inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Disodium tricopper(II) tetra­kis[selenate(IV)] tetra­hydrate

aInstitute of Materials Science and Engineering, The Ocean University of China, Qingdao 266100, People's Republic of China, bDepartment of Computer Science, Dezhou University, Shandong 253023, People's Republic of China, and cState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, People's Republic of China
*Correspondence e-mail: weiliu@ouc.edu.cn

(Received 9 September 2008; accepted 21 October 2008; online 25 October 2008)

The title compound, Na2Cu3(SeO3)4(H2O)4, has been prepared under hydro­thermal conditions. The crystal structure contains a three-dimensional anionic framework made up from distorted [CuO4(H2O)2] octa­hedra ([\overline{1}] symmetry), [CuO4(H2O)] square pyramids and trigonal-pyramidal SeO3 units sharing common corners. The connectivity among these units leads to four- and eight-membered polyhedral rings, which by edge-sharing inter­connect into walls. A rhombus-like 16-membered polyhedral ring channel system with a longest length of approximately 14.0 Å and a shortest length of 5.3 Å is enclosed by such walls along the a axis. The water mol­ecules attached to the Cu atoms, as well as the electron lone pairs of the SeIV atoms, protrude into these channels. The seven-coordinated Na+ counter-cations occupy the remaining free space of the 16-membered polyhedral ring channels. An intricate network of O—H⋯O hydrogen bonds further consolidates the three-dimensional structure.

Related literature

For the structures of other hydrous copper(II) selenates(IV) or selenates(VI), see: Asai & Kiriyama (1973[Asai, T. & Kiriyama, R. (1973). Bull. Chem. Soc. Jpn, 46, 2395-2401.]), Giester (1991[Giester, G. (1991). Monatsh. Chem. 122, 229-234.]); Iskhakova & Kozlova (1995[Iskhakova, L. D. & Kozlova, N. P. (1995). Kristallografiya, 40, 635-638.]).

Experimental

Crystal data
  • Na2Cu3(SeO3)4(H2O)4

  • Mr = 816.50

  • Monoclinic, P 21 /c

  • a = 5.2218 (5) Å

  • b = 8.9863 (6) Å

  • c = 15.7960 (11) Å

  • β = 92.071 (4)°

  • V = 740.74 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 14.24 mm−1

  • T = 296 (2) K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.204, Tmax = 0.250

  • 6010 measured reflections

  • 2142 independent reflections

  • 2065 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.068

  • S = 1.12

  • 2142 reflections

  • 115 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected bond lengths (Å)

Se1—O7 1.698 (3)
Se1—O2 1.705 (3)
Se1—O4 1.709 (3)
Se2—O8 1.673 (3)
Se2—O1 1.708 (3)
Se2—O3 1.717 (3)
Cu1—O4 1.968 (3)
Cu1—O6 1.990 (3)
Cu1—O8i 2.475 (3)
Cu2—O1ii 1.947 (3)
Cu2—O3 1.962 (3)
Cu2—O2 1.968 (3)
Cu2—O7iii 1.980 (3)
Cu2—O5 2.268 (3)
Symmetry codes: (i) [-x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O4iv 0.80 (8) 2.00 (8) 2.786 (4) 168 (7)
O5—H2⋯O3v 0.87 (8) 1.88 (8) 2.746 (4) 174 (7)
O6—H3⋯O8vi 0.87 (8) 1.91 (8) 2.758 (5) 163 (7)
O6—H4⋯O1i 0.89 (8) 1.76 (8) 2.641 (4) 169 (8)
Symmetry codes: (i) [-x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z; (v) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Crystal Impact, 2004[Crystal Impact (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Studies of hydrous copper selenites and selenates with three-dimensional frameworks have been reported previously, e.g. by Asai & Kiriyama (1973), Giester (1991) and Iskhakova & Kozlova (1995). Among the corresponding structures various polyhedral ring channel systems are established. The current article presents the result of the single-crystal X-ray analysis of a new sodium copper selenite, Na2Cu3(SeO3)4(H2O)4, (I), with a 16-membered polydedral ring channel system.

In the asymmetric unit of (I) there are two crystallographically distinct copper atoms. The six-coordinated Cu1 site is a typical Jahn-Teller ion with a distorted, tetragonally elongated octahedral [Cu1O4(H2O)2] coordination, whereas Cu2 is surrounded by five O-atoms, leading to a distorted square-pyramidal [Cu2O4(H2O)] environment. The two independent selenium atoms are coordinated by three oxygen atoms, forming the characteristic trigonal-pyramidal SeO32- anion (Fig. 1).

The square-pyramidal [Cu2O4(H2O)] units share its basal O atoms with four neighboring SeO3 units leading to chains of corner-shared four-membered polyhedral rings running along [100]. The [Cu1O4(H2O)2] units are located between such parallel chains and bridge them via Cu—O—Se bonds into an open framework. The water molecules attached to Cu1 and Cu2 as well as the electron lone-pairs of the selenium(IV) atoms protrude into the free space of this network (Fig. 2).

The basic features of the structure could also be described as the assemblage of linear chains of Cu and Se centres leading to 4-membered and 8-membered rings that interconnect by edge-sharing into two similar wavy layer packings extending along [011] and [011], respectively. Such layers intersect at the Cu(1) sites, eventually forming a rhombus-like 16-membered ring channel system extending along the a axis with the biggest length of approximately 14.0 Å and the smallest length of 5.3 Å (Fig.3).

The Na+ counter cations are coordinated by seven oxygen atoms and occupy the central space of the 16-membered ring polyhedral channels to keep the structural stability and satisfy the charge balance. An intricate network of O—H···O hydrogen bonds further consolidates the three-dimensional structure (Table 2).

Related literature top

For the structures of other hydrous copper(II) selenates(IV) or selenates(VI), see: Asai & Kiriyama (1973), Giester (1991); Iskhakova & Kozlova (1995).

Experimental top

The title compound was synthesized under hydrothermal conditions. A mixture of Na2SeO3 and CuSO4.5H2O in a molar ratio of 1:1 was placed in a Teflon-lined stainless steel autoclave and heated to 443 K for 5 d, cooled at 2 K/h to 373 K, and finally cooled to room temperature. Light blue crystals with a rod-like habit were obtained. Cu, Se and Na contents were analyzed using ICP-AES (Varian Vista, radial observation): Obs./calc. mass%: Cu, 23.33/23.91; Se, 38.70/39.23; Na, 5.63/5.42.

Refinement top

Charge balance considerations and bond valence sum (BVS) calculations indicate that atoms O5 and O6 belong to water molecules. For the metal atoms, the oxidation states of +2 for Cu ions (BVS Cu1: +2.05 and Cu2: +2.01), +4 for the Se ions (BVS Se1: +4.01 and Se2: +4.06) and +1 for the Na ions (BVS Na1: +1.02) were confirmed. The hydrogen atoms of the water molecules were located from difference Fourier maps and were refined with distance restraints of d(O—H) = 0.80 (8)–0.89 (8) Å and a common Uiso parameter of 0.05 Å2.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Crystal Impact, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The coordination environment of copper and selenium atoms with anisotropic thermal ellipsoids drawn at the 60% probability level. H atoms are draw as small spheres of arbitrary radius. [Symmetry codes: (i) -x, -y, -z; (ii) -x - 1, y - 1/2, -z + 1/2; (iii) x + 1, y, z; (iv) x - 1, y, z).]
[Figure 2] Fig. 2. The 16-membered polyhedral ring channels of (I), filled with Na+ counter cations.
[Figure 3] Fig. 3. Schematic representation of the formation of the anionic framework structure of (I). (a): The wavy layer built from an edge-sharing linear chain by corner-sharing 4-membered rings and ladders by edge-sharing 8-membered rings; (b): The wavy layers intersecting each other with an approximate angle of 110° to the entire three-dimensional open-framework. (Black spheres: Cu atoms; white spheres: Se atoms).
disodium tricopper(II) tetrakis[selenate(IV)] tetrahydrate top
Crystal data top
Na2Cu3(SeO3)4(H2O)4F(000) = 762
Mr = 816.50Dx = 3.661 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 986 reflections
a = 5.2218 (5) Åθ = 2.6–22.8°
b = 8.9863 (6) ŵ = 14.24 mm1
c = 15.7960 (11) ÅT = 296 K
β = 92.071 (4)°Rod, light blue
V = 740.74 (10) Å30.15 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2142 independent reflections
Radiation source: fine-focus sealed tube2065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 77
Tmin = 0.204, Tmax = 0.250k = 1212
6010 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0202P)2 + 3.7977P]
where P = (Fo2 + 2Fc2)/3
2142 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
Na2Cu3(SeO3)4(H2O)4V = 740.74 (10) Å3
Mr = 816.50Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.2218 (5) ŵ = 14.24 mm1
b = 8.9863 (6) ÅT = 296 K
c = 15.7960 (11) Å0.15 × 0.10 × 0.10 mm
β = 92.071 (4)°
Data collection top
Bruker SMART CCD
diffractometer
2142 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2065 reflections with I > 2σ(I)
Tmin = 0.204, Tmax = 0.250Rint = 0.027
6010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.77 e Å3
2142 reflectionsΔρmin = 1.02 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.20254 (7)0.28287 (4)0.09687 (2)0.01090 (10)
Se20.79415 (7)0.53958 (5)0.27304 (2)0.01476 (11)
Cu10.00000.00000.00000.01381 (14)
Cu20.29891 (8)0.42910 (6)0.17116 (3)0.01266 (11)
O11.0733 (5)0.4403 (4)0.27181 (18)0.0207 (6)
O20.0088 (5)0.4276 (3)0.09497 (18)0.0153 (5)
O30.5831 (5)0.4016 (3)0.24757 (18)0.0165 (5)
O40.1289 (6)0.2058 (3)0.00011 (18)0.0166 (5)
O50.3653 (7)0.6725 (4)0.1392 (2)0.0209 (6)
O60.2781 (6)0.0756 (4)0.07804 (19)0.0199 (6)
O70.4702 (5)0.3793 (3)0.07309 (17)0.0149 (5)
O80.7371 (6)0.5600 (4)0.3773 (2)0.0272 (7)
Na10.7415 (3)0.3619 (2)0.04070 (11)0.0226 (4)
H10.277 (15)0.707 (9)0.104 (5)0.050*
H20.372 (14)0.748 (9)0.174 (5)0.050*
H40.226 (15)0.063 (9)0.131 (5)0.050*
H30.437 (15)0.049 (9)0.088 (5)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01040 (17)0.01286 (18)0.00949 (17)0.00189 (12)0.00133 (12)0.00064 (12)
Se20.01172 (18)0.0176 (2)0.01500 (18)0.00083 (13)0.00180 (13)0.00071 (14)
Cu10.0139 (3)0.0124 (3)0.0149 (3)0.0023 (2)0.0030 (2)0.0004 (2)
Cu20.0085 (2)0.0195 (2)0.0101 (2)0.00022 (17)0.00143 (15)0.00087 (17)
O10.0097 (12)0.0415 (19)0.0110 (12)0.0042 (12)0.0007 (10)0.0034 (12)
O20.0107 (12)0.0208 (14)0.0146 (12)0.0036 (10)0.0042 (10)0.0019 (11)
O30.0137 (12)0.0207 (14)0.0152 (12)0.0002 (11)0.0044 (10)0.0009 (11)
O40.0211 (14)0.0166 (13)0.0121 (12)0.0080 (11)0.0015 (10)0.0022 (10)
O50.0298 (16)0.0117 (14)0.0215 (15)0.0011 (12)0.0048 (13)0.0013 (11)
O60.0177 (14)0.0280 (17)0.0138 (13)0.0011 (12)0.0030 (11)0.0043 (12)
O70.0099 (11)0.0215 (14)0.0135 (12)0.0054 (10)0.0010 (9)0.0021 (11)
O80.0190 (14)0.045 (2)0.0176 (14)0.0028 (14)0.0012 (12)0.0149 (14)
Na10.0193 (8)0.0307 (10)0.0177 (8)0.0015 (7)0.0015 (6)0.0005 (7)
Geometric parameters (Å, º) top
Se1—O71.698 (3)Cu2—O1iii1.947 (3)
Se1—O21.705 (3)Cu2—O31.962 (3)
Se1—O41.709 (3)Cu2—O21.968 (3)
Se2—O81.673 (3)Cu2—O7iv1.980 (3)
Se2—O11.708 (3)Cu2—O52.268 (3)
Se2—O31.717 (3)Na1—O72.333 (4)
Cu1—O41.968 (3)Na1—O5v2.482 (4)
Cu1—O4i1.968 (3)Na1—O2vi2.519 (4)
Cu1—O61.990 (3)Na1—O4iii2.526 (4)
Cu1—O6i1.990 (3)Na1—O2iii2.537 (3)
Cu1—O8ii2.475 (3)Na1—O7vi2.618 (4)
Cu1—O8ii2.475 (3)Na1—O6vii2.641 (4)
O7—Se1—O298.30 (14)Cu2—O5—H2129 (5)
O7—Se1—O499.75 (13)Na1v—O5—H2116 (5)
O2—Se1—O499.71 (14)H1—O5—H2100 (7)
O8—Se2—O1100.95 (16)Cu1—O6—Na1vii99.94 (13)
O8—Se2—O3102.54 (16)Cu1—O6—H4107 (5)
O1—Se2—O3100.08 (15)Na1vii—O6—H4109 (5)
O4—Cu1—O4i180.00 (6)Cu1—O6—H3133 (5)
O4—Cu1—O694.50 (13)Na1vii—O6—H3110 (5)
O4i—Cu1—O685.50 (13)H4—O6—H397 (7)
O4—Cu1—O6i85.50 (13)Se1—O7—Cu2iii115.16 (15)
O4i—Cu1—O6i94.50 (13)Se1—O7—Na1131.60 (16)
O6—Cu1—O6i180.00 (14)Cu2iii—O7—Na1104.37 (12)
O1iii—Cu2—O387.30 (12)Se1—O7—Na1vi98.71 (13)
O1iii—Cu2—O292.48 (12)Cu2iii—O7—Na1vi101.13 (12)
O3—Cu2—O2172.34 (13)Na1—O7—Na1vi99.95 (12)
O1iii—Cu2—O7iv169.80 (14)O7—Na1—O5v90.14 (12)
O3—Cu2—O7iv90.00 (12)O7—Na1—O2vi124.83 (13)
O2—Cu2—O7iv88.88 (11)O5v—Na1—O2vi108.41 (12)
O1iii—Cu2—O5102.39 (14)O7—Na1—O4iii110.09 (12)
O3—Cu2—O598.36 (13)O5v—Na1—O4iii134.38 (13)
O2—Cu2—O589.17 (12)O2vi—Na1—O4iii93.18 (11)
O7iv—Cu2—O587.73 (12)O7—Na1—O2iii69.01 (10)
Se2—O1—Cu2iv121.82 (17)O5v—Na1—O2iii158.39 (13)
Se1—O2—Cu2120.42 (16)O2vi—Na1—O2iii80.72 (11)
Se1—O2—Na1vi102.26 (13)O4iii—Na1—O2iii62.06 (10)
Cu2—O2—Na1vi130.61 (15)O7—Na1—O7vi80.06 (12)
Se1—O2—Na1iv98.62 (14)O5v—Na1—O7vi70.66 (11)
Cu2—O2—Na1iv97.75 (12)O2vi—Na1—O7vi60.11 (10)
Na1vi—O2—Na1iv99.28 (11)O4iii—Na1—O7vi150.69 (12)
Se2—O3—Cu2124.02 (17)O2iii—Na1—O7vi99.14 (11)
Se1—O4—Cu1116.58 (15)O7—Na1—O6vii102.55 (12)
Se1—O4—Na1iv98.94 (14)O5v—Na1—O6vii73.44 (11)
Cu1—O4—Na1iv104.54 (13)O2vi—Na1—O6vii132.30 (12)
Cu2—O5—Na1v97.49 (13)O4iii—Na1—O6vii62.63 (11)
Cu2—O5—H1116 (6)O2iii—Na1—O6vii115.47 (12)
Na1v—O5—H194 (5)O7vi—Na1—O6vii144.02 (11)
Symmetry codes: (i) x, y, z; (ii) x1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O4v0.80 (8)2.00 (8)2.786 (4)168 (7)
O5—H2···O3viii0.87 (8)1.88 (8)2.746 (4)174 (7)
O6—H3···O8ix0.87 (8)1.91 (8)2.758 (5)163 (7)
O6—H4···O1ii0.89 (8)1.76 (8)2.641 (4)169 (8)
Symmetry codes: (ii) x1, y1/2, z+1/2; (v) x, y+1, z; (viii) x1, y+1/2, z+1/2; (ix) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaNa2Cu3(SeO3)4(H2O)4
Mr816.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.2218 (5), 8.9863 (6), 15.7960 (11)
β (°) 92.071 (4)
V3)740.74 (10)
Z2
Radiation typeMo Kα
µ (mm1)14.24
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.204, 0.250
No. of measured, independent and
observed [I > 2σ(I)] reflections
6010, 2142, 2065
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.068, 1.12
No. of reflections2142
No. of parameters115
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 1.02

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Crystal Impact, 2004), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Se1—O71.698 (3)Cu1—O61.990 (3)
Se1—O21.705 (3)Cu1—O8i2.475 (3)
Se1—O41.709 (3)Cu2—O1ii1.947 (3)
Se2—O81.673 (3)Cu2—O31.962 (3)
Se2—O11.708 (3)Cu2—O21.968 (3)
Se2—O31.717 (3)Cu2—O7iii1.980 (3)
Cu1—O41.968 (3)Cu2—O52.268 (3)
Symmetry codes: (i) x1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O4iv0.80 (8)2.00 (8)2.786 (4)168 (7)
O5—H2···O3v0.87 (8)1.88 (8)2.746 (4)174 (7)
O6—H3···O8vi0.87 (8)1.91 (8)2.758 (5)163 (7)
O6—H4···O1i0.89 (8)1.76 (8)2.641 (4)169 (8)
Symmetry codes: (i) x1, y1/2, z+1/2; (iv) x, y+1, z; (v) x1, y+1/2, z+1/2; (vi) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the opening project of the State Key Laboratory of High Performance Ceramics and Superfine Microstructure (grant No. SKL200706SIC).

References

First citationAsai, T. & Kiriyama, R. (1973). Bull. Chem. Soc. Jpn, 46, 2395–2401.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystal Impact (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGiester, G. (1991). Monatsh. Chem. 122, 229–234.  CrossRef CAS Web of Science Google Scholar
First citationIskhakova, L. D. & Kozlova, N. P. (1995). Kristallografiya, 40, 635–638.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds