metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N-(5-Bromo-2-oxido­benzyl­­idene)-L-valin­ato-κ3O,N,O′]di­ethyl­tin(IV)

aDepartment of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China, and bDepartment of Chemistry, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: laijintian@163.com

(Received 1 October 2008; accepted 7 October 2008; online 15 October 2008)

The Sn atom of the title compound, [Sn(C2H5)2(C12H12BrNO3)], is in a distorted SnNC2O2 trigonal–bipyramidal geometry and forms five- and six-membered chelate rings with the tridentate ligand. One C atom of one ethyl group is disordered with site occupancies of 0.61 (3):0.39 (3).

Related literature

For related structures, see: Beltran et al. (2003[Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291-2306.]); Basu Baul et al. (2007[Basu Baul, T. S., Masharing, C., Ruisi, G., Jirasko, R., Holcapek, M., De Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849-4862.]); Dakternieks et al. (1998[Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058-3062.]); Rivera et al. (2006[Rivera, J. M., Reyes, H., Cortes, A., Santillan, R., Lacroix, P. G., Lepetit, C., Nakatani, K. & Farfan, N. (2006). Chem. Mater. 18, 1174-1183.]); Tian et al. (2005[Tian, L., Qian, B., Sun, Y., Zheng, X., Yang, M., Li, H. & Liu, X. (2005). Appl. Organomet. Chem. 19, 980-987.], 2006[Tian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 20, 74-80.], 2007[Tian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem. 25, 312-318.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C2H5)2(C12H12BrNO3)]

  • Mr = 474.95

  • Orthorhombic, P 21 21 21

  • a = 9.810 (2) Å

  • b = 10.377 (2) Å

  • c = 18.301 (4) Å

  • V = 1863.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.53 mm−1

  • T = 295 (2) K

  • 0.20 × 0.18 × 0.11 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.519, Tmax = 0.688

  • 15137 measured reflections

  • 3836 independent reflections

  • 3292 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.04

  • 3836 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.85 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1634 Friedel pairs

  • Flack parameter: 0.017 (14)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structural chemistry of diorganotin complexes with Schiff bases derived from α-amino acids has received attention due to their biological activities and their nonlinear optical properties (Beltran et al., 2003; Basu Baul et al., 2007; Dakternieks et al., 1998; Rivera et al., 2006; Tian et al., 2005, 2006, 2007). The structures of several diorganotin complexes with the Schiff base ligand [N-(2-oxidohydroxyphenylmethylene)valine, such as [N-(2-oxidophenylmethylene)valinato]dibutyltin(IV), [N-(2-oxidophenylmethylene)valinato]diphenyltin(IV) (Beltran et al., 2003), [N-(4-diethylamino-2-oxidophenylmethylene)valinato]diphenyltin(IV) (Rivera et al., 2006), [N-(5-bromo-2-oxidophenylmethylene)valinato]diphenyltin(IV), (Tian et al., 2005) have been reported. As a continuation of these studies, the structure of the title compound, (I), is now described.

The coordination geometry about the tin atom in (I) is that of a distorted trigonal bipyramid with two ethyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by a unidentate carboxylate O1 atom and phenoxide O3 atom (Fig. 1). The tin atom is 0.063 (2) Å out of the NC2 trigonal plane in the direction of the O3 atom. The bond length of Sn1—O1 (2.153 (3) Å) is longer than that of Sn1—O3 (2.106 (3) Å) and the O1—Sn1—O3 bond angle is 156.21 (13) °. The monodentate mode of coordination of the carboxylate is reflected in the disparate C5—O1 and C5—O2 bond lengths of 1.287 (6) and 1.221 (6) Å, respectively.

Related literature top

For related structures, see: Beltran et al. (2003); Basu Baul et al. (2007); Dakternieks et al. (1998); Rivera et al. (2006); Tian et al. (2005, 2006, 2007).

Experimental top

The title compound was synthesized by the reaction of diethyltin dichloride (0.50 g, 2 mmol) with potassium N-(5-bromosalicylidene)valinate (0.68 g, 2 mmol) in the presence of Et3N (0.20 g, 2 mmol) in methanol (50 ml). The reaction mixture was refluxed for 3 h and filtered. The yellow solid (I) was obtained by removal of solvent under reduced pressure and was recrystallized from methanol. Crystals for crystallography were obtained from the slow evaporation of a chloroform-hexane (1:1, v/v) solution of (I) held at room temperature (yield 71%, m.p. 479–480 K).

Refinement top

The C2 atom of one ethyl group was disordered over two positions; the site occupancy was refined to 0.61 (3):0.39 (3). The absolute configuration of the compound (I) was assigned on the basis of the known configuration of the starting reagent, L-valine. H atoms were placed at calculated positions and were included in the refinement in the riding-model approximation, with C—H = 0.93 - 0.98 Å, and with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. For C2 atom of ethyl group, the minor disordered component has been omitted for clarity.
[N-(5-Bromo-2-oxidobenzylidene)-L-valinato- κ3O,N,O']diethyltin(IV) top
Crystal data top
[Sn(C2H5)2(C12H12BrNO3)]F(000) = 936
Mr = 474.95Dx = 1.693 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4436 reflections
a = 9.810 (2) Åθ = 2.2–22.1°
b = 10.377 (2) ŵ = 3.53 mm1
c = 18.301 (4) ÅT = 295 K
V = 1863.1 (7) Å3Block, yellow
Z = 40.20 × 0.18 × 0.11 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
3836 independent reflections
Radiation source: fine-focus sealed tube3292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.519, Tmax = 0.688k = 1213
15137 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.0992P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3836 reflectionsΔρmax = 0.34 e Å3
209 parametersΔρmin = 0.85 e Å3
0 restraintsAbsolute structure: Flack (1983), 1634 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (14)
Crystal data top
[Sn(C2H5)2(C12H12BrNO3)]V = 1863.1 (7) Å3
Mr = 474.95Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.810 (2) ŵ = 3.53 mm1
b = 10.377 (2) ÅT = 295 K
c = 18.301 (4) Å0.20 × 0.18 × 0.11 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
3836 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3292 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.688Rint = 0.038
15137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.34 e Å3
S = 1.04Δρmin = 0.85 e Å3
3836 reflectionsAbsolute structure: Flack (1983), 1634 Friedel pairs
209 parametersAbsolute structure parameter: 0.017 (14)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.98675 (3)0.99102 (3)0.941187 (17)0.05242 (11)
N10.7827 (4)1.0416 (3)0.9737 (2)0.0458 (9)
O11.0064 (4)1.1614 (3)1.00747 (18)0.0660 (8)
O20.9042 (4)1.3037 (3)1.0809 (2)0.0753 (11)
O30.8849 (3)0.8346 (3)0.89231 (19)0.0590 (8)
Br10.35058 (8)0.84038 (8)0.73311 (4)0.0989 (3)
C11.1209 (6)0.8765 (6)1.0041 (4)0.0768 (17)
H1A1.07330.84791.04760.092*
H1B1.14480.80050.97600.092*
C2'1.2499 (13)0.9437 (18)1.0268 (15)0.100 (8)0.61 (3)
H2D1.30560.88551.05450.149*0.61 (3)
H2E1.22761.01731.05630.149*0.61 (3)
H2F1.29870.97130.98410.149*0.61 (3)
C21.2570 (17)0.877 (3)0.973 (2)0.092 (10)0.39 (3)
H2A1.31580.82331.00150.138*0.39 (3)
H2B1.29170.96340.97220.138*0.39 (3)
H2C1.25320.84440.92360.138*0.39 (3)
C31.0458 (6)1.0852 (6)0.8430 (3)0.0711 (15)
H3A1.12941.13260.85200.085*
H3B1.06551.02030.80630.085*
C40.9436 (7)1.1744 (8)0.8136 (4)0.110 (2)
H4A0.97771.21320.76970.165*
H4B0.92481.24030.84900.165*
H4C0.86131.12800.80290.165*
C50.9034 (6)1.2082 (5)1.0420 (3)0.0578 (13)
C60.7695 (5)1.1334 (5)1.0345 (3)0.0540 (12)
H60.69741.19491.02200.065*
C70.7302 (6)1.0675 (5)1.1066 (3)0.0630 (13)
H70.72711.13471.14410.076*
C80.8363 (6)0.9696 (6)1.1306 (3)0.0813 (17)
H8A0.92441.00991.13220.122*
H8B0.83820.89921.09660.122*
H8C0.81350.93771.17830.122*
C90.5892 (6)1.0081 (7)1.1028 (4)0.0880 (18)
H9A0.56820.96781.14860.132*
H9B0.58690.94491.06460.132*
H9C0.52331.07421.09280.132*
C100.6751 (4)1.0202 (4)0.9345 (3)0.0522 (10)
H100.59781.06840.94540.063*
C110.6638 (5)0.9281 (4)0.8755 (2)0.0491 (11)
C120.7670 (5)0.8381 (5)0.8588 (2)0.0529 (11)
C130.7368 (6)0.7468 (5)0.8052 (3)0.0656 (14)
H130.80090.68400.79370.079*
C140.6135 (7)0.7484 (5)0.7690 (3)0.0684 (15)
H140.59530.68730.73320.082*
C150.5183 (6)0.8391 (5)0.7856 (2)0.0594 (12)
C160.5395 (5)0.9272 (5)0.8387 (3)0.0561 (12)
H160.47200.98650.85050.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.05146 (17)0.04937 (17)0.05644 (19)0.00307 (15)0.00404 (14)0.00692 (14)
N10.050 (2)0.0361 (19)0.051 (2)0.0014 (15)0.0056 (17)0.0018 (16)
O10.063 (2)0.0596 (18)0.075 (2)0.011 (2)0.0039 (19)0.0065 (17)
O20.093 (3)0.052 (2)0.082 (3)0.0179 (19)0.006 (2)0.0097 (19)
O30.0571 (19)0.0482 (18)0.072 (2)0.0089 (15)0.0039 (17)0.0096 (17)
Br10.0958 (5)0.1095 (6)0.0913 (5)0.0262 (4)0.0366 (4)0.0077 (4)
C10.071 (4)0.071 (4)0.088 (4)0.013 (3)0.013 (3)0.021 (3)
C2'0.063 (7)0.096 (10)0.139 (18)0.009 (6)0.044 (8)0.042 (11)
C20.066 (10)0.091 (17)0.12 (2)0.017 (9)0.017 (11)0.034 (15)
C30.072 (3)0.082 (4)0.059 (3)0.002 (3)0.002 (3)0.020 (3)
C40.087 (4)0.127 (6)0.116 (6)0.013 (4)0.000 (4)0.055 (5)
C50.078 (3)0.042 (3)0.053 (3)0.010 (2)0.010 (3)0.007 (2)
C60.061 (3)0.047 (3)0.053 (3)0.003 (2)0.010 (2)0.011 (2)
C70.073 (3)0.056 (3)0.060 (3)0.006 (3)0.000 (3)0.009 (3)
C80.112 (5)0.073 (4)0.059 (3)0.009 (3)0.001 (3)0.015 (3)
C90.083 (4)0.093 (4)0.089 (4)0.019 (4)0.026 (3)0.010 (4)
C100.055 (2)0.044 (2)0.057 (3)0.001 (2)0.002 (2)0.005 (2)
C110.059 (3)0.047 (3)0.041 (3)0.005 (2)0.001 (2)0.002 (2)
C120.064 (3)0.048 (3)0.047 (3)0.006 (2)0.011 (2)0.001 (2)
C130.080 (4)0.059 (3)0.059 (3)0.005 (3)0.010 (3)0.013 (3)
C140.092 (4)0.061 (3)0.052 (3)0.017 (3)0.008 (3)0.015 (3)
C150.065 (3)0.066 (3)0.047 (3)0.018 (3)0.007 (2)0.001 (2)
C160.061 (3)0.052 (3)0.055 (3)0.003 (2)0.007 (2)0.001 (2)
Geometric parameters (Å, º) top
Sn1—O32.106 (3)C4—H4B0.9600
Sn1—C12.114 (5)C4—H4C0.9600
Sn1—C32.126 (5)C5—C61.532 (7)
Sn1—O12.153 (3)C6—C71.536 (8)
Sn1—N12.153 (4)C6—H60.9800
N1—C101.296 (6)C7—C91.515 (7)
N1—C61.470 (6)C7—C81.520 (8)
O1—C51.287 (6)C7—H70.9800
O2—C51.221 (6)C8—H8A0.9600
O3—C121.310 (5)C8—H8B0.9600
Br1—C151.905 (5)C8—H8C0.9600
C1—C21.454 (19)C9—H9A0.9600
C1—C2'1.504 (14)C9—H9B0.9600
C1—H1A0.9700C9—H9C0.9600
C1—H1B0.9700C10—C111.446 (6)
C2'—H2D0.9600C10—H100.9300
C2'—H2E0.9600C11—C161.393 (6)
C2'—H2F0.9600C11—C121.411 (6)
C2—H2A0.9600C12—C131.396 (7)
C2—H2B0.9600C13—C141.379 (8)
C2—H2C0.9600C13—H130.9300
C3—C41.467 (8)C14—C151.360 (7)
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—C161.350 (7)
C4—H4A0.9600C16—H160.9300
O3—Sn1—C195.3 (2)O2—C5—O1126.0 (5)
O3—Sn1—C397.16 (19)O2—C5—C6118.0 (5)
C1—Sn1—C3123.3 (2)O1—C5—C6116.0 (4)
O3—Sn1—O1156.21 (13)N1—C6—C5108.7 (4)
C1—Sn1—O195.7 (2)N1—C6—C7112.5 (4)
C3—Sn1—O194.3 (2)C5—C6—C7111.4 (4)
O3—Sn1—N182.21 (13)N1—C6—H6108.0
C1—Sn1—N1124.4 (2)C5—C6—H6108.0
C3—Sn1—N1112.03 (18)C7—C6—H6108.0
O1—Sn1—N174.16 (14)C9—C7—C8111.5 (5)
C10—N1—C6117.3 (4)C9—C7—C6111.8 (5)
C10—N1—Sn1124.2 (3)C8—C7—C6112.0 (5)
C6—N1—Sn1116.7 (3)C9—C7—H7107.1
C5—O1—Sn1121.1 (3)C8—C7—H7107.1
C12—O3—Sn1126.6 (3)C6—C7—H7107.1
C2—C1—C2'48.3 (10)C7—C8—H8A109.5
C2—C1—Sn1110.8 (8)C7—C8—H8B109.5
C2'—C1—Sn1114.4 (6)H8A—C8—H8B109.5
C2—C1—H1A140.2C7—C8—H8C109.5
C2'—C1—H1A108.7H8A—C8—H8C109.5
Sn1—C1—H1A108.7H8B—C8—H8C109.5
C2—C1—H1B64.6C7—C9—H9A109.5
C2'—C1—H1B108.7C7—C9—H9B109.5
Sn1—C1—H1B108.7H9A—C9—H9B109.5
H1A—C1—H1B107.6C7—C9—H9C109.5
C1—C2'—H2D109.5H9A—C9—H9C109.5
C1—C2'—H2E109.5H9B—C9—H9C109.5
H2D—C2'—H2E109.5N1—C10—C11126.1 (4)
C1—C2'—H2F109.5N1—C10—H10116.9
H2D—C2'—H2F109.5C11—C10—H10116.9
H2E—C2'—H2F109.5C16—C11—C12121.2 (4)
C1—C2—H2A109.5C16—C11—C10115.6 (4)
C1—C2—H2B109.5C12—C11—C10123.0 (4)
H2A—C2—H2B109.5O3—C12—C13119.8 (5)
C1—C2—H2C109.5O3—C12—C11123.4 (4)
H2A—C2—H2C109.5C13—C12—C11116.7 (5)
H2B—C2—H2C109.5C14—C13—C12121.0 (5)
C4—C3—Sn1114.4 (4)C14—C13—H13119.5
C4—C3—H3A108.7C12—C13—H13119.5
Sn1—C3—H3A108.7C15—C14—C13120.2 (5)
C4—C3—H3B108.7C15—C14—H14119.9
Sn1—C3—H3B108.7C13—C14—H14119.9
H3A—C3—H3B107.6C16—C15—C14121.6 (5)
C3—C4—H4A109.5C16—C15—Br1119.4 (4)
C3—C4—H4B109.5C14—C15—Br1119.0 (4)
H4A—C4—H4B109.5C15—C16—C11119.2 (5)
C3—C4—H4C109.5C15—C16—H16120.4
H4A—C4—H4C109.5C11—C16—H16120.4
H4B—C4—H4C109.5
O3—Sn1—N1—C1034.1 (4)Sn1—N1—C6—C520.5 (5)
C1—Sn1—N1—C10125.3 (4)C10—N1—C6—C791.3 (5)
C3—Sn1—N1—C1060.5 (4)Sn1—N1—C6—C7103.3 (4)
O1—Sn1—N1—C10148.7 (4)O2—C5—C6—N1167.5 (4)
O3—Sn1—N1—C6161.6 (3)O1—C5—C6—N114.2 (6)
C1—Sn1—N1—C670.5 (4)O2—C5—C6—C767.9 (6)
C3—Sn1—N1—C6103.8 (3)O1—C5—C6—C7110.3 (5)
O1—Sn1—N1—C615.6 (3)N1—C6—C7—C965.2 (6)
O3—Sn1—O1—C50.6 (6)C5—C6—C7—C9172.5 (5)
C1—Sn1—O1—C5116.7 (4)N1—C6—C7—C860.8 (6)
C3—Sn1—O1—C5119.2 (4)C5—C6—C7—C861.6 (6)
N1—Sn1—O1—C57.5 (3)C6—N1—C10—C11176.0 (4)
C1—Sn1—O3—C12163.1 (4)Sn1—N1—C10—C1119.9 (6)
C3—Sn1—O3—C1272.3 (4)N1—C10—C11—C16176.7 (5)
O1—Sn1—O3—C1245.8 (6)N1—C10—C11—C127.8 (7)
N1—Sn1—O3—C1239.0 (4)Sn1—O3—C12—C13154.0 (4)
O3—Sn1—C1—C2104.8 (18)Sn1—O3—C12—C1128.1 (6)
C3—Sn1—C1—C22.6 (19)C16—C11—C12—O3179.4 (4)
O1—Sn1—C1—C296.3 (18)C10—C11—C12—O34.1 (7)
N1—Sn1—C1—C2171.0 (18)C16—C11—C12—C131.5 (7)
O3—Sn1—C1—C2'157.3 (13)C10—C11—C12—C13173.8 (4)
C3—Sn1—C1—C2'55.1 (14)O3—C12—C13—C14179.9 (5)
O1—Sn1—C1—C2'43.9 (14)C11—C12—C13—C142.1 (7)
N1—Sn1—C1—C2'118.5 (13)C12—C13—C14—C150.5 (8)
O3—Sn1—C3—C487.1 (5)C13—C14—C15—C161.9 (8)
C1—Sn1—C3—C4171.7 (5)C13—C14—C15—Br1178.8 (4)
O1—Sn1—C3—C472.0 (5)C14—C15—C16—C112.4 (8)
N1—Sn1—C3—C42.7 (6)Br1—C15—C16—C11178.2 (4)
Sn1—O1—C5—O2179.8 (4)C12—C11—C16—C150.7 (7)
Sn1—O1—C5—C61.7 (5)C10—C11—C16—C15176.3 (4)
C10—N1—C6—C5144.9 (4)

Experimental details

Crystal data
Chemical formula[Sn(C2H5)2(C12H12BrNO3)]
Mr474.95
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)9.810 (2), 10.377 (2), 18.301 (4)
V3)1863.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.53
Crystal size (mm)0.20 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.519, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
15137, 3836, 3292
Rint0.038
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.04
No. of reflections3836
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.85
Absolute structureFlack (1983), 1634 Friedel pairs
Absolute structure parameter0.017 (14)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors thank the Post-doctor Innovation Project of Shandong Province (200702021) and the Key Laboratory of Colloid Interface Chemistry of Ministry of Education (200707).

References

First citationBasu Baul, T. S., Masharing, C., Ruisi, G., Jirasko, R., Holcapek, M., De Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849–4862.  Web of Science CrossRef CAS Google Scholar
First citationBeltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291–2306.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058–3062.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRivera, J. M., Reyes, H., Cortes, A., Santillan, R., Lacroix, P. G., Lepetit, C., Nakatani, K. & Farfan, N. (2006). Chem. Mater. 18, 1174–1183.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Qian, B., Sun, Y., Zheng, X., Yang, M., Li, H. & Liu, X. (2005). Appl. Organomet. Chem. 19, 980–987.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 20, 74–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem. 25, 312–318.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds