metal-organic compounds
Poly[[diaquadeca-μ-cyanido-hexacyanidobis(4-cyanopyridine)di-μ-pyrimidine-tricopper(II)ditungsten(V)] dihydrate]
aDepartment of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
*Correspondence e-mail: ohkoshi@chem.s.u-tokyo.ac.jp
In the polymeric title compound, {[Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2O}n, the coordination geometry of W is an eight-coordinated bicapped trigonal prism. Five of the CN groups of [W(CN)8] are bridged to Cu ions. The coordination geometries of the Cu atoms are each pseudo-octahedral; one Cu atom is located on a centre of inversion. The cyano-bridged W–Cu layers are linked by Cu-containing pillars, to form a three-dimensional network with cavities occupied by noncoordinated water and 4-cyanopyridine molecules.
Related literature
For general background, see: Arimoto et al. (2003); Catala et al. (2005); Hozumi et al. (2003); Leipoldt et al. (1994); Ohkoshi et al. (2006, 2008); Pilkington & Decurtins (2000); Zhong et al. (2000). For related structures, see: Garde et al. (1999); Ohkoshi et al. (2003, 2007).
Experimental
Crystal data
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas & Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PyMOLWin (DeLano, 2007); software used to prepare material for publication: CrystalStructure.
Supporting information
10.1107/S1600536808032947/tk2308sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808032947/tk2308Isup2.hkl
The title compound was prepared by reacting an aqueous solution of Cs3[W(CN)8]2H2O (1.2 × 10 -2 mol dm-3) with a mixed aqueous solution of CuCl2.2H2O (1.8 × 10 -2 mol dm-3), 4-cyanopyridine (1.8 × 10 -2 mol dm-3) and pyrimidine (1.2 × 10 -2 mol dm-3) at room temperature. The prepared compound was a green plate-like crystal. Elemental analysis found: C 30.36, H 1.88, N 23.99, Cu 13.84, W 26.20; C36H24N24O4Cu3W2 requires: Cu, 13.47; W, 25.98; C, 30.56; H, 1.71; N, 23.76.
In the IR spectrum, cyano stretching peaks were observed at 2154, 2162, 2170, and 2200 cm-1. The UV-visible reflectance spectrum showed absorption bands at around 700 and 1070 nm.
The H atoms of the solvent water molecules and the coordinated water molecules could not be located reliably and were not included in the
The remaining H atoms were placed in calculated positions and refined using a riding model, with C-H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C). The maximum and minimum residual electron density peaks were located 0.66 and 1.61 Å, respectively from the W atom.Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku Americas & Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PyMOLWin (DeLano, 2007); software used to prepare material for publication: CrystalStructure (Rigaku Americas & Rigaku, 2007).[Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2O | F(000) = 1334 |
Mr = 1407.02 | Dx = 2.000 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2yn | Cell parameters from 15466 reflections |
a = 7.2475 (6) Å | θ = 3.1–27.5° |
b = 15.4532 (12) Å | µ = 6.32 mm−1 |
c = 20.8560 (16) Å | T = 90 K |
β = 90.057 (2)° | Plate, green |
V = 2335.8 (3) Å3 | 0.44 × 0.17 × 0.04 mm |
Z = 2 |
Rigaku R-AXIS RAPID diffractometer | 5345 independent reflections |
Radiation source: sealed tube | 4975 reflections with I > 2σ(I) |
Sealed tube monochromator | Rint = 0.095 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −9→9 |
Absorption correction: numerical (ABSCOR; Higashi, 1995) | k = −20→17 |
Tmin = 0.297, Tmax = 0.791 | l = −27→26 |
22562 measured reflections |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Secondary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + 6.8782P] where P = (Fo2 + 2Fc2)/3 |
5345 reflections | (Δ/σ)max = 0.002 |
314 parameters | Δρmax = 2.97 e Å−3 |
0 restraints | Δρmin = −1.45 e Å−3 |
[Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2O | V = 2335.8 (3) Å3 |
Mr = 1407.02 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2475 (6) Å | µ = 6.32 mm−1 |
b = 15.4532 (12) Å | T = 90 K |
c = 20.8560 (16) Å | 0.44 × 0.17 × 0.04 mm |
β = 90.057 (2)° |
Rigaku R-AXIS RAPID diffractometer | 5345 independent reflections |
Absorption correction: numerical (ABSCOR; Higashi, 1995) | 4975 reflections with I > 2σ(I) |
Tmin = 0.297, Tmax = 0.791 | Rint = 0.095 |
22562 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.09 | Δρmax = 2.97 e Å−3 |
5345 reflections | Δρmin = −1.45 e Å−3 |
314 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
W(1) | 0.79222 (2) | 0.682386 (11) | 0.301091 (8) | 0.00933 (7) | |
Cu(1) | 0.5000 | 0.5000 | 0.5000 | 0.01726 (18) | |
Cu(2) | 0.24342 (7) | 0.43738 (4) | 0.23347 (3) | 0.01074 (13) | |
O(1) | 0.6198 (4) | 0.3863 (2) | 0.50585 (15) | 0.0199 (7) | |
O(2W) | 0.4469 (5) | 0.2609 (2) | 0.44669 (18) | 0.0331 (9) | |
N(8) | 0.4520 (5) | 0.8223 (2) | 0.2839 (2) | 0.0171 (8) | |
N(5) | 0.7372 (8) | 0.7918 (4) | 0.4362 (2) | 0.0445 (14) | |
N(4) | 1.1739 (5) | 0.6555 (3) | 0.3867 (2) | 0.0221 (9) | |
N(6) | 1.0499 (5) | 0.8542 (2) | 0.27039 (19) | 0.0155 (8) | |
N(3P) | 0.2076 (5) | 0.4190 (2) | 0.33127 (19) | 0.0139 (7) | |
N(3) | 1.0395 (5) | 0.5230 (2) | 0.24087 (18) | 0.0146 (8) | |
N(7) | 0.7775 (6) | 0.7133 (3) | 0.1440 (2) | 0.0251 (9) | |
N(1P) | 0.3037 (5) | 0.4489 (2) | 0.43733 (19) | 0.0167 (8) | |
N(1C) | 0.2581 (5) | 0.4584 (2) | 0.13674 (18) | 0.0160 (8) | |
N(2) | 0.4536 (5) | 0.5548 (2) | 0.25142 (19) | 0.0159 (8) | |
N(8C) | 0.2655 (15) | 0.5073 (7) | −0.1191 (3) | 0.108 (3) | |
N(1) | 0.6858 (5) | 0.5382 (3) | 0.41107 (19) | 0.0195 (9) | |
C(5) | 0.7573 (7) | 0.7547 (3) | 0.3890 (2) | 0.0247 (11) | |
C(8) | 0.5679 (6) | 0.7718 (3) | 0.2897 (2) | 0.0131 (8) | |
C(6) | 0.9565 (6) | 0.7950 (3) | 0.2801 (2) | 0.0149 (9) | |
C(1) | 0.7250 (6) | 0.5869 (3) | 0.3723 (2) | 0.0151 (9) | |
C(3) | 0.9483 (5) | 0.5780 (3) | 0.2595 (2) | 0.0117 (8) | |
C(2) | 0.5694 (6) | 0.6008 (3) | 0.2667 (2) | 0.0139 (9) | |
C(7) | 0.7801 (6) | 0.7033 (3) | 0.1982 (2) | 0.0147 (9) | |
C(4) | 1.0445 (6) | 0.6656 (3) | 0.3562 (2) | 0.0145 (9) | |
C(4P) | 0.0484 (6) | 0.3870 (3) | 0.3537 (2) | 0.0208 (10) | |
C(5P) | 0.0114 (6) | 0.3841 (4) | 0.4186 (2) | 0.0250 (11) | |
C(2P) | 0.3299 (6) | 0.4475 (3) | 0.3738 (2) | 0.0158 (9) | |
C(6C) | 0.2623 (8) | 0.5390 (3) | 0.1143 (2) | 0.0286 (12) | |
C(5C) | 0.2606 (10) | 0.5585 (4) | 0.0505 (3) | 0.0468 (19) | |
C(4C) | 0.2565 (9) | 0.4902 (6) | 0.0079 (3) | 0.052 (2) | |
C(3C) | 0.2549 (8) | 0.4065 (5) | 0.0295 (2) | 0.0412 (17) | |
C(2C) | 0.2567 (7) | 0.3938 (3) | 0.0953 (2) | 0.0252 (11) | |
C(6P) | 0.1443 (6) | 0.4167 (4) | 0.4596 (2) | 0.0238 (11) | |
C(7C) | 0.2648 (14) | 0.4950 (8) | −0.0622 (4) | 0.083 (3) | |
H(4P) | −0.0415 | 0.3657 | 0.3239 | 0.025* | |
H(5P) | −0.1017 | 0.3605 | 0.4346 | 0.030* | |
H(2P) | 0.4451 | 0.4683 | 0.3579 | 0.019* | |
H(6C) | 0.2664 | 0.5859 | 0.1449 | 0.035* | |
H(5C) | 0.2618 | 0.6178 | 0.0358 | 0.056* | |
H(3C) | 0.2521 | 0.3584 | −0.0000 | 0.050* | |
H(2C) | 0.2567 | 0.3355 | 0.1117 | 0.031* | |
H(6P) | 0.1222 | 0.4165 | 0.5050 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
W(1) | 0.00709 (11) | 0.00851 (13) | 0.01238 (11) | −0.00006 (5) | −0.00063 (7) | 0.00014 (6) |
Cu(1) | 0.0109 (3) | 0.0285 (5) | 0.0123 (3) | −0.0043 (3) | −0.0029 (2) | 0.0043 (3) |
Cu(2) | 0.0096 (2) | 0.0105 (2) | 0.0121 (2) | 0.00227 (19) | −0.00008 (18) | −0.0000 (2) |
O(1) | 0.0141 (16) | 0.029 (2) | 0.0161 (15) | −0.0006 (13) | −0.0023 (11) | 0.0056 (15) |
O(2W) | 0.029 (2) | 0.040 (2) | 0.030 (2) | −0.0009 (17) | 0.0017 (16) | −0.015 (2) |
N(8) | 0.016 (2) | 0.015 (2) | 0.020 (2) | 0.0002 (14) | 0.0004 (15) | 0.0026 (16) |
N(5) | 0.056 (3) | 0.049 (3) | 0.029 (2) | 0.017 (2) | −0.008 (2) | −0.020 (2) |
N(4) | 0.019 (2) | 0.022 (2) | 0.025 (2) | −0.0013 (17) | −0.0066 (16) | 0.005 (2) |
N(6) | 0.0106 (18) | 0.015 (2) | 0.021 (2) | −0.0015 (15) | −0.0004 (14) | 0.0014 (17) |
N(3P) | 0.0123 (18) | 0.013 (2) | 0.0160 (18) | 0.0003 (14) | 0.0009 (13) | 0.0001 (16) |
N(3) | 0.0109 (18) | 0.015 (2) | 0.0175 (18) | 0.0003 (15) | −0.0000 (13) | 0.0012 (16) |
N(7) | 0.029 (2) | 0.026 (2) | 0.021 (2) | 0.0002 (19) | 0.0035 (16) | 0.006 (2) |
N(1P) | 0.0151 (19) | 0.018 (2) | 0.0169 (19) | −0.0028 (15) | −0.0023 (14) | 0.0050 (17) |
N(1C) | 0.0145 (19) | 0.022 (2) | 0.0113 (18) | −0.0018 (15) | 0.0007 (13) | 0.0037 (17) |
N(2) | 0.0154 (19) | 0.016 (2) | 0.0160 (18) | −0.0005 (15) | −0.0012 (14) | −0.0003 (16) |
N(8C) | 0.145 (9) | 0.136 (10) | 0.043 (4) | −0.015 (7) | −0.005 (4) | −0.003 (5) |
N(1) | 0.016 (2) | 0.026 (2) | 0.0161 (19) | −0.0067 (16) | −0.0049 (14) | 0.0059 (19) |
C(5) | 0.025 (2) | 0.023 (2) | 0.027 (2) | 0.004 (2) | −0.0081 (19) | −0.001 (2) |
C(8) | 0.012 (2) | 0.012 (2) | 0.015 (2) | 0.0016 (16) | −0.0008 (15) | −0.0019 (18) |
C(6) | 0.010 (2) | 0.016 (2) | 0.018 (2) | 0.0041 (18) | −0.0037 (15) | 0.004 (2) |
C(1) | 0.012 (2) | 0.021 (2) | 0.013 (2) | −0.0017 (17) | −0.0036 (15) | −0.003 (2) |
C(3) | 0.011 (2) | 0.014 (2) | 0.0102 (19) | −0.0022 (17) | −0.0015 (14) | −0.0006 (18) |
C(2) | 0.011 (2) | 0.012 (2) | 0.018 (2) | −0.0003 (17) | −0.0018 (15) | 0.0016 (19) |
C(7) | 0.011 (2) | 0.014 (2) | 0.019 (2) | −0.0024 (17) | 0.0012 (15) | 0.003 (2) |
C(4) | 0.014 (2) | 0.013 (2) | 0.017 (2) | −0.0028 (17) | −0.0022 (16) | 0.0022 (19) |
C(4P) | 0.013 (2) | 0.028 (2) | 0.022 (2) | −0.0076 (19) | −0.0006 (17) | −0.002 (2) |
C(5P) | 0.016 (2) | 0.039 (3) | 0.020 (2) | −0.007 (2) | 0.0037 (17) | 0.002 (2) |
C(2P) | 0.012 (2) | 0.017 (2) | 0.018 (2) | 0.0001 (17) | 0.0005 (16) | −0.0006 (19) |
C(6C) | 0.042 (3) | 0.024 (2) | 0.020 (2) | −0.012 (2) | −0.007 (2) | 0.010 (2) |
C(5C) | 0.061 (4) | 0.047 (4) | 0.032 (3) | −0.032 (3) | −0.018 (2) | 0.028 (3) |
C(4C) | 0.032 (3) | 0.100 (6) | 0.024 (3) | −0.024 (3) | −0.008 (2) | 0.028 (3) |
C(3C) | 0.034 (3) | 0.070 (5) | 0.020 (2) | −0.001 (3) | 0.005 (2) | −0.012 (3) |
C(2C) | 0.027 (2) | 0.029 (3) | 0.020 (2) | 0.004 (2) | 0.0005 (19) | −0.003 (2) |
C(6P) | 0.014 (2) | 0.041 (3) | 0.016 (2) | −0.004 (2) | 0.0004 (17) | 0.003 (2) |
C(7C) | 0.086 (7) | 0.110 (9) | 0.054 (5) | −0.016 (6) | 0.010 (4) | 0.005 (5) |
W(1)—C(5) | 2.162 (5) | N(3P)—C(2P) | 1.328 (6) |
W(1)—C(8) | 2.146 (4) | N(3)—C(3) | 1.145 (6) |
W(1)—C(6) | 2.153 (4) | N(7)—C(7) | 1.141 (6) |
W(1)—C(1) | 2.149 (4) | N(1P)—C(2P) | 1.339 (6) |
W(1)—C(3) | 2.153 (4) | N(1P)—C(6P) | 1.341 (6) |
W(1)—C(2) | 2.170 (4) | N(1C)—C(6C) | 1.331 (7) |
W(1)—C(7) | 2.173 (4) | N(1C)—C(2C) | 1.322 (6) |
W(1)—C(4) | 2.174 (4) | N(2)—C(2) | 1.145 (6) |
Cu(1)—O(1) | 1.964 (3) | N(8C)—C(7C) | 1.202 (12) |
Cu(1)—O(1)i | 1.964 (3) | N(1)—C(1) | 1.141 (6) |
Cu(1)—N(1P) | 2.086 (3) | C(4P)—C(5P) | 1.381 (6) |
Cu(1)—N(1P)i | 2.086 (3) | C(5P)—C(6P) | 1.383 (7) |
Cu(1)—N(1) | 2.368 (3) | C(6C)—C(5C) | 1.364 (8) |
Cu(1)—N(1)i | 2.368 (3) | C(5C)—C(4C) | 1.380 (11) |
Cu(2)—N(8)ii | 2.301 (4) | C(4C)—C(3C) | 1.368 (12) |
Cu(2)—N(6)iii | 1.975 (3) | C(4C)—C(7C) | 1.465 (11) |
Cu(2)—N(3P) | 2.076 (4) | C(3C)—C(2C) | 1.386 (7) |
Cu(2)—N(3)iv | 1.990 (3) | C(4P)—H(4P) | 0.958 |
Cu(2)—N(1C) | 2.046 (3) | C(5P)—H(5P) | 0.958 |
Cu(2)—N(2) | 2.399 (4) | C(2P)—H(2P) | 0.955 |
N(8)—C(8) | 1.154 (6) | C(6C)—H(6C) | 0.965 |
N(5)—C(5) | 1.149 (7) | C(5C)—H(5C) | 0.967 |
N(4)—C(4) | 1.143 (6) | C(3C)—H(3C) | 0.965 |
N(6)—C(6) | 1.157 (6) | C(2C)—H(2C) | 0.964 |
N(3P)—C(4P) | 1.340 (6) | C(6P)—H(6P) | 0.960 |
O(1)···O(2W) | 2.615 (5) | N(8C)···C(3)vii | 3.564 (10) |
O(1)···N(4)v | 2.770 (5) | N(8C)···C(6C)vii | 3.498 (12) |
O(2W)···O(1) | 2.615 (5) | C(3)···N(8C)vii | 3.564 (10) |
O(2W)···N(5)i | 2.901 (6) | C(2P)···O(2W) | 3.367 (6) |
O(2W)···N(7)iii | 2.849 (5) | C(6C)···N(8C)vii | 3.498 (12) |
O(2W)···N(1P) | 3.090 (6) | C(5C)···O(2W)x | 3.472 (8) |
O(2W)···C(2P) | 3.367 (6) | C(5C)···N(5)ix | 3.326 (9) |
O(2W)···C(5C)ii | 3.472 (8) | C(5C)···C(7C)vii | 3.546 (13) |
O(2W)···C(6P) | 3.268 (7) | C(4C)···C(4C)vii | 3.559 (9) |
N(5)···O(2W)i | 2.901 (6) | C(6P)···O(2W) | 3.268 (7) |
N(5)···N(8C)vi | 3.318 (13) | C(7C)···N(5)ix | 3.301 (14) |
N(5)···C(5C)vi | 3.326 (9) | C(7C)···C(5C)vii | 3.546 (13) |
N(5)···C(7C)vi | 3.301 (14) | O(2W)···H(5C)ii | 2.705 |
N(4)···O(1)v | 2.770 (5) | O(2W)···H(3C)xi | 3.087 |
N(3)···N(8C)vii | 3.398 (10) | O(2W)···H(6P) | 3.578 |
N(7)···O(2W)viii | 2.849 (5) | N(5)···H(5C)vi | 2.510 |
N(7)···N(8C)vii | 3.462 (13) | N(7)···H(3C)vii | 3.207 |
N(1P)···O(2W) | 3.090 (6) | C(6P)···H(6P)xii | 3.304 |
N(1C)···N(8C)vii | 3.513 (11) | H(5C)···O(2W)x | 2.705 |
N(2)···N(8C)vii | 3.563 (10) | H(5C)···N(5)ix | 2.510 |
N(8C)···N(5)ix | 3.318 (13) | H(3C)···O(2W)xiii | 3.087 |
N(8C)···N(3)vii | 3.398 (10) | H(3C)···N(7)vii | 3.207 |
N(8C)···N(7)vii | 3.462 (13) | H(6P)···O(2W) | 3.578 |
N(8C)···N(1C)vii | 3.513 (11) | H(6P)···C(6P)xii | 3.304 |
N(8C)···N(2)vii | 3.563 (10) | H(6P)···H(6P)xii | 3.136 |
C(5)—W(1)—C(8) | 70.83 (18) | N(3P)—Cu(2)—N(2) | 91.72 (14) |
C(5)—W(1)—C(6) | 79.62 (19) | N(3)iv—Cu(2)—N(1C) | 90.59 (16) |
C(5)—W(1)—C(1) | 75.05 (19) | N(3)iv—Cu(2)—N(2) | 87.51 (14) |
C(5)—W(1)—C(3) | 142.29 (18) | N(1C)—Cu(2)—N(2) | 90.00 (15) |
C(5)—W(1)—C(2) | 119.52 (18) | Cu(2)x—N(8)—C(8) | 171.0 (3) |
C(5)—W(1)—C(7) | 139.15 (19) | Cu(2)viii—N(6)—C(6) | 165.0 (3) |
C(5)—W(1)—C(4) | 73.28 (18) | Cu(2)—N(3P)—C(4P) | 120.1 (3) |
C(8)—W(1)—C(6) | 82.92 (17) | Cu(2)—N(3P)—C(2P) | 121.8 (3) |
C(8)—W(1)—C(1) | 110.23 (17) | C(4P)—N(3P)—C(2P) | 117.6 (4) |
C(8)—W(1)—C(3) | 146.68 (16) | Cu(2)xiv—N(3)—C(3) | 161.7 (3) |
C(8)—W(1)—C(2) | 76.94 (17) | Cu(1)—N(1P)—C(2P) | 121.9 (3) |
C(8)—W(1)—C(7) | 76.43 (17) | Cu(1)—N(1P)—C(6P) | 120.7 (3) |
C(8)—W(1)—C(4) | 140.49 (17) | C(2P)—N(1P)—C(6P) | 117.4 (4) |
C(6)—W(1)—C(1) | 145.12 (17) | Cu(2)—N(1C)—C(6C) | 119.7 (3) |
C(6)—W(1)—C(3) | 103.42 (17) | Cu(2)—N(1C)—C(2C) | 121.7 (3) |
C(6)—W(1)—C(2) | 144.47 (17) | C(6C)—N(1C)—C(2C) | 118.5 (4) |
C(6)—W(1)—C(7) | 72.62 (17) | Cu(2)—N(2)—C(2) | 168.1 (3) |
C(6)—W(1)—C(4) | 74.85 (17) | Cu(1)—N(1)—C(1) | 149.5 (3) |
C(1)—W(1)—C(3) | 83.36 (17) | W(1)—C(5)—N(5) | 178.7 (5) |
C(1)—W(1)—C(2) | 70.17 (17) | W(1)—C(8)—N(8) | 177.4 (4) |
C(1)—W(1)—C(7) | 140.87 (18) | W(1)—C(6)—N(6) | 177.4 (3) |
C(1)—W(1)—C(4) | 75.16 (17) | W(1)—C(1)—N(1) | 177.8 (4) |
C(3)—W(1)—C(2) | 79.79 (16) | W(1)—C(3)—N(3) | 175.2 (3) |
C(3)—W(1)—C(7) | 74.54 (17) | W(1)—C(2)—N(2) | 176.2 (4) |
C(3)—W(1)—C(4) | 71.47 (16) | W(1)—C(7)—N(7) | 178.4 (4) |
C(2)—W(1)—C(7) | 74.36 (17) | W(1)—C(4)—N(4) | 177.8 (4) |
C(2)—W(1)—C(4) | 136.94 (17) | N(3P)—C(4P)—C(5P) | 121.5 (4) |
C(7)—W(1)—C(4) | 124.99 (16) | C(4P)—C(5P)—C(6P) | 117.4 (4) |
O(1)—Cu(1)—O(1)i | 180.00 (18) | N(3P)—C(2P)—N(1P) | 124.8 (4) |
O(1)—Cu(1)—N(1P) | 90.05 (15) | N(1C)—C(6C)—C(5C) | 123.3 (5) |
O(1)—Cu(1)—N(1P)i | 89.95 (15) | C(6C)—C(5C)—C(4C) | 117.4 (6) |
O(1)—Cu(1)—N(1) | 91.15 (14) | C(5C)—C(4C)—C(3C) | 120.7 (6) |
O(1)—Cu(1)—N(1)i | 88.85 (14) | C(5C)—C(4C)—C(7C) | 127.1 (8) |
O(1)i—Cu(1)—N(1P) | 89.95 (15) | C(3C)—C(4C)—C(7C) | 112.1 (8) |
O(1)i—Cu(1)—N(1P)i | 90.05 (15) | C(4C)—C(3C)—C(2C) | 117.3 (6) |
O(1)i—Cu(1)—N(1) | 88.85 (14) | N(1C)—C(2C)—C(3C) | 122.7 (5) |
O(1)i—Cu(1)—N(1)i | 91.15 (14) | N(1P)—C(6P)—C(5P) | 121.3 (4) |
N(1P)—Cu(1)—N(1P)i | 180.0 (2) | N(8C)—C(7C)—C(4C) | 173.5 (12) |
N(1P)—Cu(1)—N(1) | 89.52 (14) | N(3P)—C(4P)—H(4P) | 119.1 |
N(1P)—Cu(1)—N(1)i | 90.48 (14) | C(5P)—C(4P)—H(4P) | 119.5 |
N(1P)i—Cu(1)—N(1) | 90.48 (14) | C(4P)—C(5P)—H(5P) | 121.4 |
N(1P)i—Cu(1)—N(1)i | 89.52 (14) | C(6P)—C(5P)—H(5P) | 121.2 |
N(1)—Cu(1)—N(1)i | 180.0 (2) | N(3P)—C(2P)—H(2P) | 117.6 |
N(8)ii—Cu(2)—N(6)iii | 87.57 (15) | N(1P)—C(2P)—H(2P) | 117.6 |
N(8)ii—Cu(2)—N(3P) | 88.40 (15) | N(1C)—C(6C)—H(6C) | 118.1 |
N(8)ii—Cu(2)—N(3)iv | 93.94 (15) | C(5C)—C(6C)—H(6C) | 118.6 |
N(8)ii—Cu(2)—N(1C) | 89.99 (15) | C(6C)—C(5C)—H(5C) | 121.2 |
N(8)ii—Cu(2)—N(2) | 178.55 (14) | C(4C)—C(5C)—H(5C) | 121.4 |
N(6)iii—Cu(2)—N(3P) | 92.69 (15) | C(4C)—C(3C)—H(3C) | 121.2 |
N(6)iii—Cu(2)—N(3)iv | 177.57 (16) | C(2C)—C(3C)—H(3C) | 121.5 |
N(6)iii—Cu(2)—N(1C) | 91.31 (16) | N(1C)—C(2C)—H(2C) | 118.3 |
N(6)iii—Cu(2)—N(2) | 90.98 (15) | C(3C)—C(2C)—H(2C) | 119.0 |
N(3P)—Cu(2)—N(3)iv | 85.46 (15) | N(1P)—C(6P)—H(6P) | 119.2 |
N(3P)—Cu(2)—N(1C) | 175.62 (15) | C(5P)—C(6P)—H(6P) | 119.5 |
C(5)—W(1)—C(8)—N(8) | 63 (8) | N(1P)i—Cu(1)—N(1)—C(1) | −91.9 (7) |
C(8)—W(1)—C(5)—N(5) | 105 (22) | N(1)—Cu(1)—N(1P)i—C(2P)i | 177.7 (3) |
C(5)—W(1)—C(6)—N(6) | 75 (9) | N(1)—Cu(1)—N(1P)i—C(6P)i | −3.0 (4) |
C(6)—W(1)—C(5)—N(5) | −169 (18) | N(1P)i—Cu(1)—N(1)i—C(1)i | −88.1 (7) |
C(5)—W(1)—C(1)—N(1) | 34 (10) | N(1)i—Cu(1)—N(1P)i—C(2P)i | −2.3 (3) |
C(1)—W(1)—C(5)—N(5) | −13 (21) | N(1)i—Cu(1)—N(1P)i—C(6P)i | 177.0 (4) |
C(5)—W(1)—C(3)—N(3) | −14 (4) | N(8)ii—Cu(2)—N(6)iii—C(6)iii | 22.8 (14) |
C(3)—W(1)—C(5)—N(5) | −70 (22) | N(6)iii—Cu(2)—N(8)ii—C(8)ii | 162 (2) |
C(5)—W(1)—C(2)—N(2) | −68 (6) | N(8)ii—Cu(2)—N(3P)—C(4P) | −30.3 (3) |
C(2)—W(1)—C(5)—N(5) | 43 (22) | N(8)ii—Cu(2)—N(3P)—C(2P) | 157.6 (3) |
C(5)—W(1)—C(7)—N(7) | 132 (16) | N(3P)—Cu(2)—N(8)ii—C(8)ii | 70 (2) |
C(7)—W(1)—C(5)—N(5) | 144 (22) | N(8)ii—Cu(2)—N(3)iv—C(3)iv | 131.3 (12) |
C(5)—W(1)—C(4)—N(4) | 64 (11) | N(3)iv—Cu(2)—N(8)ii—C(8)ii | −16 (2) |
C(4)—W(1)—C(5)—N(5) | −92 (22) | N(8)ii—Cu(2)—N(1C)—C(6C) | 141.8 (4) |
C(8)—W(1)—C(6)—N(6) | 147 (9) | N(8)ii—Cu(2)—N(1C)—C(2C) | −35.7 (3) |
C(6)—W(1)—C(8)—N(8) | −19 (8) | N(1C)—Cu(2)—N(8)ii—C(8)ii | −106 (2) |
C(8)—W(1)—C(1)—N(1) | −29 (10) | N(8)ii—Cu(2)—N(2)—C(2) | −42 (6) |
C(1)—W(1)—C(8)—N(8) | 128 (8) | N(2)—Cu(2)—N(8)ii—C(8)ii | 164 (4) |
C(8)—W(1)—C(3)—N(3) | 174 (4) | N(6)iii—Cu(2)—N(3P)—C(4P) | −117.8 (4) |
C(3)—W(1)—C(8)—N(8) | −123 (8) | N(6)iii—Cu(2)—N(3P)—C(2P) | 70.2 (3) |
C(8)—W(1)—C(2)—N(2) | −127 (6) | N(3P)—Cu(2)—N(6)iii—C(6)iii | 111.1 (14) |
C(2)—W(1)—C(8)—N(8) | −169 (8) | N(6)iii—Cu(2)—N(3)iv—C(3)iv | 3 (4) |
C(8)—W(1)—C(7)—N(7) | 169 (16) | N(3)iv—Cu(2)—N(6)iii—C(6)iii | 151 (3) |
C(7)—W(1)—C(8)—N(8) | −93 (8) | N(6)iii—Cu(2)—N(1C)—C(6C) | −130.7 (4) |
C(8)—W(1)—C(4)—N(4) | 89 (11) | N(6)iii—Cu(2)—N(1C)—C(2C) | 51.9 (3) |
C(4)—W(1)—C(8)—N(8) | 37 (8) | N(1C)—Cu(2)—N(6)iii—C(6)iii | −67.1 (14) |
C(6)—W(1)—C(1)—N(1) | 78 (10) | N(6)iii—Cu(2)—N(2)—C(2) | −40.2 (17) |
C(1)—W(1)—C(6)—N(6) | 31 (9) | N(2)—Cu(2)—N(6)iii—C(6)iii | −157.2 (14) |
C(6)—W(1)—C(3)—N(3) | 76 (4) | N(3P)—Cu(2)—N(3)iv—C(3)iv | 43.2 (12) |
C(3)—W(1)—C(6)—N(6) | −66 (9) | N(3)iv—Cu(2)—N(3P)—C(4P) | 63.8 (3) |
C(6)—W(1)—C(2)—N(2) | 176 (5) | N(3)iv—Cu(2)—N(3P)—C(2P) | −108.3 (3) |
C(2)—W(1)—C(6)—N(6) | −158 (9) | N(3P)—Cu(2)—N(1C)—C(6C) | 73 (2) |
C(6)—W(1)—C(7)—N(7) | 82 (16) | N(3P)—Cu(2)—N(1C)—C(2C) | −104 (2) |
C(7)—W(1)—C(6)—N(6) | −135 (9) | N(1C)—Cu(2)—N(3P)—C(4P) | 38 (2) |
C(6)—W(1)—C(4)—N(4) | 147 (11) | N(1C)—Cu(2)—N(3P)—C(2P) | −134 (2) |
C(4)—W(1)—C(6)—N(6) | −0 (8) | N(3P)—Cu(2)—N(2)—C(2) | 52.5 (17) |
C(1)—W(1)—C(3)—N(3) | −69 (4) | N(2)—Cu(2)—N(3P)—C(4P) | 151.1 (3) |
C(3)—W(1)—C(1)—N(1) | −178 (9) | N(2)—Cu(2)—N(3P)—C(2P) | −20.9 (3) |
C(1)—W(1)—C(2)—N(2) | −10 (6) | N(3)iv—Cu(2)—N(1C)—C(6C) | 47.8 (4) |
C(2)—W(1)—C(1)—N(1) | −96 (10) | N(3)iv—Cu(2)—N(1C)—C(2C) | −129.6 (3) |
C(1)—W(1)—C(7)—N(7) | −86 (16) | N(1C)—Cu(2)—N(3)iv—C(3)iv | −138.7 (12) |
C(7)—W(1)—C(1)—N(1) | −122 (10) | N(3)iv—Cu(2)—N(2)—C(2) | 137.8 (17) |
C(1)—W(1)—C(4)—N(4) | −15 (11) | N(2)—Cu(2)—N(3)iv—C(3)iv | −48.7 (12) |
C(4)—W(1)—C(1)—N(1) | 110 (10) | N(1C)—Cu(2)—N(2)—C(2) | −131.6 (17) |
C(3)—W(1)—C(2)—N(2) | 77 (6) | N(2)—Cu(2)—N(1C)—C(6C) | −39.7 (3) |
C(2)—W(1)—C(3)—N(3) | −140 (4) | N(2)—Cu(2)—N(1C)—C(2C) | 142.9 (3) |
C(3)—W(1)—C(7)—N(7) | −28 (16) | Cu(2)x—N(8)—C(8)—W(1) | 29 (10) |
C(7)—W(1)—C(3)—N(3) | 144 (4) | Cu(2)viii—N(6)—C(6)—W(1) | 8 (10) |
C(3)—W(1)—C(4)—N(4) | −103 (11) | Cu(2)—N(3P)—C(4P)—C(5P) | −171.8 (4) |
C(4)—W(1)—C(3)—N(3) | 8 (4) | Cu(2)—N(3P)—C(2P)—N(1P) | 170.1 (3) |
C(2)—W(1)—C(7)—N(7) | −111 (16) | C(4P)—N(3P)—C(2P)—N(1P) | −2.1 (7) |
C(7)—W(1)—C(2)—N(2) | 154 (6) | C(2P)—N(3P)—C(4P)—C(5P) | 0.6 (7) |
C(2)—W(1)—C(4)—N(4) | −52 (11) | Cu(2)xiv—N(3)—C(3)—W(1) | −3 (5) |
C(4)—W(1)—C(2)—N(2) | 29 (6) | Cu(1)—N(1P)—C(2P)—N(3P) | −177.2 (3) |
C(7)—W(1)—C(4)—N(4) | −157 (11) | Cu(1)—N(1P)—C(6P)—C(5P) | 178.7 (4) |
C(4)—W(1)—C(7)—N(7) | 26 (16) | C(2P)—N(1P)—C(6P)—C(5P) | −0.6 (8) |
O(1)—Cu(1)—N(1P)—C(2P) | −88.9 (3) | C(6P)—N(1P)—C(2P)—N(3P) | 2.1 (7) |
O(1)—Cu(1)—N(1P)—C(6P) | 91.8 (4) | Cu(2)—N(1C)—C(6C)—C(5C) | −175.8 (5) |
O(1)—Cu(1)—N(1P)i—C(2P)i | −91.1 (3) | Cu(2)—N(1C)—C(2C)—C(3C) | 175.9 (4) |
O(1)—Cu(1)—N(1P)i—C(6P)i | 88.2 (4) | C(6C)—N(1C)—C(2C)—C(3C) | −1.6 (7) |
O(1)—Cu(1)—N(1)—C(1) | 178.2 (7) | C(2C)—N(1C)—C(6C)—C(5C) | 1.7 (8) |
O(1)—Cu(1)—N(1)i—C(1)i | 1.8 (7) | Cu(2)—N(2)—C(2)—W(1) | −20 (7) |
O(1)i—Cu(1)—N(1P)—C(2P) | 91.1 (3) | Cu(1)—N(1)—C(1)—W(1) | 9 (10) |
O(1)i—Cu(1)—N(1P)—C(6P) | −88.2 (4) | N(3P)—C(4P)—C(5P)—C(6P) | 0.8 (8) |
O(1)i—Cu(1)—N(1P)i—C(2P)i | 88.9 (3) | C(4P)—C(5P)—C(6P)—N(1P) | −0.7 (8) |
O(1)i—Cu(1)—N(1P)i—C(6P)i | −91.8 (4) | N(1C)—C(6C)—C(5C)—C(4C) | −0.8 (9) |
O(1)i—Cu(1)—N(1)—C(1) | −1.8 (7) | C(6C)—C(5C)—C(4C)—C(3C) | −0.3 (7) |
O(1)i—Cu(1)—N(1)i—C(1)i | −178.2 (7) | C(6C)—C(5C)—C(4C)—C(7C) | −176.1 (7) |
N(1P)—Cu(1)—N(1)—C(1) | 88.1 (7) | C(5C)—C(4C)—C(3C)—C(2C) | 0.3 (7) |
N(1)—Cu(1)—N(1P)—C(2P) | 2.3 (3) | C(5C)—C(4C)—C(7C)—N(8C) | −22 (10) |
N(1)—Cu(1)—N(1P)—C(6P) | −177.0 (4) | C(3C)—C(4C)—C(7C)—N(8C) | 161 (9) |
N(1P)—Cu(1)—N(1)i—C(1)i | 91.9 (7) | C(7C)—C(4C)—C(3C)—C(2C) | 176.8 (6) |
N(1)i—Cu(1)—N(1P)—C(2P) | −177.7 (3) | C(4C)—C(3C)—C(2C)—N(1C) | 0.6 (8) |
N(1)i—Cu(1)—N(1P)—C(6P) | 3.0 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x−1, y, z; (v) −x+2, −y+1, −z+1; (vi) x+1/2, −y+3/2, z+1/2; (vii) −x+1, −y+1, −z; (viii) −x+3/2, y+1/2, −z+1/2; (ix) x−1/2, −y+3/2, z−1/2; (x) −x+1/2, y+1/2, −z+1/2; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x, −y+1, −z+1; (xiii) x−1/2, −y+1/2, z−1/2; (xiv) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2O |
Mr | 1407.02 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 90 |
a, b, c (Å) | 7.2475 (6), 15.4532 (12), 20.8560 (16) |
β (°) | 90.057 (2) |
V (Å3) | 2335.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.32 |
Crystal size (mm) | 0.44 × 0.17 × 0.04 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.297, 0.791 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22562, 5345, 4975 |
Rint | 0.095 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.093, 1.09 |
No. of reflections | 5345 |
No. of parameters | 314 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.97, −1.45 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku Americas & Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PyMOLWin (DeLano, 2007).
Acknowledgements
This research was supported in part by a Grant for the Global COE Program, `Chemistry Innovation through Cooperation of Science and Engineering', a Grant-in-Aid for Young Scientists (S) from the Japan Society for the Promotion of Science (JSPS), The Inamori Foundation, and The Kurata Memorial Hitachi Science and Technology Foundation.
References
Arimoto, Y., Ohkoshi, S., Zhong, Z. J., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Am. Chem. Soc. 125, 9240–9241. Web of Science CSD CrossRef PubMed CAS Google Scholar
Catala, L., Mathonière, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746–748. Web of Science CrossRef Google Scholar
DeLano, W. L. (2007). The pyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA, USA. http://www.pymol.org . Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Garde, R., Desplanches, C., Bleuzen, A., Veillet, P. & Verdaguer, M. (1999). Mol. Cryst. Liq. Cryst. 334, 587–595. Web of Science CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hozumi, T., Ohkoshi, S., Arimoto, Y., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Phys. Chem. B, 107, 11571–11574. Web of Science CrossRef CAS Google Scholar
Leipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem. 40, 241–322. CrossRef CAS Google Scholar
Ohkoshi, S., Arimoto, Y., Hozumi, T., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). Chem. Commun. pp. 2772–2773. Web of Science CSD CrossRef Google Scholar
Ohkoshi, S., Hamada, Y., Matsuda, T., Tsunobuchi, Y. & Tokoro, H. (2008). Chem. Mater. 20, 3048–3054. Web of Science CSD CrossRef CAS Google Scholar
Ohkoshi, S., Ikeda, S., Hozumi, T., Kashiwagi, T. & Hashimoto, K. (2006). J. Am. Chem. Soc. 128, 5320–5321. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ohkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084–3085. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pilkington, M. & Decurtins, S. (2000). Chimia (Aarau), 54, 593–601. CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku Americas & Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhong, Z. J., Seino, H., Mizobe, Y., Hidai, M., Verdaguer, M., Ohkoshi, S. & Hashimoto, K. (2000). Inorg. Chem. 39, 5095–5101. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The preparation of ferromagnetic nanoporous materials is an attractive contemporary research area. An octacyanometalate [M(CN)8] (M = Mo, W, Nb)-based magnets are good candidates because of their high Curie temperatures (Garde et al., 1999; Zhong et al., 2000; Pilkington & Decurtins, 2000), functionalities such as photomagnetism (Arimoto et al., 2003; Catala et al., 2005; Ohkoshi et al., 2006,2008) and chemically sensitive magnetism (Ohkoshi et al., 2007). Octacyanometalates, [M(CN)8]n-, a versatile class of building blocks, can adopt different spatial configurations depending on the coordinating ligands, e.g., square antiprismic (D4h), dodecahedral (D2d), and bicapped trigonal prismic (C2v) (Leipoldt et al., 1994). In the case of Cu—W systems, several octacyanometalate-based magnets such as {[Cu3[W(CN)8]2]3.4H2O}n (3-dimensional network complex, 3-D) (Garde et al., 1999), {[Cu3[W(CN)8]2(pyrimidine)2]8H2O}n (3-D) (Ohkoshi et al., 2007), {[Cu3[W(CN)8]2(3-cyanopyridine)6]4H2O}n (2-D array), and {[Cu3[W(CN)8]2(4-cyanopyridine)6]8H2O}n (2-D array) (Ohkoshi et al., 2003), have been reported.
The asymmetric unit of the present compound (I) comprises a [W(CN)8]3- anion, a one-half of [Cu1(H2O)2]2+ cation (the Cu centre is located on a centre of inversion), a [Cu2(pyrimidine)(4-cyanopyridine)]2+ cation, and a water molecule, Fig. 1. The coordination geometry of W is eight-coordinated bicapped trigonal prismic, where five CN groups of [W(CN)8] are bridged to Cu ions (one Cu1 and four Cu2), and the other three CN groups are free (Fig. 2a). The coordination geometries of the two types of CuII ions (Cu1 and Cu2) are pseudo-octahedral. The Cu1 atom is coordinated to two N atoms of CN ligands, two N atoms of pyrimidine molecules, and two O atoms of H2O molecules. The Cu2 atom is coordinated to four N atoms of CN ligands, one N atom of a pyrimidine molecule, and one N atom of a 4-cyanopyridine molecule.
The cyano-bridged-Cu2—W layers are linked by Cu1 pillar unit (Figs 2b and 2c). This arrangement leads to the formation of cavities along a axis which are occupied by 4-cyanopyridine molecules and zeolitic-like water molecules (Fig. 2b). The 4-cyanopyridine molecules are aligned alternately without forming significant intermolecular interaction, Fig. 2c.
The field-cooled magnetization (FCM) curve at 10 Oe showed a spontaneous magnetization with a Curie temperature (Tc) of 12 K, the coercive field (Hc) of 70 Oe at 2 K, and, the saturation magnetization (Ms) value of 3.1 µB. This Ms value indicates that this compound is a ferrimagnet in which WV (S = 1/2) and CuII (S = 1/2, Cu2) in the layer are ferromagnetically coupled and WV and the bridged CuII (S = 1/2, Cu1) are antiferromagnetically coupled.