organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Bis(3-meth­oxy­benz­yl)-1,1′-ethyl­enediimidazolium dibromide

aNational Changhua University of Education, Department of Chemistry, Changhua 50058, Taiwan
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 30 September 2008; accepted 3 October 2008; online 9 October 2008)

In the title compound, C24H28N4O22+·2Br, the imidazolium cation is located on an inversion centre. The two imidazole rings are parallel to each other, whereas the imidazole and benzene rings make a dihedral angle of 77.25 (16)°. Non­classical inter­molecular C—H⋯Br hydrogen bonds link the imidazolium cations and the bromide anions into a three-dimensional network.

Related literature

For the structure of 1,1′-bis­(3-methoxy­benz­yl)-3,3′-methyl­enediimidazolium dibromide, see: Lee & Chiu (2004[Lee, H. M. & Chiu, P.-L. (2004). Acta Cryst. E60, ol385-ol386.]). For the structures of other related bis­(imidazolium) salts, see: Cheng et al. (2006[Cheng, P.-Y., Chen, C.-Y. & Lee, H. M. (2006). Acta Cryst. E62, o5850-o5851.]); Lee et al. (2004[Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807-5825.], 2007[Lee, H. M., Chen, C.-Y., Chen, W.-L. & Lin, H.-C. (2007). Acta Cryst. E63, o315-o316.]). For a review of N-heterocyclic carbenes, see: Hillier et al. (2002[Hillier, A. C., Grasa, G. A., Viciu, M. S., Lee, H. M., Yang, C. & Nolan, S. P. (2002). J. Organomet. Chem. 653, 69-82.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28N4O22+·2Br

  • Mr = 564.32

  • Monoclinic, P 21 /c

  • a = 18.340 (6) Å

  • b = 5.3566 (17) Å

  • c = 12.340 (4) Å

  • β = 91.491 (9)°

  • V = 1211.9 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.37 mm−1

  • T = 298 (2) K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.366, Tmax = 0.600

  • 6855 measured reflections

  • 2609 independent reflections

  • 1838 reflections with I > 2σ

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.143

  • S = 1.00

  • 2609 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Br1i 0.93 2.77 3.657 (4) 161
C3—H3A⋯Br1ii 0.93 2.91 3.729 (4) 148
C4—H4B⋯Br1iii 0.97 2.85 3.669 (4) 143
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decade, N-heterocyclic carbenes (NHCs) and their palladium complexes have attracted much interest due to their catalytic activities in C—C coupling reactions (Hillier et al., 2002). The structure of 1,1'-bis(3-methoxybenzyl)-3,3'-methylenediimidazolium dibromide has already been reported (Lee & Chiu, 2004). The structures of other related bis(imidazolium) salts have also been reported (Cheng et al., 2006; Lee et al., 2007).

One of the common methods for the preparation of palladium NHC complexes is a one-pot reaction between an imidazolium salt and a palladium precursor in the presence of base (Lee et al., 2004). By this method, we prepared a palladium bis(NHC) complex from the title compound. Here, we report the crystal structure of the title compound.

The structure of the title compound is shown in Fig. 1. The bis(imidazolium) dication is located on an inversion center, with the two imidazole rings parallel to each other. The imidazole and benzene rings make a dihedral angle of 77.25 (16)°. The bromide anions are involved in intermolecular hydrogen bonds of the type C—H···Br with the imidazolium cations, forming a three-dimensional hydrogen-bonded network (Fig. 2 and Table 1).

Related literature top

For the structure of 1,1'-bis(3-methoxybenzyl)-3,3'-methylenediimidazolium dibromide see: Lee & Chiu (2004). For the structures of other related bis(imidazolium) salts, see: Cheng et al. (2006); Lee et al. (2004); Lee et al. (2007). For a review of N-heterocyclic carbenes, see: Hillier et al. (2002)

Experimental top

The compound was prepared according to the literature procedure (Lee et al., 2004). Suitable crystals were obtained by slow diffusion of diethyl ether into a DMF solution of the compound at room temperature. The average dimensions of the colorless, rod-like crystals are about 0.35 x 0.20 x 0.20 mm.

Refinement top

All hydrogen atoms could have been located in the difference Fourier map; nevertheless, they were all positioned geometrically and refined as riding atoms, with Caryl—H = 0.93, Cmethyl —H = 0.96, Cmethylene—H = 0.97 Å; Uiso(H) = 1.5Ueq(C) for the methyl H atoms and Uiso(H) = 1.2Ueq(C) for all the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The H atoms are depicted as circles of arbitrary radius. The unlabelled atoms of the imidazolium cation are related to the labelled ones by 3/2 - x, 3/2 - y, -z; for the anion, the symmetry operation for Br1 is 1 - x + 1, y, 1/2 - z.
[Figure 2] Fig. 2. A view of the crystal packing along the b axis. Hydrogen bonds are shown as dashed lines.
3,3'-Bis(3-methoxybenzyl)-1,1'-ethylenediimidazolium dibromide top
Crystal data top
C24H28N4O22+·2BrF(000) = 572
Mr = 564.32Dx = 1.546 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1952 reflections
a = 18.340 (6) Åθ = 3.3–26.3°
b = 5.3566 (17) ŵ = 3.37 mm1
c = 12.340 (4) ÅT = 298 K
β = 91.491 (9)°Rod, white
V = 1211.9 (7) Å30.35 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
2609 independent reflections
Radiation source: fine-focus sealed tube1838 reflections with I > 2σ
Graphite monochromatorRint = 0.050
ω scansθmax = 27.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1423
Tmin = 0.366, Tmax = 0.600k = 66
6855 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: difference Fourier map
wR(F2) = 0.143H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.0975P]
where P = (Fo2 + 2Fc2)/3
2609 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 1.24 e Å3
Crystal data top
C24H28N4O22+·2BrV = 1211.9 (7) Å3
Mr = 564.32Z = 2
Monoclinic, P21/cMo Kα radiation
a = 18.340 (6) ŵ = 3.37 mm1
b = 5.3566 (17) ÅT = 298 K
c = 12.340 (4) Å0.35 × 0.20 × 0.15 mm
β = 91.491 (9)°
Data collection top
Bruker SMART APEXII
diffractometer
2609 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1838 reflections with I > 2σ
Tmin = 0.366, Tmax = 0.600Rint = 0.050
6855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.71 e Å3
2609 reflectionsΔρmin = 1.24 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.43660 (17)0.3916 (6)0.1046 (3)0.0292 (7)
N20.33797 (15)0.2134 (6)0.1563 (2)0.0272 (7)
O10.09061 (18)0.8336 (7)0.1978 (3)0.0551 (9)
Br10.34564 (2)0.59558 (9)0.39315 (4)0.0443 (2)
C10.3639 (2)0.4034 (7)0.1010 (3)0.0318 (9)
H1A0.33610.52520.06550.038*
C20.3950 (2)0.0735 (7)0.1966 (3)0.0305 (9)
H2A0.39170.07020.23850.037*
C30.4573 (2)0.1845 (8)0.1637 (3)0.0331 (9)
H3A0.50480.13090.17830.040*
C40.4858 (2)0.5616 (7)0.0499 (3)0.0301 (9)
H4A0.52620.60560.09840.036*
H4B0.46000.71360.02990.036*
C50.2612 (2)0.1516 (9)0.1779 (4)0.0478 (13)
H5A0.25380.15730.25540.057*
H5B0.25110.01730.15340.057*
C60.2085 (2)0.3286 (8)0.1218 (4)0.0353 (10)
C70.1942 (2)0.3068 (10)0.0106 (4)0.0504 (12)
H7A0.21720.18540.03000.060*
C80.1452 (3)0.4690 (11)0.0375 (4)0.0549 (13)
H8A0.13600.45780.11190.066*
C90.1094 (2)0.6460 (9)0.0203 (4)0.0470 (12)
H9A0.07630.75300.01420.056*
C100.1230 (2)0.6648 (8)0.1315 (4)0.0375 (10)
C110.1735 (2)0.5067 (9)0.1817 (4)0.0361 (9)
H11A0.18350.52110.25570.043*
C120.0360 (3)0.9930 (12)0.1522 (5)0.0641 (15)
H12A0.01821.10190.20730.096*
H12B0.00350.89400.12310.096*
H12C0.05641.09090.09530.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0268 (16)0.0313 (18)0.0295 (17)0.0003 (13)0.0001 (13)0.0021 (14)
N20.0241 (16)0.0276 (18)0.0298 (17)0.0021 (13)0.0011 (13)0.0040 (14)
O10.053 (2)0.053 (2)0.060 (2)0.0171 (16)0.0040 (16)0.0099 (17)
Br10.0467 (3)0.0480 (3)0.0380 (3)0.0161 (2)0.00102 (19)0.0012 (2)
C10.030 (2)0.030 (2)0.036 (2)0.0073 (16)0.0012 (16)0.0039 (17)
C20.029 (2)0.030 (2)0.032 (2)0.0002 (16)0.0018 (16)0.0090 (17)
C30.029 (2)0.036 (2)0.034 (2)0.0047 (17)0.0043 (16)0.0071 (18)
C40.031 (2)0.031 (2)0.028 (2)0.0029 (16)0.0002 (16)0.0006 (16)
C50.021 (2)0.051 (3)0.071 (3)0.0005 (19)0.004 (2)0.024 (2)
C60.0225 (19)0.037 (2)0.047 (2)0.0039 (17)0.0012 (17)0.0074 (19)
C70.038 (3)0.059 (3)0.055 (3)0.008 (2)0.007 (2)0.008 (3)
C80.054 (3)0.075 (4)0.036 (3)0.009 (3)0.006 (2)0.002 (2)
C90.036 (2)0.055 (3)0.049 (3)0.011 (2)0.006 (2)0.010 (2)
C100.029 (2)0.037 (2)0.046 (3)0.0011 (18)0.0003 (18)0.0017 (19)
C110.028 (2)0.043 (2)0.038 (2)0.0042 (19)0.0045 (17)0.003 (2)
C120.052 (3)0.056 (3)0.084 (4)0.020 (3)0.003 (3)0.006 (3)
Geometric parameters (Å, º) top
N1—C11.334 (5)C5—H5A0.9700
N1—C31.375 (5)C5—H5B0.9700
N1—C41.460 (5)C6—C111.376 (6)
N2—C11.321 (5)C6—C71.396 (6)
N2—C21.369 (5)C7—C81.374 (7)
N2—C51.477 (5)C7—H7A0.9300
O1—C101.366 (5)C8—C91.365 (7)
O1—C121.422 (6)C8—H8A0.9300
C1—H1A0.9300C9—C101.391 (6)
C2—C31.360 (6)C9—H9A0.9300
C2—H2A0.9300C10—C111.389 (6)
C3—H3A0.9300C11—H11A0.9300
C4—C4i1.502 (7)C12—H12A0.9600
C4—H4A0.9700C12—H12B0.9600
C4—H4B0.9700C12—H12C0.9600
C5—C61.509 (6)
C1—N1—C3108.6 (3)C6—C5—H5B109.2
C1—N1—C4125.7 (3)H5A—C5—H5B107.9
C3—N1—C4125.6 (3)C11—C6—C7120.5 (4)
C1—N2—C2109.1 (3)C11—C6—C5119.5 (4)
C1—N2—C5128.6 (3)C7—C6—C5120.0 (4)
C2—N2—C5122.3 (3)C8—C7—C6118.5 (5)
C10—O1—C12118.2 (4)C8—C7—H7A120.8
N2—C1—N1108.6 (3)C6—C7—H7A120.8
N2—C1—H1A125.7C9—C8—C7122.1 (5)
N1—C1—H1A125.7C9—C8—H8A119.0
C3—C2—N2107.0 (3)C7—C8—H8A119.0
C3—C2—H2A126.5C8—C9—C10119.4 (4)
N2—C2—H2A126.5C8—C9—H9A120.3
C2—C3—N1106.7 (3)C10—C9—H9A120.3
C2—C3—H3A126.6O1—C10—C11115.5 (4)
N1—C3—H3A126.6O1—C10—C9124.7 (4)
N1—C4—C4i109.6 (4)C11—C10—C9119.7 (4)
N1—C4—H4A109.7C6—C11—C10119.9 (4)
C4i—C4—H4A109.7C6—C11—H11A120.1
N1—C4—H4B109.7C10—C11—H11A120.1
C4i—C4—H4B109.7O1—C12—H12A109.5
H4A—C4—H4B108.2O1—C12—H12B109.5
N2—C5—C6112.3 (3)H12A—C12—H12B109.5
N2—C5—H5A109.2O1—C12—H12C109.5
C6—C5—H5A109.2H12A—C12—H12C109.5
N2—C5—H5B109.2H12B—C12—H12C109.5
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Br1ii0.932.773.657 (4)161
C3—H3A···Br1iii0.932.913.729 (4)148
C4—H4B···Br1iv0.972.853.669 (4)143
Symmetry codes: (ii) x, y1, z; (iii) x+1, y1/2, z+1/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC24H28N4O22+·2Br
Mr564.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.340 (6), 5.3566 (17), 12.340 (4)
β (°) 91.491 (9)
V3)1211.9 (7)
Z2
Radiation typeMo Kα
µ (mm1)3.37
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.366, 0.600
No. of measured, independent and
observed (I > 2σ) reflections
6855, 2609, 1838
Rint0.050
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.143, 1.00
No. of reflections2609
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 1.24

Computer programs: APEX2 (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Br1i0.932.773.657 (4)160.9
C3—H3A···Br1ii0.932.913.729 (4)147.8
C4—H4B···Br1iii0.972.853.669 (4)143.0
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the National Science Council of Taiwan for financial support of this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, P.-Y., Chen, C.-Y. & Lee, H. M. (2006). Acta Cryst. E62, o5850–o5851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHillier, A. C., Grasa, G. A., Viciu, M. S., Lee, H. M., Yang, C. & Nolan, S. P. (2002). J. Organomet. Chem. 653, 69–82.  Web of Science CrossRef CAS Google Scholar
First citationLee, H. M., Chen, C.-Y., Chen, W.-L. & Lin, H.-C. (2007). Acta Cryst. E63, o315–o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. M. & Chiu, P.-L. (2004). Acta Cryst. E60, ol385–ol386.  Google Scholar
First citationLee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807–5825.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds