inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[tetra­sodium [[cis-dioxido-trans-bis­­(sulfato-κO)molybdate(VI)]-μ-sulfato-κ2O:O′]]

aTårnby Gymnasium & HF, Tejn Allé 5, DK-2770 Kastrup, Denmark, and bThe Technical University of Denmark, The Department of Chemistry, Building 207, DK-2800 Lyngby, Denmark
*Correspondence e-mail: su@tgy.dk

(Received 15 July 2008; accepted 21 September 2008; online 15 October 2008)

Single crystals of the title compound, {Na4[MoVIO2(SO4)3]}n, were grown from a melt of MoO3 and Na2SO4 in Na2S2O7. In contrast to the structure of the isoformular K compound, K4[MoVIO2(SO4)3], with its monomeric anion, this sodium analogue contains a polymeric anion of the type {[MoVIO2(SO4)2-μ-(SO4)]4−}n. The MoVI cations, surrounded by two tightly bonded O atoms and four O atoms of one bridging and two terminal sulfato ligands, form zigzag chains parallel to [100]. All four Na+ cations are situated between the anionic chains and have distorted octa­hedral coordination spheres.

Related literature

The structure of the title isoformular potassium compound, K4[MoVIO2(SO4)3], was determined by Schäffer & Berg (2008[Schäffer, S. J. C. & Berg, R. W. (2008). Acta Cryst. E64, i20.]). For related Mo-containing compounds, see Salles et al. (1996[Salles, L., Robert, F., Semmer, V., Jeannin, Y. & Bregeault, J. (1996). Bull. Soc. Chim. Fr. 133, 319-328.]) and Nørbygaard et al. (1998[Nørbygaard, T., Berg, R. W. & Nielsen, K. (1998). Molten Salts XI, Proceedings of the Electrochemical Society 98-11, pp. 553-565. Pennington, NJ: Electrochemical Society.]). Related compounds with Mo replaced by W were discussed by Schäffer & Berg (2005[Schäffer, S. J. C. & Berg, R. W. (2005). Acta Cryst. E61, i49-i51.]) and Berg et al. (2006[Berg, R. W., Ferré, I. M. & Schäffer, S. J. C. (2006). Vib. Spectrosc. 42, 346-352.]). Other sulfato complexes coordinated to late transition metal centers were reported by Berg & Thorup (2005[Berg, R. W. & Thorup, N. (2005). Inorg. Chem. 44, 3485-3493.]), Borup et al. (1990[Borup, F., Berg, R. W. & Nielsen, K. (1990). Acta Chem. Scand. 44, 328-331.]), Nielsen et al. (1993[Nielsen, K., Fehrmann, R. & Eriksen, K. M. (1993). Inorg. Chem. 32, 4825-4828.]) and Rasmussen et al. (2003[Rasmussen, S. B., Rasmussen, R. M., Fehrmann, R. & Nielsen, K. (2003). Inorg. Chem. 42, 7123-7128.]).

[Scheme 1]

Experimental

Crystal data
  • Na4[MoO2(SO4)3]

  • Mr = 508.08

  • Orthorhombic, P 21 21 21

  • a = 8.4739 (6) Å

  • b = 9.2892 (7) Å

  • c = 15.1046 (11) Å

  • V = 1188.97 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 120 (2) K

  • 0.24 × 0.18 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: gaussian (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.665, Tmax = 0.964

  • 14125 measured reflections

  • 2861 independent reflections

  • 2817 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.042

  • S = 1.10

  • 2861 reflections

  • 199 parameters

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1205 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Selected bond lengths (Å)

Mo1—O2 1.6905 (16)
Mo1—O1 1.7108 (16)
Mo1—O5 1.9925 (16)
Mo1—O4 2.0102 (16)
Mo1—O6i 2.1661 (15)
Mo1—O3 2.1907 (15)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable amounts of molybdenum(VI) oxide, a solid well known for its insolubility in many acids, can be dissolved in sulfate melts at high temperatures, as was previously found for the chemically related tungsten(VI) oxide (Schäffer & Berg, 2005, Berg et al., 2006). When varying molar amounts of MoO3, Na2SO4, and hygroscopic Na2S2O7 are placed in ampoules in a dry box, sealed, and heated to equilibration in a rocking furnace at 773 K for ca. 1 h, the resulting clear melts contain [MoO2]2+ moieties that are bonded to SO42- units. The compositions of the reaction products have been determined to be in the stoichiometric ratio 1:1:1, or MoO3 + M2SO4 + M2S2O7 M4[Mo(SO4)3O2]. In the case where M = K, a monomeric anion is formed (Schäffer & Berg, 2008), while for M = Na the anion is in a polymeric form.

The distorted octahedral coordination sphere of the MoVI cation contains two oxido ligands (cis), two terminally bound sulfato ligands (trans), and two O atoms of symmetry-related (x + 1/2, -y + 1/2, -z + 1) bridging sulfato ligands (cis), with O–Mo–O angles between any two cis oxygen atoms deviating as much as 15° from ideal values. The Mo–O bond distances to the tightly- bonded oxido ligands are similar (1.6905 (16) Å, 1.7108 (16) Å), which is expected as both bonds are trans to oxygen atoms in the bridging sulfato ligands. The Mo–O distances to the terminal sulfato ligands (Mo1–O4 and Mo1–O5) are slightly shorter than those to the brigding sulfato ligands, Mo1–03 and Mo1–O6A. The Mo–O distances compare well with previously reported values for related structures (Salles et al., 1996; Nørbygaard et al., 1998; Schäffer & Berg, 2008).

The coordination geometry of the sulfato ligands can be described as slightly distorted from tetrahedral, with angles ranging from 103.55 (9) to 113.77 (10)°. From the shortest to the longest, the S–O bond distances vary by type: S to terminal O atoms, 1.4516 (17)–1.4681 (17) Å; S to briding O atoms, 1.4941 (16) Å and 1.4953 (16) Å; S in the terminal sulfato ligands to the coordinating O atoms, 1.5589 (17) Å and 1.5346 (16) Å. This variation is typical for sulfato complexes of many different transition metal centers (Borup et al., 1990; Nielsen et al., 1993; Rasmussen et al., 2003, and Berg & Thorup, 2005).

All four sodium cations are situated between the anionic chains and are six-coordinate with Na–O bond distances ranging from 2.2713 (18) to 2.7652 (18) Å.

Related literature top

The structure of the title isoformular potassium compound, K4[MoVI(SO4)3O2], was determined by Schäffer & Berg (2008). For related Mo-containing compounds, see: Salles et al. (1996) and Nørbygaard et al. (1998). Related compounds with Mo replaced by W were discussed by Schäffer & Berg (2005) and Berg et al. (2006). Other sulfato complexes coordinated to late transition metal centers were reported by Berg & Thorup (2005), Borup et al. (1990), Nielsen et al. (1993) and Rasmussen et al. (2003).

Experimental top

Crystals were grown from a melt of equimolar amounts of MoO3, Na2SO4, and Na2S2O7, using a method described previously (Nørbygaard et al., 1998).

Refinement top

On the basis of 1205 unmerged Friedel opposites, the fractional contribrution of the racemic twin was negligible (Flack, 1983). The two highest peaks in the final difference Fourier map were, respectively, 0.78 Å and 0.79 Å from Mo1, and the deepest hole was 1.31 Å from S2.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Plot of the asymmetric unit of Na4[MoVI(SO4)3O2], showing atoms as ellipsoids at the 50% probability level. [Symmetry code A) x+0.5, -y+0.5, -z+1.]
[Figure 2] Fig. 2. The crystal packing of Na4[MoVI(SO4)3O2], viewed along the b axis, showing the chains (thick black lines). Ellipsoids are displayed at the 50% probability level.
catena-Poly[tetrasodium [[cis-dioxido-trans- bis(sulfato-κO)molybdate(VI)]-µ-sulfato-κ2O:O']] top
Crystal data top
Na4[Mo(SO4)3O2]F(000) = 984
Mr = 508.08Dx = 2.838 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5457 reflections
a = 8.4739 (6) Åθ = 2.6–27.9°
b = 9.2892 (7) ŵ = 1.86 mm1
c = 15.1046 (11) ÅT = 120 K
V = 1188.97 (15) Å3Tabular, colorless
Z = 40.24 × 0.18 × 0.02 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2861 independent reflections
Radiation source: normal-focus sealed tube2817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 28.0°, θmin = 2.6°
Absorption correction: gaussian
(SHELXTL; Sheldrick, 2008)
h = 1111
Tmin = 0.665, Tmax = 0.964k = 1212
14125 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0214P)2 + 0.3747P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.51 e Å3
2861 reflectionsΔρmin = 0.26 e Å3
199 parametersAbsolute structure: Flack (1983), 1205 Friedel pairs
0 restraintsAbsolute structure parameter: 0.01 (2)
Crystal data top
Na4[Mo(SO4)3O2]V = 1188.97 (15) Å3
Mr = 508.08Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4739 (6) ŵ = 1.86 mm1
b = 9.2892 (7) ÅT = 120 K
c = 15.1046 (11) Å0.24 × 0.18 × 0.02 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2861 independent reflections
Absorption correction: gaussian
(SHELXTL; Sheldrick, 2008)
2817 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.964Rint = 0.031
14125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.042Δρmax = 0.51 e Å3
S = 1.10Δρmin = 0.26 e Å3
2861 reflectionsAbsolute structure: Flack (1983), 1205 Friedel pairs
199 parametersAbsolute structure parameter: 0.01 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Five frame series were filtered for statistical outliers then corrected for absorption by integration using SHELXTL/XPREP (Bruker, 2001) before using SAINT/SADABS (Bruker, 2002) to sort, merge, and scale the combined data. A series of identical frames was collected twice during the experiment to monitor decay. No decay correction was applied. The systematic conditions suggested the uambiguous space group. The structure was solved by direct methods (Sheldrick, 2001). The final space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. An extinction correction was not applied. The two highest peaks in the final difference Fourier map were, repectively, 0.78Å and 0.79Å from Mo1; the deepest hole was 1.31Å from S2. The final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed no dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.77389 (2)0.108886 (19)0.426923 (11)0.00683 (5)
S10.42167 (6)0.29669 (6)0.38157 (3)0.00770 (11)
S20.52730 (7)0.14389 (6)0.48393 (3)0.00870 (11)
S30.87553 (6)0.37753 (6)0.29746 (3)0.00819 (10)
Na10.20072 (11)0.58268 (10)0.34042 (6)0.01293 (19)
Na20.80653 (11)0.75841 (10)0.31656 (6)0.01239 (19)
Na30.67303 (11)0.51270 (10)0.46834 (6)0.0144 (2)
Na40.57005 (11)0.46216 (10)0.21305 (6)0.01274 (19)
O10.70335 (19)0.03236 (17)0.33180 (10)0.0107 (3)
O20.94651 (19)0.02131 (17)0.44263 (11)0.0119 (3)
O30.57359 (18)0.25797 (17)0.42577 (11)0.0107 (3)
O40.6456 (2)0.02040 (17)0.50576 (10)0.0116 (3)
O50.88450 (19)0.28237 (18)0.38036 (10)0.0120 (3)
O60.29354 (19)0.27689 (17)0.44854 (9)0.0096 (3)
O70.3902 (2)0.20606 (18)0.30489 (10)0.0123 (3)
O80.4313 (2)0.44896 (18)0.35609 (11)0.0124 (3)
O90.49519 (19)0.20813 (17)0.56967 (11)0.0130 (3)
O100.60611 (19)0.24259 (18)0.42327 (12)0.0147 (3)
O110.38958 (19)0.07781 (18)0.44282 (11)0.0139 (3)
O120.7888 (2)0.29908 (17)0.22934 (10)0.0124 (3)
O130.7899 (2)0.50790 (17)0.32281 (10)0.0126 (3)
O141.03833 (19)0.40786 (18)0.27218 (10)0.0133 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00576 (8)0.00737 (9)0.00738 (8)0.00034 (7)0.00028 (6)0.00021 (7)
S10.0056 (2)0.0096 (3)0.0078 (2)0.0014 (2)0.00017 (19)0.0001 (2)
S20.0073 (2)0.0093 (2)0.0095 (2)0.0009 (2)0.0006 (2)0.00087 (19)
S30.0073 (2)0.0087 (2)0.0086 (2)0.0001 (2)0.00067 (18)0.0004 (2)
Na10.0125 (5)0.0130 (5)0.0133 (4)0.0022 (4)0.0012 (3)0.0019 (3)
Na20.0111 (5)0.0126 (4)0.0135 (4)0.0012 (4)0.0018 (4)0.0017 (3)
Na30.0123 (4)0.0166 (5)0.0145 (5)0.0034 (4)0.0023 (4)0.0024 (4)
Na40.0107 (4)0.0156 (5)0.0120 (4)0.0010 (4)0.0008 (4)0.0020 (4)
O10.0097 (8)0.0119 (8)0.0104 (7)0.0002 (6)0.0002 (6)0.0008 (6)
O20.0113 (8)0.0112 (8)0.0130 (8)0.0020 (6)0.0021 (6)0.0007 (6)
O30.0086 (7)0.0128 (7)0.0107 (7)0.0044 (6)0.0029 (7)0.0008 (7)
O40.0138 (8)0.0116 (8)0.0095 (7)0.0053 (7)0.0018 (6)0.0001 (6)
O50.0116 (8)0.0121 (8)0.0122 (8)0.0036 (6)0.0020 (6)0.0042 (6)
O60.0080 (7)0.0110 (7)0.0098 (7)0.0010 (6)0.0006 (6)0.0012 (6)
O70.0116 (8)0.0162 (9)0.0092 (7)0.0016 (7)0.0016 (6)0.0028 (6)
O80.0121 (8)0.0111 (8)0.0140 (8)0.0018 (7)0.0023 (7)0.0023 (6)
O90.0141 (8)0.0131 (8)0.0119 (7)0.0042 (6)0.0001 (7)0.0028 (7)
O100.0151 (8)0.0119 (8)0.0171 (8)0.0010 (7)0.0051 (7)0.0045 (7)
O110.0093 (8)0.0190 (9)0.0133 (8)0.0021 (7)0.0016 (6)0.0017 (6)
O120.0141 (8)0.0120 (8)0.0109 (7)0.0002 (7)0.0015 (6)0.0011 (6)
O130.0106 (8)0.0108 (8)0.0163 (8)0.0025 (7)0.0008 (7)0.0015 (6)
O140.0095 (8)0.0167 (9)0.0136 (7)0.0012 (7)0.0042 (6)0.0008 (7)
Geometric parameters (Å, º) top
Mo1—O21.6905 (16)Na1—O9iv2.4972 (19)
Mo1—O11.7108 (16)Na1—O1ii2.7652 (18)
Mo1—O51.9925 (16)Na2—O132.3333 (18)
Mo1—O42.0102 (16)Na2—O14v2.3350 (19)
Mo1—O6i2.1661 (15)Na2—O10vi2.3415 (19)
Mo1—O32.1907 (15)Na2—O9i2.3932 (19)
S1—O71.4564 (16)Na2—O7ii2.5262 (18)
S1—O81.4681 (17)Na2—O1vi2.7006 (19)
S1—O31.4941 (16)Na2—S3v3.3837 (11)
S1—O61.4953 (16)Na3—O11i2.3524 (19)
S2—O91.4516 (17)Na3—O2iv2.3649 (19)
S2—O111.4575 (17)Na3—O132.4115 (18)
S2—O101.4581 (17)Na3—O10vi2.4398 (19)
S2—O41.5589 (17)Na3—O32.5928 (19)
S3—O141.4590 (17)Na3—O82.724 (2)
S3—O121.4595 (16)Na4—O7ii2.3065 (19)
S3—O131.4627 (16)Na4—O122.407 (2)
S3—O51.5346 (16)Na4—O11ii2.4078 (19)
Na1—O12ii2.2713 (18)Na4—O82.4629 (19)
Na1—O82.3273 (19)Na4—O1ii2.5003 (19)
Na1—O14iii2.3649 (19)Na4—O132.5297 (19)
Na1—O4iv2.4394 (18)
O2—Mo1—O1102.72 (8)O11i—Na3—O3129.03 (7)
O2—Mo1—O591.81 (7)O2iv—Na3—O375.84 (6)
O1—Mo1—O5101.77 (7)O13—Na3—O383.71 (6)
O2—Mo1—O495.58 (7)O10vi—Na3—O3134.87 (6)
O1—Mo1—O493.46 (7)O11i—Na3—O8175.92 (7)
O5—Mo1—O4161.18 (7)O2iv—Na3—O873.41 (6)
O2—Mo1—O6i92.71 (7)O13—Na3—O874.78 (6)
O1—Mo1—O6i163.68 (7)O10vi—Na3—O881.61 (6)
O5—Mo1—O6i82.77 (6)O3—Na3—O853.34 (5)
O4—Mo1—O6i79.62 (6)O7ii—Na4—O12121.20 (7)
O2—Mo1—O3167.36 (7)O7ii—Na4—O11ii90.91 (6)
O1—Mo1—O389.16 (7)O12—Na4—O11ii83.88 (6)
O5—Mo1—O381.39 (6)O7ii—Na4—O8102.80 (7)
O4—Mo1—O387.91 (6)O12—Na4—O8104.28 (6)
O6i—Mo1—O375.92 (6)O11ii—Na4—O8156.62 (7)
O7—S1—O8111.01 (10)O7ii—Na4—O1ii81.21 (6)
O7—S1—O3111.95 (9)O12—Na4—O1ii154.90 (7)
O8—S1—O3107.53 (10)O11ii—Na4—O1ii84.66 (6)
O7—S1—O6109.52 (9)O8—Na4—O1ii78.95 (6)
O8—S1—O6109.65 (10)O7ii—Na4—O1378.73 (6)
O3—S1—O6107.08 (9)O12—Na4—O1358.10 (6)
O9—S2—O11113.77 (10)O11ii—Na4—O13124.20 (7)
O9—S2—O10112.83 (10)O8—Na4—O1377.59 (6)
O11—S2—O10111.33 (10)O1ii—Na4—O13144.70 (7)
O9—S2—O4103.55 (9)Mo1—O1—Na4vii131.27 (9)
O11—S2—O4107.18 (10)Mo1—O1—Na2viii110.49 (7)
O10—S2—O4107.52 (10)Na4vii—O1—Na2viii91.78 (6)
O14—S3—O12112.83 (10)Mo1—O1—Na1vii128.10 (8)
O14—S3—O13112.19 (10)Na4vii—O1—Na1vii93.53 (5)
O12—S3—O13110.37 (10)Na2viii—O1—Na1vii89.08 (5)
O14—S3—O5106.14 (9)Mo1—O2—Na3i147.82 (9)
O12—S3—O5108.22 (9)S1—O3—Mo1145.42 (10)
O13—S3—O5106.73 (10)S1—O3—Na399.86 (8)
O12ii—Na1—O8119.12 (7)Mo1—O3—Na3108.85 (6)
O12ii—Na1—O14iii115.36 (7)S2—O4—Mo1131.46 (9)
O8—Na1—O14iii99.58 (7)S2—O4—Na1i98.63 (8)
O12ii—Na1—O4iv131.24 (7)Mo1—O4—Na1i127.05 (8)
O8—Na1—O4iv86.40 (6)S3—O5—Mo1136.93 (10)
O14iii—Na1—O4iv98.10 (6)S1—O6—Mo1iv125.67 (9)
O12ii—Na1—O9iv82.33 (6)S1—O7—Na4vii129.39 (10)
O8—Na1—O9iv141.19 (7)S1—O7—Na2vii125.94 (10)
O14iii—Na1—O9iv98.72 (7)Na4vii—O7—Na2vii101.54 (7)
O4iv—Na1—O9iv57.26 (6)S1—O8—Na1119.62 (10)
O12ii—Na1—O1ii72.64 (6)S1—O8—Na4107.73 (9)
O8—Na1—O1ii76.04 (6)Na1—O8—Na4106.56 (7)
O14iii—Na1—O1ii69.21 (5)S1—O8—Na395.05 (8)
O4iv—Na1—O1ii155.81 (6)Na1—O8—Na3125.35 (7)
O9iv—Na1—O1ii142.71 (6)Na4—O8—Na3100.15 (7)
O13—Na2—O14v130.56 (7)S2—O9—Na2iv147.79 (11)
O13—Na2—O10vi85.66 (6)S2—O9—Na1i99.36 (8)
O14v—Na2—O10vi143.70 (7)Na2iv—O9—Na1i99.58 (7)
O13—Na2—O9i79.43 (6)S2—O10—Na2viii139.66 (10)
O14v—Na2—O9i98.75 (7)S2—O10—Na3viii121.13 (10)
O10vi—Na2—O9i89.40 (7)Na2viii—O10—Na3viii91.56 (6)
O13—Na2—O7ii78.32 (6)S2—O11—Na3iv119.33 (9)
O14v—Na2—O7ii93.97 (6)S2—O11—Na4vii111.58 (9)
O10vi—Na2—O7ii91.17 (7)Na3iv—O11—Na4vii128.97 (8)
O9i—Na2—O7ii157.64 (7)S3—O12—Na1vii138.53 (11)
O13—Na2—O1vi156.46 (7)S3—O12—Na498.37 (8)
O14v—Na2—O1vi70.79 (6)Na1vii—O12—Na4122.67 (8)
O10vi—Na2—O1vi73.15 (6)S3—O13—Na2141.74 (10)
O9i—Na2—O1vi109.81 (6)S3—O13—Na3117.23 (9)
O7ii—Na2—O1vi91.70 (6)Na2—O13—Na392.48 (6)
O11i—Na3—O2iv110.07 (7)S3—O13—Na493.14 (8)
O11i—Na3—O13101.80 (6)Na2—O13—Na4100.69 (7)
O2iv—Na3—O13148.13 (7)Na3—O13—Na4107.34 (7)
O11i—Na3—O10vi95.79 (7)S3—O14—Na2ix124.60 (10)
O2iv—Na3—O10vi95.42 (7)S3—O14—Na1x124.66 (10)
O13—Na3—O10vi81.85 (6)Na2ix—O14—Na1x109.32 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x1/2, y+1/2, z+1; (v) x+2, y+1/2, z+1/2; (vi) x, y+1, z; (vii) x+1, y1/2, z+1/2; (viii) x, y1, z; (ix) x+2, y1/2, z+1/2; (x) x+1, y, z.

Experimental details

Crystal data
Chemical formulaNa4[Mo(SO4)3O2]
Mr508.08
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)8.4739 (6), 9.2892 (7), 15.1046 (11)
V3)1188.97 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.24 × 0.18 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionGaussian
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.665, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
14125, 2861, 2817
Rint0.031
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.042, 1.10
No. of reflections2861
No. of parameters199
Δρmax, Δρmin (e Å3)0.51, 0.26
Absolute structureFlack (1983), 1205 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mo1—O21.6905 (16)Mo1—O42.0102 (16)
Mo1—O11.7108 (16)Mo1—O6i2.1661 (15)
Mo1—O51.9925 (16)Mo1—O32.1907 (15)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Astrid Schøneberg and Bodil Holten for their help and advice.

References

First citationBerg, R. W., Ferré, I. M. & Schäffer, S. J. C. (2006). Vib. Spectrosc. 42, 346–352.  Web of Science CrossRef CAS Google Scholar
First citationBerg, R. W. & Thorup, N. (2005). Inorg. Chem. 44, 3485–3493.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBorup, F., Berg, R. W. & Nielsen, K. (1990). Acta Chem. Scand. 44, 328–331.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNielsen, K., Fehrmann, R. & Eriksen, K. M. (1993). Inorg. Chem. 32, 4825–4828.  CrossRef CAS Web of Science Google Scholar
First citationNørbygaard, T., Berg, R. W. & Nielsen, K. (1998). Molten Salts XI, Proceedings of the Electrochemical Society 98–11, pp. 553–565. Pennington, NJ: Electrochemical Society.  Google Scholar
First citationRasmussen, S. B., Rasmussen, R. M., Fehrmann, R. & Nielsen, K. (2003). Inorg. Chem. 42, 7123–7128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalles, L., Robert, F., Semmer, V., Jeannin, Y. & Bregeault, J. (1996). Bull. Soc. Chim. Fr. 133, 319–328.  CAS Google Scholar
First citationSchäffer, S. J. C. & Berg, R. W. (2005). Acta Cryst. E61, i49–i51.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchäffer, S. J. C. & Berg, R. W. (2008). Acta Cryst. E64, i20.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds