metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1442-m1443

Poly[[di­aqua­deca-μ-cyanido-hexa­cyanidobis­(4-cyano­pyridine)di-μ-pyrimidine-tricopper(II)ditungsten(V)] dihydrate]

aDepartment of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
*Correspondence e-mail: ohkoshi@chem.s.u-tokyo.ac.jp

(Received 17 September 2008; accepted 11 October 2008; online 18 October 2008)

In the polymeric title compound, {[Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2O}n, the coordination geometry of W is an eight-coordinated bicapped trigonal prism. Five of the CN groups of [W(CN)8] are bridged to Cu ions. The coordination geometries of the Cu atoms are each pseudo-octa­hedral; one Cu atom is located on a centre of inversion. The cyano-bridged W–Cu layers are linked by Cu-containing pillars, to form a three-dimensional network with cavities occupied by noncoordinated water and 4-cyano­pyridine mol­ecules.

Related literature

For general background, see: Arimoto et al. (2003[Arimoto, Y., Ohkoshi, S., Zhong, Z. J., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Am. Chem. Soc. 125, 9240-9241.]); Catala et al. (2005[Catala, L., Mathonière, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746-748.]); Hozumi et al. (2003[Hozumi, T., Ohkoshi, S., Arimoto, Y., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Phys. Chem. B, 107, 11571-11574.]); Leipoldt et al. (1994[Leipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem. 40, 241-322.]); Ohkoshi et al. (2006[Ohkoshi, S., Ikeda, S., Hozumi, T., Kashiwagi, T. & Hashimoto, K. (2006). J. Am. Chem. Soc. 128, 5320-5321.], 2008[Ohkoshi, S., Hamada, Y., Matsuda, T., Tsunobuchi, Y. & Tokoro, H. (2008). Chem. Mater. 20, 3048-3054.]); Pilkington & Decurtins (2000[Pilkington, M. & Decurtins, S. (2000). Chimia (Aarau), 54, 593-601.]); Zhong et al. (2000[Zhong, Z. J., Seino, H., Mizobe, Y., Hidai, M., Verdaguer, M., Ohkoshi, S. & Hashimoto, K. (2000). Inorg. Chem. 39, 5095-5101.]). For related structures, see: Garde et al. (1999[Garde, R., Desplanches, C., Bleuzen, A., Veillet, P. & Verdaguer, M. (1999). Mol. Cryst. Liq. Cryst. 334, 587-595.]); Ohkoshi et al. (2003[Ohkoshi, S., Arimoto, Y., Hozumi, T., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). Chem. Commun. pp. 2772-2773.], 2007[Ohkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084-3085.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2O

  • Mr = 1407.02

  • Monoclinic, P 21 /n

  • a = 7.2475 (6) Å

  • b = 15.4532 (12) Å

  • c = 20.8560 (16) Å

  • β = 90.057 (2)°

  • V = 2335.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.32 mm−1

  • T = 90 (2) K

  • 0.44 × 0.17 × 0.04 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.297, Tmax = 0.791

  • 22562 measured reflections

  • 5345 independent reflections

  • 4975 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.093

  • S = 1.09

  • 5345 reflections

  • 314 parameters

  • H-atom parameters constrained

  • Δρmax = 2.97 e Å−3

  • Δρmin = −1.45 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas & Rigaku, 2007[Rigaku Americas & Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PyMOLWin (DeLano, 2007[DeLano, W. L. (2007). The pyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA, USA. http://www.pymol.org .]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The preparation of ferromagnetic nanoporous materials is an attractive contemporary research area. An octacyanometalate [M(CN)8] (M = Mo, W, Nb)-based magnets are good candidates because of their high Curie temperatures (Garde et al., 1999; Zhong et al., 2000; Pilkington & Decurtins, 2000), functionalities such as photomagnetism (Arimoto et al., 2003; Catala et al., 2005; Ohkoshi et al., 2006,2008) and chemically sensitive magnetism (Ohkoshi et al., 2007). Octacyanometalates, [M(CN)8]n-, a versatile class of building blocks, can adopt different spatial configurations depending on the coordinating ligands, e.g., square antiprismic (D4h), dodecahedral (D2d), and bicapped trigonal prismic (C2v) (Leipoldt et al., 1994). In the case of Cu—W systems, several octacyanometalate-based magnets such as {[Cu3[W(CN)8]2]3.4H2O}n (3-dimensional network complex, 3-D) (Garde et al., 1999), {[Cu3[W(CN)8]2(pyrimidine)2]8H2O}n (3-D) (Ohkoshi et al., 2007), {[Cu3[W(CN)8]2(3-cyanopyridine)6]4H2O}n (2-D array), and {[Cu3[W(CN)8]2(4-cyanopyridine)6]8H2O}n (2-D array) (Ohkoshi et al., 2003), have been reported.

The asymmetric unit of the present compound (I) comprises a [W(CN)8]3- anion, a one-half of [Cu1(H2O)2]2+ cation (the Cu centre is located on a centre of inversion), a [Cu2(pyrimidine)(4-cyanopyridine)]2+ cation, and a water molecule, Fig. 1. The coordination geometry of W is eight-coordinated bicapped trigonal prismic, where five CN groups of [W(CN)8] are bridged to Cu ions (one Cu1 and four Cu2), and the other three CN groups are free (Fig. 2a). The coordination geometries of the two types of CuII ions (Cu1 and Cu2) are pseudo-octahedral. The Cu1 atom is coordinated to two N atoms of CN ligands, two N atoms of pyrimidine molecules, and two O atoms of H2O molecules. The Cu2 atom is coordinated to four N atoms of CN ligands, one N atom of a pyrimidine molecule, and one N atom of a 4-cyanopyridine molecule.

The cyano-bridged-Cu2—W layers are linked by Cu1 pillar unit (Figs 2b and 2c). This arrangement leads to the formation of cavities along a axis which are occupied by 4-cyanopyridine molecules and zeolitic-like water molecules (Fig. 2b). The 4-cyanopyridine molecules are aligned alternately without forming significant intermolecular interaction, Fig. 2c.

The field-cooled magnetization (FCM) curve at 10 Oe showed a spontaneous magnetization with a Curie temperature (Tc) of 12 K, the coercive field (Hc) of 70 Oe at 2 K, and, the saturation magnetization (Ms) value of 3.1 µB. This Ms value indicates that this compound is a ferrimagnet in which WV (S = 1/2) and CuII (S = 1/2, Cu2) in the layer are ferromagnetically coupled and WV and the bridged CuII (S = 1/2, Cu1) are antiferromagnetically coupled.

Related literature top

For related literature, see: Arimoto et al. (2003); Catala et al. (2005); Garde et al. (1999); Hozumi et al. (2003); Leipoldt et al. (1994); Ohkoshi et al. (2003, 2006, 2007, 2008); Pilkington & Decurtins (2000); Zhong et al. (2000). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see⋯" it said, for example, "For general background, see⋯. For related structures, see···; etc. Please revise this section as indicated.

Experimental top

The title compound was prepared by reacting an aqueous solution of Cs3[W(CN)8]2H2O (1.2 × 10 -2 mol dm-3) with a mixed aqueous solution of CuCl2.2H2O (1.8 × 10 -2 mol dm-3), 4-cyanopyridine (1.8 × 10 -2 mol dm-3) and pyrimidine (1.2 × 10 -2 mol dm-3) at room temperature. The prepared compound was a green plate-like crystal. Elemental analysis found: C 30.36, H 1.88, N 23.99, Cu 13.84, W 26.20; C36H24N24O4Cu3W2 requires: Cu, 13.47; W, 25.98; C, 30.56; H, 1.71; N, 23.76.

In the IR spectrum, cyano stretching peaks were observed at 2154, 2162, 2170, and 2200 cm-1. The UV-visible reflectance spectrum showed absorption bands at around 700 and 1070 nm.

Refinement top

The H atoms of the solvent water molecules and the coordinated water molecules could not be located reliably and were not included in the refinement. The remaining H atoms were placed in calculated positions and refined using a riding model, with C-H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C). The maximum and minimum residual electron density peaks were located 0.66 and 1.61 Å, respectively from the W atom.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku Americas & Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PyMOLWin (DeLano, 2007); software used to prepare material for publication: CrystalStructure (Rigaku Americas & Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (50% probability level) of (I) showing the asymmetric unit. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Supramolecular connectivity in (I) where hydrogen atoms are omitted for clarity. (a) The coordination environment around the W and Cu atoms. The broken lines indicate coordination to symmetry-related metal ions. (b) View along the a axis, the direction of the formed pores. (c) View along the b axis. Colour code: Light blue, orange, gray, blue, and red represent W, Cu, C, N, and O atoms, respectively.
Poly[[diaquadeca-µ-cyanido-hexacyanidobis(4-cyanopyridine)di- µ-pyrimidine-tricopper(II)ditungsten(V)] dihydrate] top
Crystal data top
[Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2OF(000) = 1334
Mr = 1407.02Dx = 2.000 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 15466 reflections
a = 7.2475 (6) Åθ = 3.1–27.5°
b = 15.4532 (12) ŵ = 6.32 mm1
c = 20.8560 (16) ÅT = 90 K
β = 90.057 (2)°Plate, green
V = 2335.8 (3) Å30.44 × 0.17 × 0.04 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5345 independent reflections
Radiation source: sealed tube4975 reflections with I > 2σ(I)
Sealed tube monochromatorRint = 0.095
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
k = 2017
Tmin = 0.297, Tmax = 0.791l = 2726
22562 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + 6.8782P]
where P = (Fo2 + 2Fc2)/3
5345 reflections(Δ/σ)max = 0.002
314 parametersΔρmax = 2.97 e Å3
0 restraintsΔρmin = 1.45 e Å3
Crystal data top
[Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2OV = 2335.8 (3) Å3
Mr = 1407.02Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.2475 (6) ŵ = 6.32 mm1
b = 15.4532 (12) ÅT = 90 K
c = 20.8560 (16) Å0.44 × 0.17 × 0.04 mm
β = 90.057 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5345 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
4975 reflections with I > 2σ(I)
Tmin = 0.297, Tmax = 0.791Rint = 0.095
22562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.09Δρmax = 2.97 e Å3
5345 reflectionsΔρmin = 1.45 e Å3
314 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W(1)0.79222 (2)0.682386 (11)0.301091 (8)0.00933 (7)
Cu(1)0.50000.50000.50000.01726 (18)
Cu(2)0.24342 (7)0.43738 (4)0.23347 (3)0.01074 (13)
O(1)0.6198 (4)0.3863 (2)0.50585 (15)0.0199 (7)
O(2W)0.4469 (5)0.2609 (2)0.44669 (18)0.0331 (9)
N(8)0.4520 (5)0.8223 (2)0.2839 (2)0.0171 (8)
N(5)0.7372 (8)0.7918 (4)0.4362 (2)0.0445 (14)
N(4)1.1739 (5)0.6555 (3)0.3867 (2)0.0221 (9)
N(6)1.0499 (5)0.8542 (2)0.27039 (19)0.0155 (8)
N(3P)0.2076 (5)0.4190 (2)0.33127 (19)0.0139 (7)
N(3)1.0395 (5)0.5230 (2)0.24087 (18)0.0146 (8)
N(7)0.7775 (6)0.7133 (3)0.1440 (2)0.0251 (9)
N(1P)0.3037 (5)0.4489 (2)0.43733 (19)0.0167 (8)
N(1C)0.2581 (5)0.4584 (2)0.13674 (18)0.0160 (8)
N(2)0.4536 (5)0.5548 (2)0.25142 (19)0.0159 (8)
N(8C)0.2655 (15)0.5073 (7)0.1191 (3)0.108 (3)
N(1)0.6858 (5)0.5382 (3)0.41107 (19)0.0195 (9)
C(5)0.7573 (7)0.7547 (3)0.3890 (2)0.0247 (11)
C(8)0.5679 (6)0.7718 (3)0.2897 (2)0.0131 (8)
C(6)0.9565 (6)0.7950 (3)0.2801 (2)0.0149 (9)
C(1)0.7250 (6)0.5869 (3)0.3723 (2)0.0151 (9)
C(3)0.9483 (5)0.5780 (3)0.2595 (2)0.0117 (8)
C(2)0.5694 (6)0.6008 (3)0.2667 (2)0.0139 (9)
C(7)0.7801 (6)0.7033 (3)0.1982 (2)0.0147 (9)
C(4)1.0445 (6)0.6656 (3)0.3562 (2)0.0145 (9)
C(4P)0.0484 (6)0.3870 (3)0.3537 (2)0.0208 (10)
C(5P)0.0114 (6)0.3841 (4)0.4186 (2)0.0250 (11)
C(2P)0.3299 (6)0.4475 (3)0.3738 (2)0.0158 (9)
C(6C)0.2623 (8)0.5390 (3)0.1143 (2)0.0286 (12)
C(5C)0.2606 (10)0.5585 (4)0.0505 (3)0.0468 (19)
C(4C)0.2565 (9)0.4902 (6)0.0079 (3)0.052 (2)
C(3C)0.2549 (8)0.4065 (5)0.0295 (2)0.0412 (17)
C(2C)0.2567 (7)0.3938 (3)0.0953 (2)0.0252 (11)
C(6P)0.1443 (6)0.4167 (4)0.4596 (2)0.0238 (11)
C(7C)0.2648 (14)0.4950 (8)0.0622 (4)0.083 (3)
H(4P)0.04150.36570.32390.025*
H(5P)0.10170.36050.43460.030*
H(2P)0.44510.46830.35790.019*
H(6C)0.26640.58590.14490.035*
H(5C)0.26180.61780.03580.056*
H(3C)0.25210.35840.00000.050*
H(2C)0.25670.33550.11170.031*
H(6P)0.12220.41650.50500.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W(1)0.00709 (11)0.00851 (13)0.01238 (11)0.00006 (5)0.00063 (7)0.00014 (6)
Cu(1)0.0109 (3)0.0285 (5)0.0123 (3)0.0043 (3)0.0029 (2)0.0043 (3)
Cu(2)0.0096 (2)0.0105 (2)0.0121 (2)0.00227 (19)0.00008 (18)0.0000 (2)
O(1)0.0141 (16)0.029 (2)0.0161 (15)0.0006 (13)0.0023 (11)0.0056 (15)
O(2W)0.029 (2)0.040 (2)0.030 (2)0.0009 (17)0.0017 (16)0.015 (2)
N(8)0.016 (2)0.015 (2)0.020 (2)0.0002 (14)0.0004 (15)0.0026 (16)
N(5)0.056 (3)0.049 (3)0.029 (2)0.017 (2)0.008 (2)0.020 (2)
N(4)0.019 (2)0.022 (2)0.025 (2)0.0013 (17)0.0066 (16)0.005 (2)
N(6)0.0106 (18)0.015 (2)0.021 (2)0.0015 (15)0.0004 (14)0.0014 (17)
N(3P)0.0123 (18)0.013 (2)0.0160 (18)0.0003 (14)0.0009 (13)0.0001 (16)
N(3)0.0109 (18)0.015 (2)0.0175 (18)0.0003 (15)0.0000 (13)0.0012 (16)
N(7)0.029 (2)0.026 (2)0.021 (2)0.0002 (19)0.0035 (16)0.006 (2)
N(1P)0.0151 (19)0.018 (2)0.0169 (19)0.0028 (15)0.0023 (14)0.0050 (17)
N(1C)0.0145 (19)0.022 (2)0.0113 (18)0.0018 (15)0.0007 (13)0.0037 (17)
N(2)0.0154 (19)0.016 (2)0.0160 (18)0.0005 (15)0.0012 (14)0.0003 (16)
N(8C)0.145 (9)0.136 (10)0.043 (4)0.015 (7)0.005 (4)0.003 (5)
N(1)0.016 (2)0.026 (2)0.0161 (19)0.0067 (16)0.0049 (14)0.0059 (19)
C(5)0.025 (2)0.023 (2)0.027 (2)0.004 (2)0.0081 (19)0.001 (2)
C(8)0.012 (2)0.012 (2)0.015 (2)0.0016 (16)0.0008 (15)0.0019 (18)
C(6)0.010 (2)0.016 (2)0.018 (2)0.0041 (18)0.0037 (15)0.004 (2)
C(1)0.012 (2)0.021 (2)0.013 (2)0.0017 (17)0.0036 (15)0.003 (2)
C(3)0.011 (2)0.014 (2)0.0102 (19)0.0022 (17)0.0015 (14)0.0006 (18)
C(2)0.011 (2)0.012 (2)0.018 (2)0.0003 (17)0.0018 (15)0.0016 (19)
C(7)0.011 (2)0.014 (2)0.019 (2)0.0024 (17)0.0012 (15)0.003 (2)
C(4)0.014 (2)0.013 (2)0.017 (2)0.0028 (17)0.0022 (16)0.0022 (19)
C(4P)0.013 (2)0.028 (2)0.022 (2)0.0076 (19)0.0006 (17)0.002 (2)
C(5P)0.016 (2)0.039 (3)0.020 (2)0.007 (2)0.0037 (17)0.002 (2)
C(2P)0.012 (2)0.017 (2)0.018 (2)0.0001 (17)0.0005 (16)0.0006 (19)
C(6C)0.042 (3)0.024 (2)0.020 (2)0.012 (2)0.007 (2)0.010 (2)
C(5C)0.061 (4)0.047 (4)0.032 (3)0.032 (3)0.018 (2)0.028 (3)
C(4C)0.032 (3)0.100 (6)0.024 (3)0.024 (3)0.008 (2)0.028 (3)
C(3C)0.034 (3)0.070 (5)0.020 (2)0.001 (3)0.005 (2)0.012 (3)
C(2C)0.027 (2)0.029 (3)0.020 (2)0.004 (2)0.0005 (19)0.003 (2)
C(6P)0.014 (2)0.041 (3)0.016 (2)0.004 (2)0.0004 (17)0.003 (2)
C(7C)0.086 (7)0.110 (9)0.054 (5)0.016 (6)0.010 (4)0.005 (5)
Geometric parameters (Å, º) top
W(1)—C(5)2.162 (5)N(3P)—C(2P)1.328 (6)
W(1)—C(8)2.146 (4)N(3)—C(3)1.145 (6)
W(1)—C(6)2.153 (4)N(7)—C(7)1.141 (6)
W(1)—C(1)2.149 (4)N(1P)—C(2P)1.339 (6)
W(1)—C(3)2.153 (4)N(1P)—C(6P)1.341 (6)
W(1)—C(2)2.170 (4)N(1C)—C(6C)1.331 (7)
W(1)—C(7)2.173 (4)N(1C)—C(2C)1.322 (6)
W(1)—C(4)2.174 (4)N(2)—C(2)1.145 (6)
Cu(1)—O(1)1.964 (3)N(8C)—C(7C)1.202 (12)
Cu(1)—O(1)i1.964 (3)N(1)—C(1)1.141 (6)
Cu(1)—N(1P)2.086 (3)C(4P)—C(5P)1.381 (6)
Cu(1)—N(1P)i2.086 (3)C(5P)—C(6P)1.383 (7)
Cu(1)—N(1)2.368 (3)C(6C)—C(5C)1.364 (8)
Cu(1)—N(1)i2.368 (3)C(5C)—C(4C)1.380 (11)
Cu(2)—N(8)ii2.301 (4)C(4C)—C(3C)1.368 (12)
Cu(2)—N(6)iii1.975 (3)C(4C)—C(7C)1.465 (11)
Cu(2)—N(3P)2.076 (4)C(3C)—C(2C)1.386 (7)
Cu(2)—N(3)iv1.990 (3)C(4P)—H(4P)0.958
Cu(2)—N(1C)2.046 (3)C(5P)—H(5P)0.958
Cu(2)—N(2)2.399 (4)C(2P)—H(2P)0.955
N(8)—C(8)1.154 (6)C(6C)—H(6C)0.965
N(5)—C(5)1.149 (7)C(5C)—H(5C)0.967
N(4)—C(4)1.143 (6)C(3C)—H(3C)0.965
N(6)—C(6)1.157 (6)C(2C)—H(2C)0.964
N(3P)—C(4P)1.340 (6)C(6P)—H(6P)0.960
O(1)···O(2W)2.615 (5)N(8C)···C(3)vii3.564 (10)
O(1)···N(4)v2.770 (5)N(8C)···C(6C)vii3.498 (12)
O(2W)···O(1)2.615 (5)C(3)···N(8C)vii3.564 (10)
O(2W)···N(5)i2.901 (6)C(2P)···O(2W)3.367 (6)
O(2W)···N(7)iii2.849 (5)C(6C)···N(8C)vii3.498 (12)
O(2W)···N(1P)3.090 (6)C(5C)···O(2W)x3.472 (8)
O(2W)···C(2P)3.367 (6)C(5C)···N(5)ix3.326 (9)
O(2W)···C(5C)ii3.472 (8)C(5C)···C(7C)vii3.546 (13)
O(2W)···C(6P)3.268 (7)C(4C)···C(4C)vii3.559 (9)
N(5)···O(2W)i2.901 (6)C(6P)···O(2W)3.268 (7)
N(5)···N(8C)vi3.318 (13)C(7C)···N(5)ix3.301 (14)
N(5)···C(5C)vi3.326 (9)C(7C)···C(5C)vii3.546 (13)
N(5)···C(7C)vi3.301 (14)O(2W)···H(5C)ii2.705
N(4)···O(1)v2.770 (5)O(2W)···H(3C)xi3.087
N(3)···N(8C)vii3.398 (10)O(2W)···H(6P)3.578
N(7)···O(2W)viii2.849 (5)N(5)···H(5C)vi2.510
N(7)···N(8C)vii3.462 (13)N(7)···H(3C)vii3.207
N(1P)···O(2W)3.090 (6)C(6P)···H(6P)xii3.304
N(1C)···N(8C)vii3.513 (11)H(5C)···O(2W)x2.705
N(2)···N(8C)vii3.563 (10)H(5C)···N(5)ix2.510
N(8C)···N(5)ix3.318 (13)H(3C)···O(2W)xiii3.087
N(8C)···N(3)vii3.398 (10)H(3C)···N(7)vii3.207
N(8C)···N(7)vii3.462 (13)H(6P)···O(2W)3.578
N(8C)···N(1C)vii3.513 (11)H(6P)···C(6P)xii3.304
N(8C)···N(2)vii3.563 (10)H(6P)···H(6P)xii3.136
C(5)—W(1)—C(8)70.83 (18)N(3P)—Cu(2)—N(2)91.72 (14)
C(5)—W(1)—C(6)79.62 (19)N(3)iv—Cu(2)—N(1C)90.59 (16)
C(5)—W(1)—C(1)75.05 (19)N(3)iv—Cu(2)—N(2)87.51 (14)
C(5)—W(1)—C(3)142.29 (18)N(1C)—Cu(2)—N(2)90.00 (15)
C(5)—W(1)—C(2)119.52 (18)Cu(2)x—N(8)—C(8)171.0 (3)
C(5)—W(1)—C(7)139.15 (19)Cu(2)viii—N(6)—C(6)165.0 (3)
C(5)—W(1)—C(4)73.28 (18)Cu(2)—N(3P)—C(4P)120.1 (3)
C(8)—W(1)—C(6)82.92 (17)Cu(2)—N(3P)—C(2P)121.8 (3)
C(8)—W(1)—C(1)110.23 (17)C(4P)—N(3P)—C(2P)117.6 (4)
C(8)—W(1)—C(3)146.68 (16)Cu(2)xiv—N(3)—C(3)161.7 (3)
C(8)—W(1)—C(2)76.94 (17)Cu(1)—N(1P)—C(2P)121.9 (3)
C(8)—W(1)—C(7)76.43 (17)Cu(1)—N(1P)—C(6P)120.7 (3)
C(8)—W(1)—C(4)140.49 (17)C(2P)—N(1P)—C(6P)117.4 (4)
C(6)—W(1)—C(1)145.12 (17)Cu(2)—N(1C)—C(6C)119.7 (3)
C(6)—W(1)—C(3)103.42 (17)Cu(2)—N(1C)—C(2C)121.7 (3)
C(6)—W(1)—C(2)144.47 (17)C(6C)—N(1C)—C(2C)118.5 (4)
C(6)—W(1)—C(7)72.62 (17)Cu(2)—N(2)—C(2)168.1 (3)
C(6)—W(1)—C(4)74.85 (17)Cu(1)—N(1)—C(1)149.5 (3)
C(1)—W(1)—C(3)83.36 (17)W(1)—C(5)—N(5)178.7 (5)
C(1)—W(1)—C(2)70.17 (17)W(1)—C(8)—N(8)177.4 (4)
C(1)—W(1)—C(7)140.87 (18)W(1)—C(6)—N(6)177.4 (3)
C(1)—W(1)—C(4)75.16 (17)W(1)—C(1)—N(1)177.8 (4)
C(3)—W(1)—C(2)79.79 (16)W(1)—C(3)—N(3)175.2 (3)
C(3)—W(1)—C(7)74.54 (17)W(1)—C(2)—N(2)176.2 (4)
C(3)—W(1)—C(4)71.47 (16)W(1)—C(7)—N(7)178.4 (4)
C(2)—W(1)—C(7)74.36 (17)W(1)—C(4)—N(4)177.8 (4)
C(2)—W(1)—C(4)136.94 (17)N(3P)—C(4P)—C(5P)121.5 (4)
C(7)—W(1)—C(4)124.99 (16)C(4P)—C(5P)—C(6P)117.4 (4)
O(1)—Cu(1)—O(1)i180.00 (18)N(3P)—C(2P)—N(1P)124.8 (4)
O(1)—Cu(1)—N(1P)90.05 (15)N(1C)—C(6C)—C(5C)123.3 (5)
O(1)—Cu(1)—N(1P)i89.95 (15)C(6C)—C(5C)—C(4C)117.4 (6)
O(1)—Cu(1)—N(1)91.15 (14)C(5C)—C(4C)—C(3C)120.7 (6)
O(1)—Cu(1)—N(1)i88.85 (14)C(5C)—C(4C)—C(7C)127.1 (8)
O(1)i—Cu(1)—N(1P)89.95 (15)C(3C)—C(4C)—C(7C)112.1 (8)
O(1)i—Cu(1)—N(1P)i90.05 (15)C(4C)—C(3C)—C(2C)117.3 (6)
O(1)i—Cu(1)—N(1)88.85 (14)N(1C)—C(2C)—C(3C)122.7 (5)
O(1)i—Cu(1)—N(1)i91.15 (14)N(1P)—C(6P)—C(5P)121.3 (4)
N(1P)—Cu(1)—N(1P)i180.0 (2)N(8C)—C(7C)—C(4C)173.5 (12)
N(1P)—Cu(1)—N(1)89.52 (14)N(3P)—C(4P)—H(4P)119.1
N(1P)—Cu(1)—N(1)i90.48 (14)C(5P)—C(4P)—H(4P)119.5
N(1P)i—Cu(1)—N(1)90.48 (14)C(4P)—C(5P)—H(5P)121.4
N(1P)i—Cu(1)—N(1)i89.52 (14)C(6P)—C(5P)—H(5P)121.2
N(1)—Cu(1)—N(1)i180.0 (2)N(3P)—C(2P)—H(2P)117.6
N(8)ii—Cu(2)—N(6)iii87.57 (15)N(1P)—C(2P)—H(2P)117.6
N(8)ii—Cu(2)—N(3P)88.40 (15)N(1C)—C(6C)—H(6C)118.1
N(8)ii—Cu(2)—N(3)iv93.94 (15)C(5C)—C(6C)—H(6C)118.6
N(8)ii—Cu(2)—N(1C)89.99 (15)C(6C)—C(5C)—H(5C)121.2
N(8)ii—Cu(2)—N(2)178.55 (14)C(4C)—C(5C)—H(5C)121.4
N(6)iii—Cu(2)—N(3P)92.69 (15)C(4C)—C(3C)—H(3C)121.2
N(6)iii—Cu(2)—N(3)iv177.57 (16)C(2C)—C(3C)—H(3C)121.5
N(6)iii—Cu(2)—N(1C)91.31 (16)N(1C)—C(2C)—H(2C)118.3
N(6)iii—Cu(2)—N(2)90.98 (15)C(3C)—C(2C)—H(2C)119.0
N(3P)—Cu(2)—N(3)iv85.46 (15)N(1P)—C(6P)—H(6P)119.2
N(3P)—Cu(2)—N(1C)175.62 (15)C(5P)—C(6P)—H(6P)119.5
C(5)—W(1)—C(8)—N(8)63 (8)N(1P)i—Cu(1)—N(1)—C(1)91.9 (7)
C(8)—W(1)—C(5)—N(5)105 (22)N(1)—Cu(1)—N(1P)i—C(2P)i177.7 (3)
C(5)—W(1)—C(6)—N(6)75 (9)N(1)—Cu(1)—N(1P)i—C(6P)i3.0 (4)
C(6)—W(1)—C(5)—N(5)169 (18)N(1P)i—Cu(1)—N(1)i—C(1)i88.1 (7)
C(5)—W(1)—C(1)—N(1)34 (10)N(1)i—Cu(1)—N(1P)i—C(2P)i2.3 (3)
C(1)—W(1)—C(5)—N(5)13 (21)N(1)i—Cu(1)—N(1P)i—C(6P)i177.0 (4)
C(5)—W(1)—C(3)—N(3)14 (4)N(8)ii—Cu(2)—N(6)iii—C(6)iii22.8 (14)
C(3)—W(1)—C(5)—N(5)70 (22)N(6)iii—Cu(2)—N(8)ii—C(8)ii162 (2)
C(5)—W(1)—C(2)—N(2)68 (6)N(8)ii—Cu(2)—N(3P)—C(4P)30.3 (3)
C(2)—W(1)—C(5)—N(5)43 (22)N(8)ii—Cu(2)—N(3P)—C(2P)157.6 (3)
C(5)—W(1)—C(7)—N(7)132 (16)N(3P)—Cu(2)—N(8)ii—C(8)ii70 (2)
C(7)—W(1)—C(5)—N(5)144 (22)N(8)ii—Cu(2)—N(3)iv—C(3)iv131.3 (12)
C(5)—W(1)—C(4)—N(4)64 (11)N(3)iv—Cu(2)—N(8)ii—C(8)ii16 (2)
C(4)—W(1)—C(5)—N(5)92 (22)N(8)ii—Cu(2)—N(1C)—C(6C)141.8 (4)
C(8)—W(1)—C(6)—N(6)147 (9)N(8)ii—Cu(2)—N(1C)—C(2C)35.7 (3)
C(6)—W(1)—C(8)—N(8)19 (8)N(1C)—Cu(2)—N(8)ii—C(8)ii106 (2)
C(8)—W(1)—C(1)—N(1)29 (10)N(8)ii—Cu(2)—N(2)—C(2)42 (6)
C(1)—W(1)—C(8)—N(8)128 (8)N(2)—Cu(2)—N(8)ii—C(8)ii164 (4)
C(8)—W(1)—C(3)—N(3)174 (4)N(6)iii—Cu(2)—N(3P)—C(4P)117.8 (4)
C(3)—W(1)—C(8)—N(8)123 (8)N(6)iii—Cu(2)—N(3P)—C(2P)70.2 (3)
C(8)—W(1)—C(2)—N(2)127 (6)N(3P)—Cu(2)—N(6)iii—C(6)iii111.1 (14)
C(2)—W(1)—C(8)—N(8)169 (8)N(6)iii—Cu(2)—N(3)iv—C(3)iv3 (4)
C(8)—W(1)—C(7)—N(7)169 (16)N(3)iv—Cu(2)—N(6)iii—C(6)iii151 (3)
C(7)—W(1)—C(8)—N(8)93 (8)N(6)iii—Cu(2)—N(1C)—C(6C)130.7 (4)
C(8)—W(1)—C(4)—N(4)89 (11)N(6)iii—Cu(2)—N(1C)—C(2C)51.9 (3)
C(4)—W(1)—C(8)—N(8)37 (8)N(1C)—Cu(2)—N(6)iii—C(6)iii67.1 (14)
C(6)—W(1)—C(1)—N(1)78 (10)N(6)iii—Cu(2)—N(2)—C(2)40.2 (17)
C(1)—W(1)—C(6)—N(6)31 (9)N(2)—Cu(2)—N(6)iii—C(6)iii157.2 (14)
C(6)—W(1)—C(3)—N(3)76 (4)N(3P)—Cu(2)—N(3)iv—C(3)iv43.2 (12)
C(3)—W(1)—C(6)—N(6)66 (9)N(3)iv—Cu(2)—N(3P)—C(4P)63.8 (3)
C(6)—W(1)—C(2)—N(2)176 (5)N(3)iv—Cu(2)—N(3P)—C(2P)108.3 (3)
C(2)—W(1)—C(6)—N(6)158 (9)N(3P)—Cu(2)—N(1C)—C(6C)73 (2)
C(6)—W(1)—C(7)—N(7)82 (16)N(3P)—Cu(2)—N(1C)—C(2C)104 (2)
C(7)—W(1)—C(6)—N(6)135 (9)N(1C)—Cu(2)—N(3P)—C(4P)38 (2)
C(6)—W(1)—C(4)—N(4)147 (11)N(1C)—Cu(2)—N(3P)—C(2P)134 (2)
C(4)—W(1)—C(6)—N(6)0 (8)N(3P)—Cu(2)—N(2)—C(2)52.5 (17)
C(1)—W(1)—C(3)—N(3)69 (4)N(2)—Cu(2)—N(3P)—C(4P)151.1 (3)
C(3)—W(1)—C(1)—N(1)178 (9)N(2)—Cu(2)—N(3P)—C(2P)20.9 (3)
C(1)—W(1)—C(2)—N(2)10 (6)N(3)iv—Cu(2)—N(1C)—C(6C)47.8 (4)
C(2)—W(1)—C(1)—N(1)96 (10)N(3)iv—Cu(2)—N(1C)—C(2C)129.6 (3)
C(1)—W(1)—C(7)—N(7)86 (16)N(1C)—Cu(2)—N(3)iv—C(3)iv138.7 (12)
C(7)—W(1)—C(1)—N(1)122 (10)N(3)iv—Cu(2)—N(2)—C(2)137.8 (17)
C(1)—W(1)—C(4)—N(4)15 (11)N(2)—Cu(2)—N(3)iv—C(3)iv48.7 (12)
C(4)—W(1)—C(1)—N(1)110 (10)N(1C)—Cu(2)—N(2)—C(2)131.6 (17)
C(3)—W(1)—C(2)—N(2)77 (6)N(2)—Cu(2)—N(1C)—C(6C)39.7 (3)
C(2)—W(1)—C(3)—N(3)140 (4)N(2)—Cu(2)—N(1C)—C(2C)142.9 (3)
C(3)—W(1)—C(7)—N(7)28 (16)Cu(2)x—N(8)—C(8)—W(1)29 (10)
C(7)—W(1)—C(3)—N(3)144 (4)Cu(2)viii—N(6)—C(6)—W(1)8 (10)
C(3)—W(1)—C(4)—N(4)103 (11)Cu(2)—N(3P)—C(4P)—C(5P)171.8 (4)
C(4)—W(1)—C(3)—N(3)8 (4)Cu(2)—N(3P)—C(2P)—N(1P)170.1 (3)
C(2)—W(1)—C(7)—N(7)111 (16)C(4P)—N(3P)—C(2P)—N(1P)2.1 (7)
C(7)—W(1)—C(2)—N(2)154 (6)C(2P)—N(3P)—C(4P)—C(5P)0.6 (7)
C(2)—W(1)—C(4)—N(4)52 (11)Cu(2)xiv—N(3)—C(3)—W(1)3 (5)
C(4)—W(1)—C(2)—N(2)29 (6)Cu(1)—N(1P)—C(2P)—N(3P)177.2 (3)
C(7)—W(1)—C(4)—N(4)157 (11)Cu(1)—N(1P)—C(6P)—C(5P)178.7 (4)
C(4)—W(1)—C(7)—N(7)26 (16)C(2P)—N(1P)—C(6P)—C(5P)0.6 (8)
O(1)—Cu(1)—N(1P)—C(2P)88.9 (3)C(6P)—N(1P)—C(2P)—N(3P)2.1 (7)
O(1)—Cu(1)—N(1P)—C(6P)91.8 (4)Cu(2)—N(1C)—C(6C)—C(5C)175.8 (5)
O(1)—Cu(1)—N(1P)i—C(2P)i91.1 (3)Cu(2)—N(1C)—C(2C)—C(3C)175.9 (4)
O(1)—Cu(1)—N(1P)i—C(6P)i88.2 (4)C(6C)—N(1C)—C(2C)—C(3C)1.6 (7)
O(1)—Cu(1)—N(1)—C(1)178.2 (7)C(2C)—N(1C)—C(6C)—C(5C)1.7 (8)
O(1)—Cu(1)—N(1)i—C(1)i1.8 (7)Cu(2)—N(2)—C(2)—W(1)20 (7)
O(1)i—Cu(1)—N(1P)—C(2P)91.1 (3)Cu(1)—N(1)—C(1)—W(1)9 (10)
O(1)i—Cu(1)—N(1P)—C(6P)88.2 (4)N(3P)—C(4P)—C(5P)—C(6P)0.8 (8)
O(1)i—Cu(1)—N(1P)i—C(2P)i88.9 (3)C(4P)—C(5P)—C(6P)—N(1P)0.7 (8)
O(1)i—Cu(1)—N(1P)i—C(6P)i91.8 (4)N(1C)—C(6C)—C(5C)—C(4C)0.8 (9)
O(1)i—Cu(1)—N(1)—C(1)1.8 (7)C(6C)—C(5C)—C(4C)—C(3C)0.3 (7)
O(1)i—Cu(1)—N(1)i—C(1)i178.2 (7)C(6C)—C(5C)—C(4C)—C(7C)176.1 (7)
N(1P)—Cu(1)—N(1)—C(1)88.1 (7)C(5C)—C(4C)—C(3C)—C(2C)0.3 (7)
N(1)—Cu(1)—N(1P)—C(2P)2.3 (3)C(5C)—C(4C)—C(7C)—N(8C)22 (10)
N(1)—Cu(1)—N(1P)—C(6P)177.0 (4)C(3C)—C(4C)—C(7C)—N(8C)161 (9)
N(1P)—Cu(1)—N(1)i—C(1)i91.9 (7)C(7C)—C(4C)—C(3C)—C(2C)176.8 (6)
N(1)i—Cu(1)—N(1P)—C(2P)177.7 (3)C(4C)—C(3C)—C(2C)—N(1C)0.6 (8)
N(1)i—Cu(1)—N(1P)—C(6P)3.0 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x1, y, z; (v) x+2, y+1, z+1; (vi) x+1/2, y+3/2, z+1/2; (vii) x+1, y+1, z; (viii) x+3/2, y+1/2, z+1/2; (ix) x1/2, y+3/2, z1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y+1, z+1; (xiii) x1/2, y+1/2, z1/2; (xiv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu3W2(CN)16(C4H4N2)2(C6H4N2)2(H2O)2]·2H2O
Mr1407.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)7.2475 (6), 15.4532 (12), 20.8560 (16)
β (°) 90.057 (2)
V3)2335.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)6.32
Crystal size (mm)0.44 × 0.17 × 0.04
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.297, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
22562, 5345, 4975
Rint0.095
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.09
No. of reflections5345
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.97, 1.45

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku Americas & Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PyMOLWin (DeLano, 2007).

 

Acknowledgements

This research was supported in part by a Grant for the Global COE Program, `Chemistry Innovation through Cooperation of Science and Engineering', a Grant-in-Aid for Young Scientists (S) from the Japan Society for the Promotion of Science (JSPS), The Inamori Foundation, and The Kurata Memorial Hitachi Science and Technology Foundation.

References

First citationArimoto, Y., Ohkoshi, S., Zhong, Z. J., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Am. Chem. Soc. 125, 9240–9241.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCatala, L., Mathonière, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746–748.  Web of Science CrossRef Google Scholar
First citationDeLano, W. L. (2007). The pyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA, USA. http://www.pymol.orgGoogle Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarde, R., Desplanches, C., Bleuzen, A., Veillet, P. & Verdaguer, M. (1999). Mol. Cryst. Liq. Cryst. 334, 587–595.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHozumi, T., Ohkoshi, S., Arimoto, Y., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). J. Phys. Chem. B, 107, 11571–11574.  Web of Science CrossRef CAS Google Scholar
First citationLeipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem. 40, 241–322.  CrossRef CAS Google Scholar
First citationOhkoshi, S., Arimoto, Y., Hozumi, T., Seino, H., Mizobe, Y. & Hashimoto, K. (2003). Chem. Commun. pp. 2772–2773.  Web of Science CSD CrossRef Google Scholar
First citationOhkoshi, S., Hamada, Y., Matsuda, T., Tsunobuchi, Y. & Tokoro, H. (2008). Chem. Mater. 20, 3048–3054.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhkoshi, S., Ikeda, S., Hozumi, T., Kashiwagi, T. & Hashimoto, K. (2006). J. Am. Chem. Soc. 128, 5320–5321.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOhkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084–3085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPilkington, M. & Decurtins, S. (2000). Chimia (Aarau), 54, 593–601.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas & Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, Z. J., Seino, H., Mizobe, Y., Hidai, M., Verdaguer, M., Ohkoshi, S. & Hashimoto, K. (2000). Inorg. Chem. 39, 5095–5101.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1442-m1443
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds