inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

K2Ho(PO4)(WO4)

aDepartment of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska Street, 01033 Kyiv, Ukraine, and bSTC `Institute for Single Crystals', NAS of Ukraine, 60 Lenin Avenue, 61001 Kharkiv, Ukraine
*Correspondence e-mail: Tereb@bigmir.net

(Received 5 September 2008; accepted 10 October 2008; online 18 October 2008)

A new compound, dipotassium holmium(III) phosphate(V) tungstate(VI), K2Ho(PO4)(WO4), has been obtained during investigation of the K2O–P2O5–WO3–HoF3 phase system using the flux technique. The compound is isotypic with K2Bi(PO4)(WO4). Its framework structure consists of flat 2[HoPO4] layers parallel to (100) that are made up of 1[HoO8] zigzag chains inter­linked via slightly distorted PO4 tetra­hedra. WO4 tetra­hedra are attached above and below these layers, leaving space for the K+ counter-cations. The HoO8, PO4 and WO4 units exhibit 2 symmetry.

Related literature

For related structures, see: Ben Amara & Dabbabi (1987[Ben Amara, M. & Dabbabi, M. (1987). Acta Cryst. C43, 616-618.]); Marsh (1987[Marsh, R. E. (1987). Acta Cryst. C43, 2470.]); Zatovsky, Terebilenko, Slobodyanik & Baumer (2006[Zatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S. & Baumer, V. N. (2006). J. Solid State Chem. 179, 3550-3555.]); Zatovsky, Terebilenko, Slobodyanik, Baumer & Shishkin (2006[Zatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). Acta Cryst. E62, i193-i195.]).

Experimental

Crystal data
  • K2Ho(PO4)(WO4)

  • Mr = 585.95

  • Orthorhombic, I b c a

  • a = 6.8820 (10) Å

  • b = 12.1485 (18) Å

  • c = 19.695 (3) Å

  • V = 1646.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 24.72 mm−1

  • T = 293 (2) K

  • 0.10 × 0.09 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur-3 CCD diffractometer

  • Absorption correction: multi-scan based on the method by Blessing (1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.102, Tmax = 0.177

  • 8608 measured reflections

  • 1561 independent reflections

  • 1257 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.071

  • S = 1.15

  • 1561 reflections

  • 62 parameters

  • Δρmax = 1.90 e Å−3

  • Δρmin = −1.73 e Å−3

Table 1
Selected bond lengths (Å)

W1—O2 1.749 (4)
W1—O1 1.788 (3)
Ho1—O4i 2.274 (3)
Ho1—O1 2.342 (3)
Ho1—O3ii 2.401 (3)
Ho1—O4 2.428 (3)
P1—O3 1.525 (3)
P1—O4 1.552 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The co-existence of different anionic units in crystal structures represents an interesting field of investigation. One of the first structural examples of a combination of PO4 with MoO4/WO4 tetrahedra, viz. Na2Y(MoO4)(PO4), was reported to be monoclinic with space group C2/c (Ben Amara & Dabbabi, 1987). Later this structure was reinvestigated and described as orthorhombic, space group Ibca (Marsh, 1987). Recently, the compounds K2Bi(PO4)(MO4) (M=Mo, W) with isotypic structures were obtained by application of the flux method (Zatovsky, Terebilenko, Slobodyanik & Baumer, 2006; Zatovsky, Terebilenko, Slobodyanik, Baumer & Shishkin, 2006). Herein, we report the flux synthesis and crystal structure of a new member of the A2B(PO4)(AO4) (A = Na, K; B = lanthanide, Y, Bi; M = Mo, W) family.

One of the characteristic features of this structure type is the "segregation" of slightly distorted PO4 and WO4 tetrahedra into adjacent layers (Fig. 1). The first layer with composition 2[HoPO4] contains 1[HoO8] zigzag chains (Fig. 2). The connection between neighboring chains is achieved via PO4 tetrahedra. On the top and on the bottom of the 2[HoPO4] layer, WO4 tetrahedra are attached. All [HoO8], PO4 and WO4 units exhibit 2 symmetry with bond lengths in the typical ranges (Table 1). The K+ cations are situated in the resulting interlayer space and are surrounded by 8 oxygen atoms with K—O bond lengths ranging from 2.683 (4) Å to 3.133 (4) Å.

Related literature top

For related structures, see: Ben Amara & Dabbabi (1987); Marsh (1987); Zatovsky, Terebilenko, Slobodyanik & Baumer (2006); Zatovsky, Terebilenko, Slobodyanik, Baumer & Shishkin (2006).

Experimental top

Single crystals of the title compound were grown from a multicomponent high-temperature solution. A mixture of 4.645 g K2W2O7, 0.865 g KPO3, and 1.150 g K4P2O7 was heated in a platinum crucible up to 1173 K which is above the melting temperature. Then 0.200 g of HoF3 were added to this melt under stirring. The final mixture was held at this temperature for 1 h and cooled down to room temperature with a rate of 30 Kh-1. The solidified melt was leached out with warm water to dissolve the superfluous flux. The final product consisted of beige needle-like crystals with a maximum length of up to 5 mm.

Refinement top

The highest peak and the deepest hole of the final Fourier map are located 0.58 Å from atom W1 and 1.11 Å from the same atom, respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The layered structure of K2Ho(PO4)(WO4), leaving space where the K+ ions are located.
[Figure 2] Fig. 2. View of K2Ho(PO4)(WO4) with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 1,5-x; y; 1-z; (ii) 1-x; 0.5-y; z].
Dipotassium holmium(III) phosphate(V) tungstate(VI) top
Crystal data top
K2Ho(PO4)(WO4)F(000) = 2064
Mr = 585.95Dx = 4.727 Mg m3
Orthorhombic, IbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2b 2cCell parameters from 8608 reflections
a = 6.882 (1) Åθ = 3.4–33.0°
b = 12.1485 (18) ŵ = 24.72 mm1
c = 19.695 (3) ÅT = 293 K
V = 1646.6 (4) Å3Prism, pale beige
Z = 80.10 × 0.09 × 0.07 mm
Data collection top
Oxford Diffraction XCalibur-3 CCD
diffractometer
1561 independent reflections
Radiation source: fine-focus sealed tube1257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 33.0°, θmin = 3.4°
Absorption correction: multi-scan
based on the method by Blessing (1995)
h = 1010
Tmin = 0.102, Tmax = 0.177k = 1818
8608 measured reflectionsl = 3029
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0397P)2 + 3.2575P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.071Δρmax = 1.90 e Å3
S = 1.15Δρmin = 1.73 e Å3
1561 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
62 parametersExtinction coefficient: 0.00010 (2)
Crystal data top
K2Ho(PO4)(WO4)V = 1646.6 (4) Å3
Mr = 585.95Z = 8
Orthorhombic, IbcaMo Kα radiation
a = 6.882 (1) ŵ = 24.72 mm1
b = 12.1485 (18) ÅT = 293 K
c = 19.695 (3) Å0.10 × 0.09 × 0.07 mm
Data collection top
Oxford Diffraction XCalibur-3 CCD
diffractometer
1561 independent reflections
Absorption correction: multi-scan
based on the method by Blessing (1995)
1257 reflections with I > 2σ(I)
Tmin = 0.102, Tmax = 0.177Rint = 0.055
8608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02962 parameters
wR(F2) = 0.0710 restraints
S = 1.15Δρmax = 1.90 e Å3
1561 reflectionsΔρmin = 1.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.50.250.334530 (12)0.01088 (5)
Ho10.750.325113 (17)0.50.00662 (5)
K10.96872 (15)0.07992 (10)0.34389 (5)0.0196 (2)
P10.750.07042 (10)0.50.0065 (2)
O10.7088 (4)0.2796 (3)0.38536 (17)0.0146 (7)
O20.4420 (6)0.3643 (4)0.2845 (2)0.0269 (8)
O30.7308 (4)0.0047 (2)0.43834 (16)0.0102 (6)
O40.9229 (4)0.1514 (2)0.49215 (17)0.0105 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01432 (9)0.01167 (9)0.00666 (9)0.00095 (8)00
Ho10.00652 (9)0.00523 (9)0.00811 (10)00.00005 (9)0
K10.0204 (4)0.0248 (5)0.0137 (4)0.0002 (4)0.0021 (3)0.0039 (4)
P10.0064 (5)0.0034 (5)0.0098 (6)00.0000 (5)0
O10.0154 (14)0.0171 (14)0.0113 (14)0.0035 (11)0.0012 (11)0.0031 (11)
O20.0308 (17)0.0296 (19)0.0203 (17)0.0008 (17)0.0013 (15)0.0126 (16)
O30.0126 (13)0.0079 (11)0.0101 (13)0.0018 (10)0.0002 (11)0.0010 (9)
O40.0052 (10)0.0066 (11)0.0198 (16)0.0017 (9)0.0011 (10)0.0016 (11)
Geometric parameters (Å, º) top
W1—O2i1.749 (4)Ho1—K1vii3.8119 (11)
W1—O21.749 (4)Ho1—K1vi3.8119 (12)
W1—O11.788 (3)K1—O32.683 (3)
W1—O1i1.788 (3)K1—O2v2.689 (4)
W1—K13.8352 (12)K1—O3x2.747 (3)
W1—K1i3.8352 (12)K1—O1vi2.916 (3)
W1—K1ii4.0181 (13)K1—O2xi2.934 (5)
W1—K1iii4.0181 (13)K1—O43.063 (3)
W1—K1iv4.0821 (12)K1—O13.122 (4)
W1—K1v4.0821 (12)K1—O2i3.133 (4)
Ho1—O4vi2.274 (3)K1—P13.4251 (11)
Ho1—O4vii2.274 (3)K1—Ho1vi3.8119 (11)
Ho1—O12.342 (3)K1—K1iii3.9511 (13)
Ho1—O1viii2.342 (3)P1—O31.525 (3)
Ho1—O3ix2.401 (3)P1—O3viii1.525 (3)
Ho1—O3ii2.401 (3)P1—O41.552 (3)
Ho1—O4viii2.428 (3)P1—O4viii1.552 (3)
Ho1—O42.428 (3)P1—Ho1xii2.9802 (13)
Ho1—P1ix2.9802 (13)P1—K1viii3.4251 (11)
Ho1—P13.0941 (13)
O2i—W1—O2111.4 (3)O3x—K1—O461.07 (8)
O2i—W1—O1106.94 (17)O1vi—K1—O469.23 (9)
O2—W1—O1109.83 (19)O2xi—K1—O4130.90 (10)
O2i—W1—O1i109.83 (19)O3—K1—O176.52 (9)
O2—W1—O1i106.94 (17)O2v—K1—O1100.44 (12)
O1—W1—O1i111.9 (2)O3x—K1—O1117.21 (9)
O4vi—Ho1—O4vii165.59 (15)O1vi—K1—O184.72 (10)
O4vi—Ho1—O194.81 (11)O2xi—K1—O1156.62 (10)
O4vii—Ho1—O188.59 (11)O4—K1—O158.09 (8)
O4vi—Ho1—O1viii88.59 (11)O3—K1—O2i77.94 (10)
O4vii—Ho1—O1viii94.81 (11)O2v—K1—O2i78.50 (9)
O1—Ho1—O1viii152.68 (18)O3x—K1—O2i156.48 (11)
O4vi—Ho1—O3ix88.91 (10)O1vi—K1—O2i131.64 (12)
O4vii—Ho1—O3ix78.65 (10)O2xi—K1—O2i103.49 (13)
O1—Ho1—O3ix133.18 (11)O4—K1—O2i101.64 (9)
O1viii—Ho1—O3ix73.88 (12)O1—K1—O2i54.04 (10)
O4vi—Ho1—O3ii78.65 (10)O3—P1—O3viii106.4 (2)
O4vii—Ho1—O3ii88.91 (10)O3—P1—O4111.52 (16)
O1—Ho1—O3ii73.88 (12)O3viii—P1—O4113.10 (16)
O1viii—Ho1—O3ii133.18 (12)O3—P1—O4viii113.10 (16)
O3ix—Ho1—O3ii61.17 (15)O3viii—P1—O4viii111.52 (16)
O4vi—Ho1—O4viii126.77 (7)O4—P1—O4viii101.3 (2)
O4vii—Ho1—O4viii67.63 (12)W1—O1—Ho1133.20 (16)
O1—Ho1—O4viii78.27 (12)W1—O1—K1vi124.93 (16)
O1viii—Ho1—O4viii78.03 (12)Ho1—O1—K1vi92.27 (11)
O3ix—Ho1—O4viii133.56 (10)W1—O1—K199.08 (14)
O3ii—Ho1—O4viii143.86 (10)Ho1—O1—K1111.49 (12)
O4vi—Ho1—O467.63 (12)K1vi—O1—K186.88 (9)
O4vii—Ho1—O4126.77 (8)W1—O2—K1v132.6 (2)
O1—Ho1—O478.03 (12)W1—O2—K1ii115.89 (19)
O1viii—Ho1—O478.27 (12)K1v—O2—K1ii95.86 (13)
O3ix—Ho1—O4143.86 (10)W1—O2—K1i99.64 (16)
O3ii—Ho1—O4133.56 (10)K1v—O2—K1i120.18 (15)
O4viii—Ho1—O459.26 (13)K1ii—O2—K1i81.21 (11)
O3—K1—O2v152.62 (12)P1—O3—Ho1xii96.20 (15)
O3—K1—O3x78.69 (8)P1—O3—K1105.64 (14)
O2v—K1—O3x124.78 (11)Ho1xii—O3—K1130.32 (12)
O3—K1—O1vi119.65 (10)P1—O3—K1iii142.66 (16)
O2v—K1—O1vi86.67 (12)Ho1xii—O3—K1iii95.30 (9)
O3x—K1—O1vi60.35 (9)K1—O3—K1iii93.37 (11)
O3—K1—O2xi93.55 (11)P1—O4—Ho1vi146.28 (18)
O2v—K1—O2xi78.59 (14)P1—O4—Ho199.72 (13)
O3x—K1—O2xi80.53 (10)Ho1vi—O4—Ho1111.83 (11)
O1vi—K1—O2xi118.34 (11)P1—O4—K189.66 (13)
O3—K1—O452.05 (8)Ho1vi—O4—K189.92 (10)
O2v—K1—O4148.06 (12)Ho1—O4—K1110.96 (11)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+3/2, y+1/2, z; (iii) x1/2, y, z; (iv) x1/2, y, z+1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x+2, y+1/2, z; (vii) x1/2, y+1/2, z+1; (viii) x+3/2, y, z+1; (ix) x, y+1/2, z+1; (x) x+1/2, y, z; (xi) x+3/2, y1/2, z; (xii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaK2Ho(PO4)(WO4)
Mr585.95
Crystal system, space groupOrthorhombic, Ibca
Temperature (K)293
a, b, c (Å)6.882 (1), 12.1485 (18), 19.695 (3)
V3)1646.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)24.72
Crystal size (mm)0.10 × 0.09 × 0.07
Data collection
DiffractometerOxford Diffraction XCalibur-3 CCD
diffractometer
Absorption correctionMulti-scan
based on the method by Blessing (1995)
Tmin, Tmax0.102, 0.177
No. of measured, independent and
observed [I > 2σ(I)] reflections
8608, 1561, 1257
Rint0.055
(sin θ/λ)max1)0.766
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.15
No. of reflections1561
No. of parameters62
Δρmax, Δρmin (e Å3)1.90, 1.73

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
W1—O21.749 (4)Ho1—O3ii2.401 (3)
W1—O11.788 (3)Ho1—O42.428 (3)
Ho1—O4i2.274 (3)P1—O31.525 (3)
Ho1—O12.342 (3)P1—O41.552 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the ICDD for financial support (grant No. 03-02).

References

First citationBen Amara, M. & Dabbabi, M. (1987). Acta Cryst. C43, 616–618.  CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMarsh, R. E. (1987). Acta Cryst. C43, 2470.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S. & Baumer, V. N. (2006). J. Solid State Chem. 179, 3550–3555.  Web of Science CrossRef CAS Google Scholar
First citationZatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). Acta Cryst. E62, i193–i195.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds