organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,8,16,23-Tetra­kis(2-cyano­benz­yl)bis-p-xylylbis-m-xylyldi­amine

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn

(Received 17 September 2008; accepted 15 October 2008; online 18 October 2008)

The title compound {systematic name: 2,2′,2′′,2′′′-[3,7,11,15-tetra­aza-1(1,4),5(1,3),9(1,4),13(1,3)-tetra­benzena­cyclo­hexadeca­phane-3,7,11,15-tetra­yltetra­methyl­ene]tetra­benzonitrile}, C64H56N8, is a centrosymmetric macrocycle that is consolidated into the crystal structure by C—H⋯π inter­actions.

Related literature

For synthesis, see: Chen & Martell (1991[Chen, D. & Martell, A. E. (1991). Tetrahedron, 47, 6895-6902.]). For related literature, see: Vigato & Tamburini (2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]). For related structures, see: Chen & Martell (1991[Chen, D. & Martell, A. E. (1991). Tetrahedron, 47, 6895-6902.]); Comba et al. (2001[Comba, P., Jurisic, P., Lampeka, Y. D., Peters, A., Prikhod'ko, A. I. & Pritzkow, H. (2001). Inorg. Chim. Acta, 324, 99-107.]).

[Scheme 1]

Experimental

Crystal data
  • C64H56N8

  • Mr = 937.17

  • Triclinic, [P \overline 1]

  • a = 9.084 (5) Å

  • b = 10.999 (8) Å

  • c = 14.160 (8) Å

  • α = 73.26 (2)°

  • β = 73.012 (19)°

  • γ = 83.40 (2)°

  • V = 1295.0 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.21 × 0.19 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.975, Tmax = 0.983

  • 12846 measured reflections

  • 5868 independent reflections

  • 2846 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.188

  • S = 1.04

  • 5868 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3–C8 and C26–C31 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C30—H30⋯Cg1i 0.93 2.60 3.451 (4) 152
C2—H2ACg2ii 0.97 2.97 3.937 (4) 177
Symmetry codes: (i) -x, -y, -z+2; (ii) x, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Macrocyclic compounds and their derivatives have attracted much attention recently owing to their applications in biochemistry, materials science, catalysis, encapsulation, activation, transport and separation phenomena, hydrometallurgy, etc. (Vigato & Tamburini, 2004). As an extension of our research on the macrocyclic derivatives, compound (I) was synthesized and its crystal structure determined, Fig. 1.

Bond lengths and bond angles found for (I) are within normal ranges for related crystal structures (Comba et al., 2001). The crystal structure is stabilized by C—H···π packing interactions, Table 1 and Figs 2 & 3; Cg1 and Cg2 are the centroids of the C3–C8 and C26–C31 rings, respectively.

Related literature top

For synthesis, see: Chen & Martell (1991). For related literature, see: Vigato & Tamburini (2004). For related structures, see: Chen & Martell (1991); Comba et al. (2001).

Experimental top

All chemicals were obtained from commercial sources and used without further purification except for bis-p-xylyl-bis-m-xylyldiamine which was synthesized according to the literature method (Chen & Martell, 1991). A mixture of bis-p-xylyl-bis-m-xylyldiamine (0.472 g, 1 mmol) and K2CO3 (1.00 g) in acetonitrile (30 ml) was stirred for 4 h. 2-Cyanobenzyl chloride (1 mmol) was then added and the solution refluxed for 20 h. After completion of the reaction, the reaction mixture was filtered and the filtrate was evaporated under vacuum. Colorless crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution of (I) after several days at room temperature.

Refinement top

H atoms were treated as riding with C—H = 0.93 - 0.97 Å (CH), and with Uiso = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for clarity. The unlablled atoms are related by -x+1, -y+1, -z+1.
[Figure 2] Fig. 2. The C—H···π interactions in (I).
[Figure 3] Fig. 3. A view down the b-axis of the unit cell contents for (I).
2,2',2'',2'''-[3,7,11,15-tetraaza-1(1,4),5(1,3),9(1,4),13(1,3)- tetrabenzenacyclohexadecaphane-3,7,11,15- tetrayltetramethylene]tetrabenzonitrile top
Crystal data top
C64H56N8V = 1295.0 (14) Å3
Mr = 937.17Z = 1
Triclinic, P1F(000) = 496
Hall symbol: -P 1Dx = 1.202 Mg m3
a = 9.084 (5) ÅMo Kα radiation, λ = 0.71069 Å
b = 10.999 (8) ŵ = 0.07 mm1
c = 14.160 (8) ÅT = 293 K
α = 73.26 (2)°Block, colorless
β = 73.012 (19)°0.21 × 0.19 × 0.17 mm
γ = 83.40 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5868 independent reflections
Radiation source: fine-focus sealed tube2846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1011
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.975, Tmax = 0.983l = 1718
12846 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.072P)2 + 0.2406P]
where P = (Fo2 + 2Fc2)/3
5868 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C64H56N8γ = 83.40 (2)°
Mr = 937.17V = 1295.0 (14) Å3
Triclinic, P1Z = 1
a = 9.084 (5) ÅMo Kα radiation
b = 10.999 (8) ŵ = 0.07 mm1
c = 14.160 (8) ÅT = 293 K
α = 73.26 (2)°0.21 × 0.19 × 0.17 mm
β = 73.012 (19)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5868 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2846 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.045
12846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
5868 reflectionsΔρmin = 0.20 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2541 (3)0.7033 (3)0.7026 (2)0.0587 (7)
H1A0.33500.67440.73680.070*
H1B0.18560.76110.73710.070*
C20.1184 (3)0.5227 (3)0.8221 (2)0.0580 (7)
H2A0.03460.46920.83160.070*
H2B0.07910.58230.86320.070*
C30.2436 (3)0.4416 (2)0.85999 (19)0.0514 (7)
C40.2980 (4)0.4604 (3)0.9363 (2)0.0685 (8)
H40.25930.52900.96330.082*
C50.4080 (4)0.3798 (3)0.9728 (3)0.0793 (10)
H50.44300.39421.02400.095*
C60.4666 (3)0.2779 (3)0.9339 (2)0.0648 (8)
H60.54090.22360.95920.078*
C70.4163 (3)0.2554 (3)0.85783 (19)0.0499 (6)
C80.3047 (3)0.3377 (2)0.82186 (19)0.0495 (6)
H80.26970.32300.77070.059*
C90.4840 (3)0.1459 (3)0.8133 (2)0.0548 (7)
H9A0.56840.17580.75280.066*
H9B0.52590.08200.86280.066*
C100.5508 (3)0.9901 (2)0.2845 (2)0.0554 (7)
H10A0.47591.04740.25580.066*
H10B0.62641.04120.29010.066*
C110.4700 (3)0.9112 (2)0.39063 (19)0.0497 (6)
C120.3422 (3)0.9611 (3)0.4501 (2)0.0602 (7)
H120.30261.04120.42310.072*
C130.2726 (3)0.8938 (3)0.5488 (2)0.0600 (8)
H130.18670.92990.58710.072*
C140.3260 (3)0.7751 (3)0.5925 (2)0.0502 (6)
C150.4526 (3)0.7244 (3)0.5325 (2)0.0584 (7)
H150.49070.64370.55920.070*
C160.5235 (3)0.7914 (3)0.4334 (2)0.0570 (7)
H160.60890.75510.39490.068*
C170.0341 (3)0.6353 (3)0.6741 (2)0.0650 (8)
H17A0.06400.69990.60950.078*
H17B0.04260.67350.72200.078*
C180.0369 (3)0.5274 (3)0.6582 (2)0.0600 (7)
C190.0540 (4)0.4340 (3)0.6196 (2)0.0643 (8)
H190.16000.43340.60880.077*
C200.0083 (4)0.3423 (3)0.5969 (2)0.0792 (10)
H200.05540.28160.56910.095*
C210.1693 (5)0.3400 (3)0.6158 (3)0.0818 (10)
H210.21180.27760.60020.098*
C220.2617 (4)0.4274 (3)0.6561 (3)0.0772 (9)
H220.36790.42520.66900.093*
C230.1967 (3)0.5224 (3)0.6789 (2)0.0632 (8)
C240.2924 (4)0.6135 (3)0.7200 (3)0.0710 (9)
C250.2686 (3)0.0107 (3)0.8774 (2)0.0560 (7)
H25A0.23880.05770.92890.067*
H25B0.32370.06630.90420.067*
C260.1259 (3)0.0250 (2)0.8603 (2)0.0504 (6)
C270.0631 (3)0.0487 (3)0.7840 (2)0.0677 (8)
H270.11110.12270.74090.081*
C280.0698 (3)0.0151 (3)0.7699 (3)0.0784 (10)
H280.11000.06620.71780.094*
C290.1422 (3)0.0942 (3)0.8331 (3)0.0726 (9)
H290.23070.11760.82320.087*
C300.0843 (3)0.1679 (3)0.9101 (2)0.0638 (8)
H300.13380.24110.95340.077*
C310.0486 (3)0.1339 (2)0.9241 (2)0.0516 (7)
C320.1041 (3)0.2134 (3)1.0065 (3)0.0674 (8)
N10.3723 (2)0.08726 (19)0.78530 (15)0.0472 (5)
N20.1680 (2)0.5945 (2)0.71309 (16)0.0511 (6)
N30.1478 (4)0.2784 (3)1.0735 (3)0.0995 (10)
N40.3737 (4)0.6894 (4)0.7527 (3)0.1080 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0600 (16)0.0602 (18)0.0538 (16)0.0240 (14)0.0019 (13)0.0173 (14)
C20.0576 (17)0.0523 (17)0.0537 (16)0.0098 (13)0.0020 (13)0.0086 (14)
C30.0557 (16)0.0462 (16)0.0452 (15)0.0195 (12)0.0032 (12)0.0054 (12)
C40.091 (2)0.0562 (19)0.0636 (19)0.0270 (17)0.0185 (17)0.0172 (16)
C50.100 (3)0.079 (2)0.076 (2)0.035 (2)0.042 (2)0.017 (2)
C60.0634 (18)0.068 (2)0.0703 (19)0.0209 (15)0.0335 (15)0.0071 (16)
C70.0452 (14)0.0513 (16)0.0501 (15)0.0185 (12)0.0111 (12)0.0041 (13)
C80.0525 (15)0.0523 (16)0.0426 (14)0.0136 (12)0.0107 (12)0.0089 (12)
C90.0454 (14)0.0527 (17)0.0609 (17)0.0097 (12)0.0132 (13)0.0049 (13)
C100.0556 (16)0.0425 (15)0.0572 (16)0.0061 (12)0.0049 (13)0.0056 (13)
C110.0474 (14)0.0432 (15)0.0530 (16)0.0099 (11)0.0060 (12)0.0090 (13)
C120.0643 (17)0.0432 (16)0.0645 (18)0.0013 (13)0.0060 (15)0.0142 (14)
C130.0529 (16)0.0539 (18)0.0624 (18)0.0030 (13)0.0020 (14)0.0168 (15)
C140.0516 (15)0.0484 (16)0.0499 (15)0.0155 (12)0.0068 (12)0.0139 (13)
C150.0598 (17)0.0494 (16)0.0565 (17)0.0009 (13)0.0111 (14)0.0047 (13)
C160.0537 (16)0.0557 (18)0.0501 (16)0.0009 (13)0.0028 (13)0.0093 (14)
C170.0586 (17)0.0560 (18)0.081 (2)0.0091 (14)0.0219 (15)0.0129 (16)
C180.0638 (18)0.0516 (17)0.0633 (18)0.0141 (14)0.0229 (14)0.0029 (14)
C190.0703 (19)0.0523 (18)0.077 (2)0.0072 (15)0.0324 (16)0.0137 (16)
C200.105 (3)0.060 (2)0.074 (2)0.0093 (19)0.033 (2)0.0090 (17)
C210.105 (3)0.061 (2)0.084 (2)0.034 (2)0.038 (2)0.0013 (18)
C220.071 (2)0.064 (2)0.084 (2)0.0225 (17)0.0196 (18)0.0067 (18)
C230.0585 (17)0.0620 (19)0.0653 (19)0.0165 (15)0.0245 (15)0.0020 (15)
C240.0563 (19)0.077 (2)0.082 (2)0.0035 (17)0.0257 (17)0.0179 (19)
C250.0569 (16)0.0549 (17)0.0497 (15)0.0153 (13)0.0077 (13)0.0060 (13)
C260.0467 (14)0.0479 (16)0.0516 (15)0.0080 (12)0.0044 (12)0.0125 (13)
C270.0641 (18)0.0572 (19)0.073 (2)0.0102 (15)0.0192 (16)0.0002 (16)
C280.0607 (19)0.075 (2)0.094 (3)0.0022 (17)0.0288 (18)0.007 (2)
C290.0494 (17)0.075 (2)0.093 (2)0.0097 (16)0.0119 (17)0.026 (2)
C300.0489 (16)0.0608 (19)0.071 (2)0.0116 (14)0.0001 (15)0.0135 (16)
C310.0428 (14)0.0478 (16)0.0543 (16)0.0078 (12)0.0019 (12)0.0116 (13)
C320.0583 (18)0.061 (2)0.070 (2)0.0208 (15)0.0060 (16)0.0015 (17)
N10.0459 (11)0.0448 (12)0.0458 (12)0.0136 (9)0.0057 (9)0.0066 (10)
N20.0495 (12)0.0473 (13)0.0531 (13)0.0104 (10)0.0115 (10)0.0073 (10)
N30.092 (2)0.090 (2)0.094 (2)0.0329 (17)0.0286 (18)0.0232 (19)
N40.080 (2)0.115 (3)0.132 (3)0.004 (2)0.034 (2)0.036 (2)
Geometric parameters (Å, º) top
C1—N21.453 (3)C16—H160.9300
C1—C141.515 (4)C17—N21.452 (3)
C1—H1A0.9700C17—C181.514 (4)
C1—H1B0.9700C17—H17A0.9700
C2—N21.477 (3)C17—H17B0.9700
C2—C31.491 (4)C18—C191.378 (4)
C2—H2A0.9700C18—C231.399 (4)
C2—H2B0.9700C19—C201.365 (4)
C3—C41.386 (4)C19—H190.9300
C3—C81.393 (4)C20—C211.411 (5)
C4—C51.373 (4)C20—H200.9300
C4—H40.9300C21—C221.343 (5)
C5—C61.375 (4)C21—H210.9300
C5—H50.9300C22—C231.412 (4)
C6—C71.378 (4)C22—H220.9300
C6—H60.9300C23—C241.392 (5)
C7—C81.390 (4)C24—N41.156 (4)
C7—C91.506 (4)C25—N11.459 (3)
C8—H80.9300C25—C261.499 (4)
C9—N11.461 (3)C25—H25A0.9700
C9—H9A0.9700C25—H25B0.9700
C9—H9B0.9700C26—C271.379 (4)
C10—N1i1.460 (3)C26—C311.394 (4)
C10—C111.517 (4)C27—C281.385 (4)
C10—H10A0.9700C27—H270.9300
C10—H10B0.9700C28—C291.377 (4)
C11—C121.380 (3)C28—H280.9300
C11—C161.381 (4)C29—C301.360 (4)
C12—C131.377 (4)C29—H290.9300
C12—H120.9300C30—C311.387 (4)
C13—C141.374 (4)C30—H300.9300
C13—H130.9300C31—C321.427 (4)
C14—C151.382 (4)C32—N31.154 (4)
C15—C161.383 (4)N1—C10i1.460 (3)
C15—H150.9300
N2—C1—C14113.9 (2)C11—C16—H16119.4
N2—C1—H1A108.8C15—C16—H16119.4
C14—C1—H1A108.8N2—C17—C18112.8 (2)
N2—C1—H1B108.8N2—C17—H17A109.0
C14—C1—H1B108.8C18—C17—H17A109.0
H1A—C1—H1B107.7N2—C17—H17B109.0
N2—C2—C3113.7 (2)C18—C17—H17B109.0
N2—C2—H2A108.8H17A—C17—H17B107.8
C3—C2—H2A108.8C19—C18—C23118.2 (3)
N2—C2—H2B108.8C19—C18—C17121.1 (3)
C3—C2—H2B108.8C23—C18—C17120.7 (3)
H2A—C2—H2B107.7C20—C19—C18121.5 (3)
C4—C3—C8117.4 (3)C20—C19—H19119.3
C4—C3—C2123.0 (3)C18—C19—H19119.3
C8—C3—C2119.5 (2)C19—C20—C21119.8 (3)
C5—C4—C3121.2 (3)C19—C20—H20120.1
C5—C4—H4119.4C21—C20—H20120.1
C3—C4—H4119.4C22—C21—C20120.3 (3)
C4—C5—C6120.3 (3)C22—C21—H21119.9
C4—C5—H5119.9C20—C21—H21119.9
C6—C5—H5119.9C21—C22—C23119.7 (3)
C5—C6—C7120.6 (3)C21—C22—H22120.1
C5—C6—H6119.7C23—C22—H22120.1
C7—C6—H6119.7C24—C23—C18119.9 (3)
C6—C7—C8118.4 (3)C24—C23—C22119.7 (3)
C6—C7—C9120.5 (3)C18—C23—C22120.4 (3)
C8—C7—C9121.1 (2)N4—C24—C23178.5 (4)
C7—C8—C3122.0 (3)N1—C25—C26114.0 (2)
C7—C8—H8119.0N1—C25—H25A108.8
C3—C8—H8119.0C26—C25—H25A108.8
N1—C9—C7113.2 (2)N1—C25—H25B108.8
N1—C9—H9A108.9C26—C25—H25B108.8
C7—C9—H9A108.9H25A—C25—H25B107.7
N1—C9—H9B108.9C27—C26—C31117.2 (3)
C7—C9—H9B108.9C27—C26—C25122.3 (2)
H9A—C9—H9B107.7C31—C26—C25120.5 (2)
N1i—C10—C11112.9 (2)C26—C27—C28121.6 (3)
N1i—C10—H10A109.0C26—C27—H27119.2
C11—C10—H10A109.0C28—C27—H27119.2
N1i—C10—H10B109.0C29—C28—C27119.9 (3)
C11—C10—H10B109.0C29—C28—H28120.1
H10A—C10—H10B107.8C27—C28—H28120.1
C12—C11—C16117.5 (2)C30—C29—C28119.9 (3)
C12—C11—C10120.0 (2)C30—C29—H29120.0
C16—C11—C10122.4 (2)C28—C29—H29120.0
C13—C12—C11120.9 (3)C29—C30—C31120.0 (3)
C13—C12—H12119.6C29—C30—H30120.0
C11—C12—H12119.6C31—C30—H30120.0
C14—C13—C12122.0 (3)C30—C31—C26121.4 (3)
C14—C13—H13119.0C30—C31—C32118.1 (3)
C12—C13—H13119.0C26—C31—C32120.6 (3)
C13—C14—C15117.1 (2)N3—C32—C31179.3 (3)
C13—C14—C1122.2 (2)C25—N1—C10i110.5 (2)
C15—C14—C1120.7 (3)C25—N1—C9109.9 (2)
C14—C15—C16121.3 (3)C10i—N1—C9111.2 (2)
C14—C15—H15119.4C17—N2—C1110.6 (2)
C16—C15—H15119.4C17—N2—C2109.7 (2)
C11—C16—C15121.2 (2)C1—N2—C2109.6 (2)
N2—C2—C3—C4116.7 (3)C18—C19—C20—C211.9 (5)
N2—C2—C3—C866.8 (3)C19—C20—C21—C220.1 (5)
C8—C3—C4—C50.1 (4)C20—C21—C22—C230.5 (5)
C2—C3—C4—C5176.6 (3)C19—C18—C23—C24178.6 (3)
C3—C4—C5—C60.0 (5)C17—C18—C23—C243.6 (4)
C4—C5—C6—C70.1 (5)C19—C18—C23—C222.9 (4)
C5—C6—C7—C80.3 (4)C17—C18—C23—C22174.9 (3)
C5—C6—C7—C9178.2 (3)C21—C22—C23—C24179.5 (3)
C6—C7—C8—C30.3 (4)C21—C22—C23—C181.1 (5)
C9—C7—C8—C3178.2 (2)N1—C25—C26—C2727.7 (4)
C4—C3—C8—C70.2 (4)N1—C25—C26—C31154.1 (2)
C2—C3—C8—C7176.9 (2)C31—C26—C27—C281.0 (4)
C6—C7—C9—N1145.3 (2)C25—C26—C27—C28179.3 (3)
C8—C7—C9—N136.2 (3)C26—C27—C28—C290.1 (5)
N1i—C10—C11—C12151.7 (2)C27—C28—C29—C300.9 (5)
N1i—C10—C11—C1631.4 (4)C28—C29—C30—C310.8 (5)
C16—C11—C12—C130.8 (4)C29—C30—C31—C260.3 (4)
C10—C11—C12—C13176.3 (3)C29—C30—C31—C32179.3 (3)
C11—C12—C13—C140.1 (5)C27—C26—C31—C301.2 (4)
C12—C13—C14—C150.8 (4)C25—C26—C31—C30179.4 (2)
C12—C13—C14—C1177.2 (3)C27—C26—C31—C32178.4 (3)
N2—C1—C14—C13109.1 (3)C25—C26—C31—C320.1 (4)
N2—C1—C14—C1572.9 (3)C26—C25—N1—C10i72.3 (3)
C13—C14—C15—C161.0 (4)C26—C25—N1—C9164.6 (2)
C1—C14—C15—C16177.0 (3)C7—C9—N1—C2574.6 (3)
C12—C11—C16—C150.6 (4)C7—C9—N1—C10i162.7 (2)
C10—C11—C16—C15176.4 (3)C18—C17—N2—C1165.5 (2)
C14—C15—C16—C110.3 (5)C18—C17—N2—C273.5 (3)
N2—C17—C18—C1939.2 (4)C14—C1—N2—C1765.6 (3)
N2—C17—C18—C23143.0 (3)C14—C1—N2—C2173.4 (2)
C23—C18—C19—C203.4 (4)C3—C2—N2—C17161.1 (2)
C17—C18—C19—C20174.5 (3)C3—C2—N2—C177.4 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30···Cg1ii0.932.603.451 (4)152
C2—H2A···Cg2iii0.972.973.937 (4)177
Symmetry codes: (ii) x, y, z+2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC64H56N8
Mr937.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.084 (5), 10.999 (8), 14.160 (8)
α, β, γ (°)73.26 (2), 73.012 (19), 83.40 (2)
V3)1295.0 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
12846, 5868, 2846
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.188, 1.04
No. of reflections5868
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30···Cg1i0.9302.603.451 (4)152
C2—H2A···Cg2ii0.9702.973.937 (4)177
Symmetry codes: (i) x, y, z+2; (ii) x, y+1, z.
 

Acknowledgements

We thank the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320) and the Analysis and Testing Foundation of Northeast Normal University for support.

References

First citationChen, D. & Martell, A. E. (1991). Tetrahedron, 47, 6895–6902.  CrossRef CAS Web of Science Google Scholar
First citationComba, P., Jurisic, P., Lampeka, Y. D., Peters, A., Prikhod'ko, A. I. & Pritzkow, H. (2001). Inorg. Chim. Acta, 324, 99–107.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds