metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{[2-(8-quinol­yl­oxy)­acetato-κ3N,O1,O2]copper(II)}

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wgzhang@scnu.edu.cn

(Received 8 September 2008; accepted 30 September 2008; online 18 October 2008)

The title compound, [Cu2(C11H8NO3)2Cl2], is a bicopper(II) complex. Each CuII ion is five-coordinated by two O atoms and one N atom from the (8-quinol­yloxy)acetate ligand, and by two μ2-chloride ligands, thus exhibiting a distorted square-pyramidal CuCl2NO2 coordination environment. Each (8-quinol­yloxy)acetate anion acts as a tridentate chelating ligand. In the crystal structure, adjacent quinolyl rings are involved in strong ππ stacking inter­actions, with inter­planar distances of 3.549 (5) and 3.763 (5) Å, thereby forming a two-dimensional planar network perpendicular to the ab plane. Furthermore, a weak inter­action [2.750 (4) Å] is observed within these planes between one CuII ion and a carboxyl­ate O atom from a ligand in an adjacent mol­ecule, which also contributes to the stability of the structure.

Related literature

For general background, see: Hong et al. (2006[Hong, X. L., Li, Y. Z., Hu, H. M., Pan, Y., Bai, J. F. & You, X. Z. (2006). Cryst. Growth Des. 6, 1221-1226.]); Sudik et al. (2005[Sudik, A. C., Millward, A. R., Ockwig, N. W., Cote, A. P., Kim, J. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 7110-7118.]); Dong et al. (2007[Dong, Y. B., Jiang, Y. Y., Li, J., Ma, J. P., Liu, F. L., Tang, B., Huang, R. Q. & Batten, S. R. (2007). J. Am. Chem. Soc. 129, 4520-4521.]); Tong et al., 1999[Tong, M. L., Lee, H. K., Chen, X. M., Huang, R. B. & Mak, T. C. W. (1999). J. Chem. Soc. Dalton Trans. pp. 3657-3659.]. For related structures, see: Wang & Lu (2004[Wang, Y.-H. & Lu, F. (2004). Acta Cryst. C60, m557-m559.]); Wang et al. (2005[Wang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct. 752, 104-109.]). Koelsch (1931[Koelsch, C. F. (1931). J. Am. Chem. Soc. 53, 304-305.]) reports the synthesis of the (8-quinol­yloxy)acetate ligand.

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C11H8NO3)2Cl2]

  • Mr = 602.35

  • Monoclinic, P 21 /c

  • a = 8.3796 (17) Å

  • b = 19.195 (4) Å

  • c = 13.392 (3) Å

  • β = 98.85 (3)°

  • V = 2128.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 298 (2) K

  • 0.36 × 0.30 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.462, Tmax = 0.582

  • 11625 measured reflections

  • 4179 independent reflections

  • 2737 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.087

  • S = 1.01

  • 4179 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal–polycarboxylate coordination polymers have attracted considerable attention in past decades, owing to their fascinating architectures and potential applications as new materials in gas absorption, catalysis and luminescence (Dong et al., 2007; Sudik et al., 2005). However, only a limited amount of work has been reported on the use of benzene polycarboxylate ligands that combine characteristics of both flexibility and rigidity (Hong et al., 2006; Wang & Lu, 2004; Wang et al., 2005).

Herein, we report the crystal structure of the title compound, (I). A perspective view of the binuclear copper complex (I), showing the atomic numbering scheme, is depicted in Fig. 1. The coordination geometry around the CuII ion may be described as a slightly distorted square pyramid, the basal plane being defined by one N atom, two O atoms from (8-quinolyloxy)acetate and one chloride anion; the apical position is occupied by another bridging chloride anion from the adjacent copper(II) unit, this atom being coordinated at a longer distance [Cu1—Cl2 = 2.823 (14) Å and Cu2—Cl1 = 2.776 (12) Å]. Thus, two chlorides form bi-bridges between two CuII ions, which link two CuII units to generate a binuclear complex. Each (8-quinolyloxy)acetate molecule acts as a tridentate chelating ligand. The inequivalence of the carboxylate C—O distances may be correlated with their involvement in bonding with the CuII centres.

In the crystal structure, adjacent quinolinyl rings are involved in strong π-π stacking attractions by partial overlapping of π-electron densities (Tong et al., 1999). The centroid-centroid separation between rings A (atoms N1/C1—C4/C9) and Bi [atoms C15—C20; symmetry code: (i): - x, 1/2 + y, 1/2 - z] is 3.763 (5) Å, and the other between rings C (atoms C4—C9) and Dj [atoms N2/C12—C15/C20; symmetry code: (j): 1- x, 1/2 + y, 1/2 - z] is 3.549 (5) Å. Considering these π-π intermolecular attractions, they imply the formation of a two-dimensional planar network perpendicular to the ab plane (Fig. 2). Furthermore, a weak interaction [2.750 (4) Å] is observed between the atom Cu1 and carboxylate oxygen atom O6k [symmetry code: (k): -1+x,y,z] from the ligand in adjacent CuII unit, thus contributing to the two-dimensional network's stability (Fig. 2).

Related literature top

For general background, see: Hong et al. (2006); Sudik et al. (2005); Dong et al. (2007); Tong et al., 1999. For related structures, see: Wang & Lu (2004); Wang et al. (2005). Koelsch (1931) reports the synthesis of the (8-quinolyloxy)acetate ligand.

Experimental top

The ligand quinolin-8-yloxyacetic acid was prepared according to the general procedure reported by Koelsch (1931). An aqueous solution of CuCl2.2 H2O (0.057 g, 0.33 mmol) was added dropwise to the mixture of Y(NO3)3.6 H2O (0.064 g, 0.17 mmol) and quinolin-8-yloxyacetic acid (0.103 g, 0.50 mmol) in aqueous solution at 343 K, and the pH value was adjusted to be about 5 with NaOH. After stirring for 0.5 h, the resulting green solution was filtered. Slow evaporation from the filtrate for several weeks yielded green block-like crystals suitable for X-ray analysis. IR (KBr pellet, cm-1): 3051, 1650, 1628, 1505, 1429, 1379, 1317, 1263, 1115, 837, 772.

Refinement top

All the H atoms were placed in calculated positions and were allowed to ride on their parent atoms; C—H = 0.93 (aromatic C—H) and 0.97 (methylene) Å and Uiso(H) = 1.2 Ueq of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of (I), with displacement ellipsoids at the 50% probability level. All H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram of (I), viewed perpendicular to the ab plane, showing the two-dimensional planar network generated by the π-π and weak Cu···O interactions. All H atoms have been omitted for clarity. [Symmetry codes: (i): -x, 1/2 + y, 1/2 - z; (j): 1 - x, 1/2 + y, 1/2 - z].
Di-µ-chlorido-bis{[2-(8-quinolyloxy)acetato- κ3N,O1,O2]copper(II)} top
Crystal data top
[Cu2(C11H8NO3)2Cl2]F(000) = 1208
Mr = 602.35Dx = 1.880 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2969 reflections
a = 8.3796 (17) Åθ = 1.9–27.8°
b = 19.195 (4) ŵ = 2.30 mm1
c = 13.392 (3) ÅT = 298 K
β = 98.85 (3)°Block, green
V = 2128.4 (8) Å30.36 × 0.30 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4179 independent reflections
Radiation source: fine-focus sealed tube2737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.462, Tmax = 0.582k = 1923
11625 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0256P)2 + 1.1172P]
where P = (Fo2 + 2Fc2)/3
4179 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu2(C11H8NO3)2Cl2]V = 2128.4 (8) Å3
Mr = 602.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3796 (17) ŵ = 2.30 mm1
b = 19.195 (4) ÅT = 298 K
c = 13.392 (3) Å0.36 × 0.30 × 0.24 mm
β = 98.85 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4179 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2737 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 0.582Rint = 0.049
11625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
4179 reflectionsΔρmin = 0.47 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8714 (5)0.0068 (2)0.8758 (3)0.0368 (10)
H10.83660.02650.91810.044*
C20.8505 (5)0.0778 (2)0.8966 (3)0.0432 (12)
H20.80540.09080.95310.052*
C30.8959 (5)0.1275 (2)0.8345 (3)0.0428 (12)
H30.87990.17440.84730.051*
C40.9673 (5)0.10730 (19)0.7508 (3)0.0325 (10)
C51.0242 (5)0.1536 (2)0.6825 (4)0.0409 (12)
H51.00990.20120.69000.049*
C61.0990 (5)0.1304 (2)0.6066 (4)0.0434 (12)
H61.13560.16240.56310.052*
C71.1226 (5)0.05832 (19)0.5921 (3)0.0345 (10)
H71.17600.04270.54030.041*
C81.0658 (5)0.01268 (18)0.6549 (3)0.0282 (9)
C90.9887 (4)0.03519 (19)0.7356 (3)0.0270 (9)
C101.1952 (5)0.09524 (18)0.6061 (3)0.0322 (10)
H10A1.17370.09260.53290.039*
H10B1.30030.07480.62910.039*
C111.1912 (5)0.17117 (19)0.6411 (3)0.0321 (10)
C120.6792 (5)0.2987 (2)0.6160 (3)0.0381 (11)
H120.72350.26510.57840.046*
C130.6801 (5)0.3683 (2)0.5850 (3)0.0437 (12)
H130.72550.38020.52820.052*
C140.6146 (5)0.4184 (2)0.6376 (3)0.0404 (11)
H140.61330.46460.61630.049*
C150.5487 (5)0.40025 (19)0.7247 (3)0.0302 (10)
C160.4806 (5)0.4478 (2)0.7871 (3)0.0371 (11)
H160.47630.49500.77090.044*
C170.4217 (5)0.4254 (2)0.8700 (3)0.0380 (11)
H170.37930.45780.91050.046*
C180.4230 (5)0.35414 (19)0.8967 (3)0.0340 (10)
H180.38140.33920.95360.041*
C190.4869 (5)0.30816 (18)0.8366 (3)0.0288 (9)
C200.5517 (4)0.32890 (18)0.7511 (3)0.0273 (9)
C210.3712 (5)0.20080 (18)0.8940 (3)0.0307 (10)
H21A0.26810.22190.86770.037*
H21B0.38630.20320.96720.037*
C220.3754 (5)0.1251 (2)0.8592 (3)0.0323 (10)
Cl10.88233 (13)0.17203 (5)0.87627 (8)0.0355 (3)
Cl20.68751 (13)0.12051 (5)0.62854 (8)0.0378 (3)
Cu10.98473 (6)0.11091 (2)0.75955 (4)0.03462 (16)
Cu20.59143 (6)0.18353 (2)0.74655 (4)0.03365 (16)
N10.9383 (4)0.01413 (15)0.7986 (2)0.0284 (8)
N20.6180 (4)0.27902 (15)0.6966 (2)0.0284 (8)
O11.0725 (3)0.05920 (12)0.6493 (2)0.0345 (7)
O21.0939 (3)0.18630 (12)0.7016 (2)0.0350 (7)
O31.2868 (4)0.21096 (14)0.6113 (2)0.0504 (9)
O40.5008 (3)0.23677 (12)0.85579 (19)0.0296 (6)
O50.4801 (3)0.10898 (12)0.8035 (2)0.0369 (7)
O60.2728 (4)0.08555 (14)0.8829 (2)0.0501 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.038 (2)0.040 (3)0.0059 (19)0.018 (2)0.001 (2)
C20.047 (3)0.042 (3)0.043 (3)0.010 (2)0.017 (2)0.015 (2)
C30.045 (3)0.028 (2)0.055 (3)0.005 (2)0.006 (2)0.007 (2)
C40.031 (3)0.025 (2)0.040 (3)0.0021 (17)0.001 (2)0.0057 (19)
C50.042 (3)0.017 (2)0.062 (3)0.0001 (18)0.002 (2)0.002 (2)
C60.048 (3)0.031 (2)0.049 (3)0.009 (2)0.001 (2)0.015 (2)
C70.039 (3)0.032 (2)0.032 (3)0.0041 (18)0.006 (2)0.0038 (19)
C80.029 (2)0.021 (2)0.034 (2)0.0002 (16)0.0036 (19)0.0039 (17)
C90.025 (2)0.026 (2)0.030 (2)0.0031 (16)0.0046 (18)0.0019 (18)
C100.035 (3)0.033 (2)0.032 (2)0.0030 (18)0.0151 (19)0.0014 (19)
C110.034 (3)0.029 (2)0.034 (3)0.0018 (18)0.008 (2)0.0014 (19)
C120.042 (3)0.039 (2)0.036 (3)0.007 (2)0.015 (2)0.004 (2)
C130.054 (3)0.043 (3)0.037 (3)0.009 (2)0.016 (2)0.006 (2)
C140.048 (3)0.031 (2)0.043 (3)0.006 (2)0.009 (2)0.008 (2)
C150.028 (2)0.028 (2)0.033 (3)0.0051 (17)0.0011 (19)0.0008 (18)
C160.040 (3)0.022 (2)0.047 (3)0.0005 (18)0.000 (2)0.004 (2)
C170.042 (3)0.027 (2)0.048 (3)0.0005 (19)0.014 (2)0.009 (2)
C180.038 (3)0.030 (2)0.037 (3)0.0006 (18)0.017 (2)0.0072 (19)
C190.031 (2)0.023 (2)0.032 (2)0.0030 (17)0.0058 (19)0.0014 (18)
C200.028 (2)0.022 (2)0.032 (2)0.0033 (16)0.0042 (18)0.0042 (17)
C210.032 (2)0.028 (2)0.036 (3)0.0038 (17)0.0158 (19)0.0004 (18)
C220.038 (3)0.029 (2)0.030 (3)0.0011 (18)0.005 (2)0.0003 (18)
Cl10.0459 (7)0.0303 (5)0.0342 (6)0.0017 (4)0.0184 (5)0.0031 (4)
Cl20.0448 (7)0.0367 (6)0.0346 (6)0.0054 (5)0.0142 (5)0.0073 (5)
Cu10.0460 (3)0.0222 (3)0.0414 (3)0.0020 (2)0.0248 (2)0.0008 (2)
Cu20.0420 (3)0.0234 (3)0.0405 (3)0.0009 (2)0.0220 (2)0.0033 (2)
N10.0268 (19)0.0278 (17)0.033 (2)0.0023 (14)0.0128 (15)0.0011 (15)
N20.030 (2)0.0251 (17)0.032 (2)0.0029 (14)0.0101 (16)0.0027 (15)
O10.0459 (19)0.0225 (14)0.0404 (18)0.0029 (12)0.0241 (14)0.0024 (12)
O20.0457 (19)0.0259 (14)0.0383 (18)0.0044 (13)0.0220 (14)0.0003 (13)
O30.055 (2)0.0372 (17)0.067 (2)0.0154 (15)0.0353 (18)0.0038 (16)
O40.0359 (17)0.0216 (13)0.0355 (17)0.0016 (11)0.0192 (13)0.0022 (12)
O50.0466 (19)0.0231 (14)0.0464 (19)0.0008 (13)0.0240 (15)0.0021 (13)
O60.055 (2)0.0334 (16)0.070 (2)0.0102 (15)0.0363 (18)0.0018 (16)
Geometric parameters (Å, º) top
C1—N11.312 (5)C14—C151.409 (6)
C1—C21.409 (5)C14—H140.9300
C1—H10.9300C15—C201.414 (5)
C2—C31.357 (6)C15—C161.416 (5)
C2—H20.9300C16—C171.353 (6)
C3—C41.405 (6)C16—H160.9300
C3—H30.9300C17—C181.414 (5)
C4—C51.408 (6)C17—H170.9300
C4—C91.414 (5)C18—C191.359 (5)
C5—C61.349 (6)C18—H180.9300
C5—H50.9300C19—O41.396 (4)
C6—C71.416 (5)C19—C201.398 (5)
C6—H60.9300C20—N21.372 (5)
C7—C81.351 (5)C21—O41.445 (4)
C7—H70.9300C21—C221.528 (5)
C8—O11.383 (4)C21—H21A0.9700
C8—C91.409 (5)C21—H21B0.9700
C9—N11.377 (5)C22—O61.224 (5)
C10—O11.433 (4)C22—O51.274 (5)
C10—C111.533 (5)Cl1—Cu12.2290 (12)
C10—H10A0.9700Cl2—Cu22.2362 (12)
C10—H10B0.9700Cu1—O21.937 (3)
C11—O31.218 (5)Cu1—N11.985 (3)
C11—O21.269 (5)Cu1—O12.011 (3)
C12—N21.320 (5)Cu2—O51.929 (3)
C12—C131.400 (5)Cu2—N21.976 (3)
C12—H120.9300Cu2—O42.026 (3)
C13—C141.357 (6)Cu1—Cl22.8232 (14)
C13—H130.9300Cu2—Cl12.7761 (12)
N1—C1—C2122.2 (4)C17—C16—H16119.6
N1—C1—H1118.9C15—C16—H16119.6
C2—C1—H1118.9C16—C17—C18121.7 (4)
C3—C2—C1120.2 (4)C16—C17—H17119.1
C3—C2—H2119.9C18—C17—H17119.1
C1—C2—H2119.9C19—C18—C17117.8 (4)
C2—C3—C4119.4 (4)C19—C18—H18121.1
C2—C3—H3120.3C17—C18—H18121.1
C4—C3—H3120.3C18—C19—O4123.9 (4)
C3—C4—C5124.9 (4)C18—C19—C20122.6 (4)
C3—C4—C9117.6 (4)O4—C19—C20113.5 (3)
C5—C4—C9117.4 (4)N2—C20—C19118.5 (3)
C6—C5—C4121.6 (4)N2—C20—C15122.4 (4)
C6—C5—H5119.2C19—C20—C15119.1 (4)
C4—C5—H5119.2O4—C21—C22107.0 (3)
C5—C6—C7121.1 (4)O4—C21—H21A110.3
C5—C6—H6119.5C22—C21—H21A110.3
C7—C6—H6119.5O4—C21—H21B110.3
C8—C7—C6118.6 (4)C22—C21—H21B110.3
C8—C7—H7120.7H21A—C21—H21B108.6
C6—C7—H7120.7O6—C22—O5125.1 (4)
C7—C8—O1126.2 (4)O6—C22—C21117.4 (4)
C7—C8—C9121.7 (3)O5—C22—C21117.3 (3)
O1—C8—C9112.0 (3)O2—Cu1—N1158.25 (12)
N1—C9—C8118.6 (3)O2—Cu1—O179.98 (11)
N1—C9—C4121.8 (4)N1—Cu1—O180.80 (12)
C8—C9—C4119.6 (4)O2—Cu1—Cl198.29 (9)
O1—C10—C11106.5 (3)N1—Cu1—Cl1101.28 (10)
O1—C10—H10A110.4O1—Cu1—Cl1177.22 (8)
C11—C10—H10A110.4O5—Cu2—N2155.37 (13)
O1—C10—H10B110.4O5—Cu2—O480.24 (11)
C11—C10—H10B110.4N2—Cu2—O481.42 (12)
H10A—C10—H10B108.6O5—Cu2—Cl297.29 (9)
O3—C11—O2125.9 (4)N2—Cu2—Cl2101.01 (10)
O3—C11—C10116.7 (4)O4—Cu2—Cl2177.52 (8)
O2—C11—C10117.3 (3)C1—N1—C9118.8 (3)
N2—C12—C13122.4 (4)C1—N1—Cu1128.2 (3)
N2—C12—H12118.8C9—N1—Cu1113.0 (2)
C13—C12—H12118.8C12—N2—C20118.4 (3)
C14—C13—C12120.1 (4)C12—N2—Cu2128.4 (3)
C14—C13—H13119.9C20—N2—Cu2113.0 (3)
C12—C13—H13119.9C8—O1—C10122.8 (3)
C13—C14—C15119.7 (4)C8—O1—Cu1115.4 (2)
C13—C14—H14120.2C10—O1—Cu1115.1 (2)
C15—C14—H14120.2C11—O2—Cu1118.3 (2)
C14—C15—C20117.0 (4)C19—O4—C21119.2 (3)
C14—C15—C16125.0 (4)C19—O4—Cu2113.1 (2)
C20—C15—C16118.0 (4)C21—O4—Cu2113.6 (2)
C17—C16—C15120.7 (4)C22—O5—Cu2118.1 (2)
N1—C1—C2—C31.9 (7)O1—Cu1—N1—C1179.2 (4)
C1—C2—C3—C41.5 (7)Cl1—Cu1—N1—C12.7 (4)
C2—C3—C4—C5177.9 (4)O2—Cu1—N1—C927.2 (5)
C2—C3—C4—C90.1 (6)O1—Cu1—N1—C90.9 (3)
C3—C4—C5—C6176.6 (4)Cl1—Cu1—N1—C9179.0 (2)
C9—C4—C5—C61.2 (6)C13—C12—N2—C200.6 (6)
C4—C5—C6—C70.4 (7)C13—C12—N2—Cu2175.1 (3)
C5—C6—C7—C81.2 (6)C19—C20—N2—C12179.9 (4)
C6—C7—C8—O1177.3 (4)C15—C20—N2—C120.8 (6)
C6—C7—C8—C91.9 (6)C19—C20—N2—Cu24.7 (4)
C7—C8—C9—N1178.0 (3)C15—C20—N2—Cu2176.2 (3)
O1—C8—C9—N12.7 (5)O5—Cu2—N2—C12138.4 (4)
C7—C8—C9—C41.0 (6)O4—Cu2—N2—C12179.4 (4)
O1—C8—C9—C4178.2 (3)Cl2—Cu2—N2—C121.1 (4)
C3—C4—C9—N11.6 (6)O5—Cu2—N2—C2036.4 (5)
C5—C4—C9—N1179.5 (3)O4—Cu2—N2—C205.8 (2)
C3—C4—C9—C8177.4 (4)Cl2—Cu2—N2—C20173.7 (2)
C5—C4—C9—C80.5 (6)C7—C8—O1—C1027.5 (6)
O1—C10—C11—O3179.3 (4)C9—C8—O1—C10153.3 (3)
O1—C10—C11—O23.5 (5)C7—C8—O1—Cu1177.4 (3)
N2—C12—C13—C140.8 (7)C9—C8—O1—Cu13.4 (4)
C12—C13—C14—C151.2 (7)C11—C10—O1—C8163.9 (3)
C13—C14—C15—C201.4 (6)C11—C10—O1—Cu113.9 (4)
C13—C14—C15—C16178.5 (4)O2—Cu1—O1—C8167.3 (3)
C14—C15—C16—C17179.3 (4)N1—Cu1—O1—C82.5 (2)
C20—C15—C16—C170.6 (6)O2—Cu1—O1—C1015.1 (2)
C15—C16—C17—C181.1 (6)N1—Cu1—O1—C10154.7 (3)
C16—C17—C18—C190.5 (6)O3—C11—O2—Cu1167.7 (3)
C17—C18—C19—O4177.8 (3)C10—C11—O2—Cu19.2 (5)
C17—C18—C19—C200.6 (6)N1—Cu1—O2—C1114.9 (5)
C18—C19—C20—N2178.1 (4)O1—Cu1—O2—C1113.4 (3)
O4—C19—C20—N20.6 (5)Cl1—Cu1—O2—C11168.8 (3)
C18—C19—C20—C151.0 (6)C18—C19—O4—C2139.6 (5)
O4—C19—C20—C15178.5 (3)C20—C19—O4—C21143.0 (3)
C14—C15—C20—N21.3 (6)C18—C19—O4—Cu2177.1 (3)
C16—C15—C20—N2178.7 (3)C20—C19—O4—Cu25.4 (4)
C14—C15—C20—C19179.6 (4)C22—C21—O4—C19152.5 (3)
C16—C15—C20—C190.4 (5)C22—C21—O4—Cu215.1 (4)
O4—C21—C22—O6179.0 (3)O5—Cu2—O4—C19157.3 (2)
O4—C21—C22—O52.6 (5)N2—Cu2—O4—C196.2 (2)
C2—C1—N1—C90.5 (6)O5—Cu2—O4—C2117.3 (2)
C2—C1—N1—Cu1177.8 (3)N2—Cu2—O4—C21146.2 (3)
C8—C9—N1—C1177.7 (3)O6—C22—O5—Cu2163.8 (3)
C4—C9—N1—C11.3 (6)C21—C22—O5—Cu212.3 (5)
C8—C9—N1—Cu10.7 (4)N2—Cu2—O5—C2225.9 (5)
C4—C9—N1—Cu1179.7 (3)O4—Cu2—O5—C2216.5 (3)
O2—Cu1—N1—C1151.1 (3)Cl2—Cu2—O5—C22163.8 (3)

Experimental details

Crystal data
Chemical formula[Cu2(C11H8NO3)2Cl2]
Mr602.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.3796 (17), 19.195 (4), 13.392 (3)
β (°) 98.85 (3)
V3)2128.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.36 × 0.30 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.462, 0.582
No. of measured, independent and
observed [I > 2σ(I)] reflections
11625, 4179, 2737
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.087, 1.01
No. of reflections4179
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.47

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (grant No. 20771040).

References

First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y. B., Jiang, Y. Y., Li, J., Ma, J. P., Liu, F. L., Tang, B., Huang, R. Q. & Batten, S. R. (2007). J. Am. Chem. Soc. 129, 4520–4521.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHong, X. L., Li, Y. Z., Hu, H. M., Pan, Y., Bai, J. F. & You, X. Z. (2006). Cryst. Growth Des. 6, 1221–1226.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoelsch, C. F. (1931). J. Am. Chem. Soc. 53, 304–305.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudik, A. C., Millward, A. R., Ockwig, N. W., Cote, A. P., Kim, J. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 7110–7118.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTong, M. L., Lee, H. K., Chen, X. M., Huang, R. B. & Mak, T. C. W. (1999). J. Chem. Soc. Dalton Trans. pp. 3657–3659.  Web of Science CSD CrossRef Google Scholar
First citationWang, Y.-H. & Lu, F. (2004). Acta Cryst. C60, m557–m559.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct. 752, 104–109.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds