154.8, 133.2, 120.8, 115.1, 72.9, 69.7, 24.2 p.p.m. A clear colorless crystal of (I) was grown by slow evaporation from ethyl acetate and characterized as a 0.7 hydrate (from fractional refinement).

Refinement top

The non-water H atoms were included in the riding model approximation with O—H = 0.84, N—H = 0.88 and C—H = 0.95–0.99 Å, and with U(H) set to 1.2–1.5Ueq(O, N and C). The population of the solvent water molecule was allowed to refine. The result was a population of 0.70. The H atoms were refined with O—H = 0.850 (1) and with U(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2002) and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom labeling for the non-hydrogen atoms. Displacement ellipsoids are shown at the 50% probability level.
N,N',N''-{[hydroxymethylidynetris(methyleneoxy)]tri-p-phenylene}triacetamide 0.7-hydrate top
Crystal data top
C28H31N3O7·0.7H2OZ = 4
Mr = 534.17F(000) = 1132
Monoclinic, P21/cDx = 1.328 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.4900 (9) ŵ = 0.10 mm1
b = 29.992 (3) ÅT = 103 K
c = 9.3879 (9) ÅPlate, colourless
β = 90.257 (2)°0.19 × 0.16 × 0.01 mm
V = 2672.0 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4527 independent reflections
Radiation source: fine focus sealed tube3113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω scansθmax = 24.7°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.749, Tmax = 1.000k = 3535
21154 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0231P)2 + 4.8705P]
where P = (Fo2 + 2Fc2)/3
4527 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C28H31N3O7·0.7H2OV = 2672.0 (4) Å3
Mr = 534.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4900 (9) ŵ = 0.10 mm1
b = 29.992 (3) ÅT = 103 K
c = 9.3879 (9) Å0.19 × 0.16 × 0.01 mm
β = 90.257 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4527 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3113 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 1.000Rint = 0.070
21154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.24 e Å3
4527 reflectionsΔρmin = 0.25 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2725 (2)0.50948 (7)0.3966 (2)0.0218 (5)
H10.22210.53250.40100.026*
C10.3672 (3)0.51325 (10)0.2790 (4)0.0185 (7)
O1S0.8382 (4)0.34434 (13)0.7394 (4)0.0400 (14)0.700 (7)
H1SA0.774 (4)0.3262 (15)0.713 (6)0.048*0.700 (7)
H1SB0.848 (6)0.3678 (11)0.690 (5)0.048*0.700 (7)
C2A0.2906 (3)0.50761 (10)0.1358 (4)0.0204 (7)
H2AA0.35980.50390.05810.025*
H2AB0.22940.48090.13830.025*
C2B0.4378 (3)0.55887 (10)0.2908 (4)0.0199 (7)
H2BA0.36520.58250.29480.024*
H2BB0.49480.56040.37920.024*
C2C0.4724 (3)0.47572 (10)0.2976 (4)0.0191 (7)
H2CA0.54150.47600.21880.023*
H2CB0.52410.47910.38880.023*
O3C0.3941 (2)0.43482 (7)0.2967 (2)0.0213 (5)
O3B0.5258 (2)0.56558 (7)0.1702 (2)0.0217 (5)
O3A0.2078 (2)0.54665 (7)0.1123 (2)0.0228 (5)
C4C0.4656 (3)0.39563 (10)0.3235 (3)0.0191 (7)
C4B0.5890 (3)0.60715 (10)0.1605 (4)0.0183 (7)
C4A0.1464 (3)0.55113 (11)0.0198 (4)0.0194 (7)
C5B0.5688 (3)0.64155 (10)0.2563 (4)0.0208 (8)
H5BA0.50470.63820.33300.025*
C5C0.6078 (3)0.39279 (11)0.3552 (4)0.0216 (8)
H5CA0.66410.41890.35920.026*
C5A0.0895 (3)0.59256 (11)0.0490 (4)0.0237 (8)
H5AA0.09810.61600.01860.028*
C6B0.6432 (3)0.68105 (10)0.2392 (4)0.0202 (7)
H6BA0.62860.70490.30410.024*
C6C0.6673 (4)0.35123 (11)0.3811 (4)0.0228 (8)
H6CA0.76480.34910.40320.027*
C6A0.0198 (3)0.59996 (11)0.1769 (4)0.0242 (8)
H6AA0.01840.62860.19710.029*
C7B0.7386 (3)0.68620 (10)0.1289 (3)0.0169 (7)
C7C0.5864 (3)0.31298 (10)0.3752 (3)0.0193 (7)
C7A0.0054 (3)0.56569 (11)0.2758 (4)0.0218 (8)
C8C0.3838 (4)0.35737 (11)0.3158 (4)0.0247 (8)
H8CA0.28650.35950.29260.030*
C8B0.7549 (4)0.65171 (11)0.0316 (4)0.0233 (8)
H8BA0.81790.65500.04600.028*
C8A0.0660 (4)0.52477 (12)0.2465 (4)0.0278 (8)
H8AA0.05860.50140.31450.033*
C9B0.6799 (4)0.61262 (11)0.0474 (4)0.0230 (8)
H9BA0.69080.58930.02020.028*
C9C0.4435 (4)0.31615 (11)0.3418 (4)0.0257 (8)
H9CA0.38730.29000.33680.031*
C9A0.1373 (4)0.51726 (11)0.1193 (4)0.0269 (8)
H9AA0.17960.48910.10090.032*
N10C0.6469 (3)0.26989 (9)0.3956 (3)0.0226 (7)
H10A0.66360.25330.32020.027*
N10B0.8192 (3)0.72619 (8)0.1210 (3)0.0198 (6)
H10B0.83680.73990.20210.024*
N10A0.0753 (3)0.57205 (10)0.4032 (3)0.0264 (7)
H10C0.16760.56990.39830.032*
C11C0.6794 (4)0.25360 (11)0.5244 (4)0.0266 (8)
C11B0.8710 (3)0.74511 (11)0.0031 (4)0.0205 (8)
C11A0.0173 (4)0.58104 (10)0.5292 (4)0.0201 (8)
C12A0.1164 (4)0.58705 (12)0.6517 (4)0.0314 (9)
H12A0.07230.57600.73900.047*
H12B0.13860.61880.66280.047*
H12C0.20330.57030.63380.047*
C12B0.9471 (4)0.78871 (11)0.0263 (4)0.0317 (9)
H12D1.01850.79260.04780.048*
H12E0.99280.78850.12010.048*
H12F0.87930.81330.02160.048*
C12C0.7326 (5)0.20622 (12)0.5285 (4)0.0425 (11)
H12G0.81160.20410.59570.064*
H12H0.76430.19750.43330.064*
H12I0.65660.18630.55910.064*
O13B0.8573 (3)0.72890 (8)0.1172 (3)0.0296 (6)
O13A0.1115 (2)0.58529 (8)0.5433 (3)0.0280 (6)
O13C0.6634 (3)0.27573 (8)0.6346 (3)0.0339 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0250 (13)0.0198 (12)0.0207 (13)0.0008 (10)0.0025 (10)0.0016 (10)
C10.0193 (17)0.0174 (17)0.0186 (19)0.0005 (14)0.0012 (14)0.0024 (14)
O1S0.059 (3)0.034 (3)0.027 (3)0.013 (2)0.001 (2)0.0084 (18)
C2A0.0218 (18)0.0155 (17)0.024 (2)0.0035 (14)0.0047 (15)0.0014 (14)
C2B0.0248 (18)0.0182 (17)0.0167 (19)0.0016 (14)0.0021 (15)0.0017 (14)
C2C0.0220 (17)0.0153 (16)0.0200 (19)0.0026 (14)0.0029 (14)0.0026 (14)
O3C0.0207 (12)0.0131 (11)0.0301 (14)0.0012 (10)0.0063 (10)0.0029 (10)
O3B0.0276 (12)0.0179 (12)0.0196 (14)0.0022 (10)0.0062 (10)0.0010 (10)
O3A0.0289 (13)0.0188 (12)0.0207 (14)0.0067 (10)0.0066 (10)0.0004 (10)
C4C0.0268 (18)0.0152 (17)0.0153 (19)0.0027 (14)0.0017 (14)0.0004 (14)
C4B0.0222 (17)0.0133 (16)0.0193 (19)0.0002 (14)0.0020 (15)0.0024 (14)
C4A0.0184 (17)0.0223 (18)0.0176 (19)0.0001 (14)0.0001 (14)0.0003 (15)
C5B0.0214 (17)0.0208 (17)0.0200 (19)0.0015 (14)0.0044 (15)0.0006 (15)
C5C0.0229 (18)0.0163 (17)0.026 (2)0.0040 (14)0.0040 (15)0.0008 (15)
C5A0.0282 (19)0.0209 (18)0.022 (2)0.0030 (15)0.0009 (16)0.0004 (15)
C6B0.0237 (18)0.0149 (17)0.022 (2)0.0031 (14)0.0010 (15)0.0042 (14)
C6C0.0235 (18)0.0215 (19)0.023 (2)0.0034 (15)0.0040 (15)0.0019 (15)
C6A0.0239 (18)0.0216 (18)0.027 (2)0.0053 (15)0.0028 (16)0.0072 (16)
C7B0.0203 (17)0.0146 (16)0.0158 (18)0.0003 (13)0.0005 (14)0.0021 (14)
C7C0.0284 (19)0.0171 (17)0.0124 (18)0.0040 (15)0.0003 (14)0.0003 (14)
C7A0.0140 (16)0.031 (2)0.020 (2)0.0007 (15)0.0003 (14)0.0051 (16)
C8C0.0218 (18)0.0222 (18)0.030 (2)0.0009 (15)0.0044 (15)0.0029 (16)
C8B0.0311 (19)0.0214 (18)0.017 (2)0.0016 (16)0.0071 (15)0.0024 (15)
C8A0.035 (2)0.0242 (19)0.025 (2)0.0022 (16)0.0085 (17)0.0027 (16)
C9B0.0315 (19)0.0188 (18)0.019 (2)0.0031 (15)0.0024 (16)0.0026 (14)
C9C0.031 (2)0.0189 (18)0.027 (2)0.0048 (15)0.0006 (16)0.0007 (16)
C9A0.034 (2)0.0193 (18)0.028 (2)0.0061 (16)0.0109 (17)0.0016 (16)
N10C0.0371 (17)0.0143 (14)0.0165 (16)0.0061 (13)0.0005 (13)0.0032 (12)
N10B0.0256 (15)0.0167 (14)0.0170 (16)0.0010 (12)0.0000 (12)0.0006 (12)
N10A0.0159 (14)0.0404 (18)0.0228 (18)0.0002 (13)0.0046 (13)0.0068 (14)
C11C0.033 (2)0.0179 (18)0.029 (2)0.0020 (16)0.0021 (17)0.0042 (16)
C11B0.0226 (18)0.0190 (17)0.020 (2)0.0037 (14)0.0012 (15)0.0016 (15)
C11A0.0230 (19)0.0137 (16)0.023 (2)0.0040 (14)0.0035 (15)0.0019 (14)
C12A0.040 (2)0.0263 (19)0.028 (2)0.0026 (17)0.0091 (17)0.0021 (17)
C12B0.041 (2)0.0231 (19)0.031 (2)0.0065 (17)0.0056 (18)0.0015 (17)
C12C0.070 (3)0.024 (2)0.033 (2)0.015 (2)0.002 (2)0.0031 (18)
O13B0.0481 (16)0.0227 (13)0.0180 (14)0.0045 (12)0.0022 (12)0.0025 (11)
O13A0.0245 (14)0.0340 (14)0.0254 (15)0.0010 (11)0.0015 (11)0.0024 (11)
O13C0.0609 (18)0.0208 (13)0.0200 (15)0.0049 (12)0.0006 (13)0.0017 (11)
Geometric parameters (Å, º) top
O1—C11.431 (4)C7B—C8B1.389 (4)
O1—H10.8400C7B—N10B1.425 (4)
C1—C2C1.515 (4)C7C—C9C1.394 (5)
C1—C2B1.527 (4)C7C—N10C1.426 (4)
C1—C2A1.534 (5)C7A—C8A1.382 (5)
O1S—H1SA0.85 (4)C7A—N10A1.430 (4)
O1S—H1SB0.85 (4)C8C—C9C1.381 (5)
C2A—O3A1.427 (4)C8C—H8CA0.9500
C2A—H2AA0.9900C8B—C9B1.380 (5)
C2A—H2AB0.9900C8B—H8BA0.9500
C2B—O3B1.425 (4)C8A—C9A1.389 (5)
C2B—H2BA0.9900C8A—H8AA0.9500
C2B—H2BB0.9900C9B—H9BA0.9500
C2C—O3C1.434 (4)C9C—H9CA0.9500
C2C—H2CA0.9900C9A—H9AA0.9500
C2C—H2CB0.9900N10C—C11C1.338 (4)
O3C—C4C1.380 (4)N10C—H10A0.8800
O3B—C4B1.387 (4)N10B—C11B1.340 (4)
O3A—C4A1.374 (4)N10B—H10B0.8800
C4C—C5C1.383 (5)N10A—C11A1.334 (4)
C4C—C8C1.387 (5)N10A—H10C0.8800
C4B—C9B1.381 (5)C11C—O13C1.239 (4)
C4B—C5B1.383 (4)C11C—C12C1.509 (5)
C4A—C5A1.382 (4)C11B—O13B1.236 (4)
C4A—C9A1.383 (5)C11B—C12B1.509 (5)
C5B—C6B1.389 (4)C11A—O13A1.237 (4)
C5B—H5BA0.9500C11A—C12A1.493 (5)
C5C—C6C1.389 (5)C12A—H12A0.9800
C5C—H5CA0.9500C12A—H12B0.9800
C5A—C6A1.386 (5)C12A—H12C0.9800
C5A—H5AA0.9500C12B—H12D0.9800
C6B—C7B1.387 (5)C12B—H12E0.9800
C6B—H6BA0.9500C12B—H12F0.9800
C6C—C7C1.381 (5)C12C—H12G0.9800
C6C—H6CA0.9500C12C—H12H0.9800
C6A—C7A1.392 (5)C12C—H12I0.9800
C6A—H6AA0.9500
C1—O1—H1109.5C6C—C7C—N10C121.6 (3)
O1—C1—C2C105.6 (3)C9C—C7C—N10C118.8 (3)
O1—C1—C2B107.0 (3)C8A—C7A—C6A118.9 (3)
C2C—C1—C2B111.6 (3)C8A—C7A—N10A120.4 (3)
O1—C1—C2A111.8 (3)C6A—C7A—N10A120.7 (3)
C2C—C1—C2A109.2 (3)C9C—C8C—C4C120.1 (3)
C2B—C1—C2A111.6 (3)C9C—C8C—H8CA119.9
H1SA—O1S—H1SB116 (6)C4C—C8C—H8CA119.9
O3A—C2A—C1107.7 (3)C9B—C8B—C7B120.2 (3)
O3A—C2A—H2AA110.2C9B—C8B—H8BA119.9
C1—C2A—H2AA110.2C7B—C8B—H8BA119.9
O3A—C2A—H2AB110.2C7A—C8A—C9A121.1 (3)
C1—C2A—H2AB110.2C7A—C8A—H8AA119.5
H2AA—C2A—H2AB108.5C9A—C8A—H8AA119.5
O3B—C2B—C1109.1 (3)C8B—C9B—C4B120.5 (3)
O3B—C2B—H2BA109.9C8B—C9B—H9BA119.7
C1—C2B—H2BA109.9C4B—C9B—H9BA119.7
O3B—C2B—H2BB109.9C8C—C9C—C7C119.9 (3)
C1—C2B—H2BB109.9C8C—C9C—H9CA120.0
H2BA—C2B—H2BB108.3C7C—C9C—H9CA120.0
O3C—C2C—C1107.1 (2)C4A—C9A—C8A119.4 (3)
O3C—C2C—H2CA110.3C4A—C9A—H9AA120.3
C1—C2C—H2CA110.3C8A—C9A—H9AA120.3
O3C—C2C—H2CB110.3C11C—N10C—C7C122.9 (3)
C1—C2C—H2CB110.3C11C—N10C—H10A118.6
H2CA—C2C—H2CB108.6C7C—N10C—H10A118.6
C4C—O3C—C2C118.2 (2)C11B—N10B—C7B126.8 (3)
C4B—O3B—C2B115.8 (2)C11B—N10B—H10B116.6
C4A—O3A—C2A116.8 (2)C7B—N10B—H10B116.6
O3C—C4C—C5C124.8 (3)C11A—N10A—C7A123.2 (3)
O3C—C4C—C8C114.8 (3)C11A—N10A—H10C118.4
C5C—C4C—C8C120.4 (3)C7A—N10A—H10C118.4
C9B—C4B—C5B120.0 (3)O13C—C11C—N10C122.0 (3)
C9B—C4B—O3B115.4 (3)O13C—C11C—C12C121.7 (3)
C5B—C4B—O3B124.5 (3)N10C—C11C—C12C116.3 (3)
O3A—C4A—C5A115.5 (3)O13B—C11B—N10B123.4 (3)
O3A—C4A—C9A124.3 (3)O13B—C11B—C12B121.4 (3)
C5A—C4A—C9A120.2 (3)N10B—C11B—C12B115.1 (3)
C4B—C5B—C6B119.3 (3)O13A—C11A—N10A121.9 (3)
C4B—C5B—H5BA120.3O13A—C11A—C12A121.6 (3)
C6B—C5B—H5BA120.3N10A—C11A—C12A116.5 (3)
C4C—C5C—C6C119.2 (3)C11A—C12A—H12A109.5
C4C—C5C—H5CA120.4C11A—C12A—H12B109.5
C6C—C5C—H5CA120.4H12A—C12A—H12B109.5
C4A—C5A—C6A120.0 (3)C11A—C12A—H12C109.5
C4A—C5A—H5AA120.0H12A—C12A—H12C109.5
C6A—C5A—H5AA120.0H12B—C12A—H12C109.5
C7B—C6B—C5B121.0 (3)C11B—C12B—H12D109.5
C7B—C6B—H6BA119.5C11B—C12B—H12E109.5
C5B—C6B—H6BA119.5H12D—C12B—H12E109.5
C7C—C6C—C5C120.9 (3)C11B—C12B—H12F109.5
C7C—C6C—H6CA119.6H12D—C12B—H12F109.5
C5C—C6C—H6CA119.6H12E—C12B—H12F109.5
C5A—C6A—C7A120.3 (3)C11C—C12C—H12G109.5
C5A—C6A—H6AA119.8C11C—C12C—H12H109.5
C7A—C6A—H6AA119.8H12G—C12C—H12H109.5
C6B—C7B—C8B118.9 (3)C11C—C12C—H12I109.5
C6B—C7B—N10B119.0 (3)H12G—C12C—H12I109.5
C8B—C7B—N10B122.1 (3)H12H—C12C—H12I109.5
C6C—C7C—C9C119.5 (3)
O1—C1—C2A—O3A71.9 (3)C5C—C6C—C7C—N10C177.3 (3)
C2C—C1—C2A—O3A171.7 (2)C5A—C6A—C7A—C8A2.3 (5)
C2B—C1—C2A—O3A47.8 (3)C5A—C6A—C7A—N10A175.3 (3)
O1—C1—C2B—O3B175.9 (2)O3C—C4C—C8C—C9C179.5 (3)
C2C—C1—C2B—O3B69.1 (3)C5C—C4C—C8C—C9C0.9 (5)
C2A—C1—C2B—O3B53.4 (3)C6B—C7B—C8B—C9B1.7 (5)
O1—C1—C2C—O3C59.4 (3)N10B—C7B—C8B—C9B176.7 (3)
C2B—C1—C2C—O3C175.2 (3)C6A—C7A—C8A—C9A1.5 (5)
C2A—C1—C2C—O3C60.9 (3)N10A—C7A—C8A—C9A176.1 (3)
C1—C2C—O3C—C4C174.9 (3)C7B—C8B—C9B—C4B0.7 (5)
C1—C2B—O3B—C4B175.3 (3)C5B—C4B—C9B—C8B2.3 (5)
C1—C2A—O3A—C4A171.0 (3)O3B—C4B—C9B—C8B176.3 (3)
C2C—O3C—C4C—C5C1.8 (5)C4C—C8C—C9C—C7C0.3 (5)
C2C—O3C—C4C—C8C177.8 (3)C6C—C7C—C9C—C8C0.4 (5)
C2B—O3B—C4B—C9B176.8 (3)N10C—C7C—C9C—C8C177.4 (3)
C2B—O3B—C4B—C5B1.7 (4)O3A—C4A—C9A—C8A176.4 (3)
C2A—O3A—C4A—C5A168.4 (3)C5A—C4A—C9A—C8A2.4 (5)
C2A—O3A—C4A—C9A12.8 (5)C7A—C8A—C9A—C4A0.8 (5)
C9B—C4B—C5B—C6B1.5 (5)C6C—C7C—N10C—C11C78.5 (4)
O3B—C4B—C5B—C6B176.9 (3)C9C—C7C—N10C—C11C104.7 (4)
O3C—C4C—C5C—C6C179.5 (3)C6B—C7B—N10B—C11B151.8 (3)
C8C—C4C—C5C—C6C0.9 (5)C8B—C7B—N10B—C11B29.9 (5)
O3A—C4A—C5A—C6A177.2 (3)C8A—C7A—N10A—C11A82.6 (4)
C9A—C4A—C5A—C6A1.7 (5)C6A—C7A—N10A—C11A99.9 (4)
C4B—C5B—C6B—C7B0.9 (5)C7C—N10C—C11C—O13C2.6 (5)
C4C—C5C—C6C—C7C0.2 (5)C7C—N10C—C11C—C12C175.6 (3)
C4A—C5A—C6A—C7A0.7 (5)C7B—N10B—C11B—O13B1.9 (5)
C5B—C6B—C7B—C8B2.5 (5)C7B—N10B—C11B—C12B177.3 (3)
C5B—C6B—C7B—N10B176.0 (3)C7A—N10A—C11A—O13A1.3 (5)
C5C—C6C—C7C—C9C0.5 (5)C7A—N10A—C11A—C12A179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O13Ai0.841.972.798 (3)167
O1S—H1SB···O13Aii0.85 (4)2.00 (4)2.842 (4)168 (4)
N10C—H10A···O13Ciii0.881.952.812 (4)167
N10B—H10B···O13Biv0.881.952.824 (4)175
N10A—H10C···O3Cv0.882.363.197 (3)159
O1S—H1SA···O13C0.85 (4)1.98 (5)2.817 (5)167 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC28H31N3O7·0.7H2O
Mr534.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)103
a, b, c (Å)9.4900 (9), 29.992 (3), 9.3879 (9)
β (°) 90.257 (2)
V3)2672.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.16 × 0.01
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.749, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21154, 4527, 3113
Rint0.070
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.131, 1.10
No. of reflections4527
No. of parameters363
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2002) and XPREP (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O13Ai0.841.972.798 (3)167
O1S—H1SB···O13Aii0.85 (4)2.00 (4)2.842 (4)168 (4)
N10C—H10A···O13Ciii0.881.952.812 (4)167
N10B—H10B···O13Biv0.881.952.824 (4)175
N10A—H10C···O3Cv0.882.363.197 (3)159
O1S—H1SA···O13C0.85 (4)1.98 (5)2.817 (5)167 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z.
 

Acknowledgements

Crystallographic studies were supported in part by the Office of Naval Research (ONR) and the Naval Research Laboratory (NRL).

References

First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaisa, M., Kashino, S., Ueno, T., Shinozaki, N. & Matsuzaki, Y. (1980). Acta Cryst. B36, 2306–2311.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds