metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{5,5′-Bis(meth­oxy­carbonyl­meth­­oxy)-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]­diphenolato}copper(II)

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn

(Received 12 September 2008; accepted 13 October 2008; online 18 October 2008)

The title compound, [Cu(C22H22N2O8)], is a tetra­dentate Schiff base complex. The CuII ion has a nearly square-planar geometry, being coordinated by two N atoms and two O atoms. The two chemically equivalent halves of the mol­ecule are crystallographically independent. One of the carboxylic acid methyl ester units is located in the main plane of the mol­ecule and the other is rotated by 65.3 (5)° with respect to this unit. In the crystal structure, there are ππ stacking inter­actions between adjacent six-membered chelate rings, with centroid-to-centroid distances of 3.602 (2) Å.

Related literature

For general background, see: Paschke et al. (2002[Paschke, P., Balkow, D. & Sinn, E. (2002). Inorg. Chem. 41, 1949-1953.]); Blake et al. (1995[Blake, A. B., Chipperfield, J. R., Hussain, W., Paschke, R. & Sinn, E. (1995). Inorg. Chem. 34, 1125-1129.]). For related structures, see: Bbadbhade & Srinivas (1993[Bbadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122-6130.]). Shamim et al. (1988[Shamim, M. T., Ukena, D., Padgett, W. L., Hong, O. & Daly, J. W. (1988). J. Med. Chem. 31, 613-617.]) report the synthesis of the precursor of the organic ligand.

[Scheme 1]

Experimental

Crystal data
  • [Cu(C22H22N2O8)]

  • Mr = 505.96

  • Triclinic, [P \overline 1]

  • a = 9.668 (1) Å

  • b = 10.012 (1) Å

  • c = 11.763 (2) Å

  • α = 85.251 (2)°

  • β = 80.381 (2)°

  • γ = 75.383 (2)°

  • V = 1085.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.677, Tmax = 0.778

  • 6326 measured reflections

  • 4482 independent reflections

  • 3096 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.124

  • S = 1.03

  • 4482 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is a great interest in the use of Schiff base metal complexes as symmetrical and unsymmetrical liquid crystal compounds, because of their ready chemical modifiability (Paschke et al., 2002). Substitution around the aromatic rings can drastically influence the structures and the properties of liquid crystal compounds. Many symmetrically substituted Salen-copper complexes reported are characterized by high melting and clearing temperatures, whereby detailed investigation is difficult because of decomposition after entering the SA phase (Blake et al., 1995). This work was incomplete in lacking direct structural evidence and the absence of ways to lower the melt temperatures. Afterwards, a series of asymmetrically substituted Salen-copper(II) complexes and ways of decreasing the melting temperatures by lateral and unsymmetrical substitution were reported (Paschke et al., 2002). To further widen the scope of application of such compounds, we synthesized a new salen copper(II) compound and its structure is described in this paper.

As shown in Fig. 1, the title compound CuC22H22N2O8 is a tetradentate salen Schiff base complex. The CuII ion has a nearly square-planar geometry, being coordinated by two N atoms and two O atoms from the Schiff base ligand consisting of two Cu—O bonds [Cu(1)—O(1) = 1.897 (3) Å and Cu(1)—O(2) = 1.894 (2) Å], and two Cu—N bonds [Cu(1)—N(1) = 1.941 (3) Å and Cu(1)—N(2) = 1.922 (3) Å]. These bond distances are within the normal range observed in similar complexes (Bbadbhade & Srinivas, 1993). The two chemically equivalent halves of the molecule are crystallographically independent. One of the carboxylic acid methyl ester units is located in the main plane of the molecule, the other is rotated by 65.3 (5)° with respect to this unit.

As shown in Fig. 2, there are ππ stacking interactions between adjacent six-membered chelate rings, with a centroid–centroid distance of 3.602 (2) Å [symmetry code: -x, -y, 1 - z], which leads to the formation of π-stacked dimers of the title complex.

Related literature top

For general background, see: Paschke et al. (2002); Blake et al. (1995). For related structures, see: Bbadbhade & Srinivas (1993). Shamim et al. (1988) report the synthesis of the precursor of the organic ligand.

Experimental top

The first step is the preparation of 2-hydroxy-4-[(carboxymethyl)oxy]benzaldehyde methyl ester according to the reported procedure (Shamim et al., 1988). The second step is the preparation of the ligand C22H24N2O8 (H2L). The white powder obtained in the first step (2.10 g, 10 mmol) was dissolved in methanol (40 ml), and ethylenediamine (0.30 g, 5 mmol) was added dropwise. The solution was stirred for 1 h, the yellow precipitation was collected, washed with ethanol, and then dried in a vacuum desiccator. The resulting yellow precipitate was H2L (1.55 g, 3.5 mmol, yield 70%).

H2L (0.022 g, 0.05 mmol) then dissolved in CHCl3 (20 ml), was stirred at room temperature and was added to the solution of CuNO3 (0.012 g, 0.05 mmol) in ethanol (20 ml). The mixture was stirred for 1 h and then the resulting solution was filtered and left in a dark place to slowly evaporate. Brown single crystals were obtained after several days (0.027 g, 0.04 mmol, yeild 80%). IR (cm-1, KBr): ν(CN), 1606vs; ν(CO), 1758vs; ν(C—OMe), 1213vs; ν(Ar—O), 1278vs.

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. (a) Top and (b) side view of the title compound , showing ππ stacking and the formation of π-stacked dimers. For clarity, H atoms are omitted.
{5,5'-Bis(methoxycarbonylmethoxy)-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}copper(II) top
Crystal data top
[Cu(C22H22N2O8)]Z = 2
Mr = 505.96F(000) = 522
Triclinic, P1Dx = 1.548 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.668 (1) ÅCell parameters from 4482 reflections
b = 10.012 (1) Åθ = 1.8–26.7°
c = 11.763 (2) ŵ = 1.06 mm1
α = 85.251 (2)°T = 293 K
β = 80.381 (2)°Block, brown
γ = 75.383 (2)°0.40 × 0.30 × 0.25 mm
V = 1085.3 (2) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
4482 independent reflections
Radiation source: fine-focus sealed tube3096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 912
Tmin = 0.677, Tmax = 0.778k = 912
6326 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.7616P]
where P = (Fo2 + 2Fc2)/3
4482 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C22H22N2O8)]γ = 75.383 (2)°
Mr = 505.96V = 1085.3 (2) Å3
Triclinic, P1Z = 2
a = 9.668 (1) ÅMo Kα radiation
b = 10.012 (1) ŵ = 1.06 mm1
c = 11.763 (2) ÅT = 293 K
α = 85.251 (2)°0.40 × 0.30 × 0.25 mm
β = 80.381 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4482 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3096 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.778Rint = 0.018
6326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
4482 reflectionsΔρmin = 0.32 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.02639 (5)0.15738 (5)0.40718 (4)0.04568 (17)
C10.8714 (5)0.5674 (5)0.3845 (4)0.0811 (15)
H1A0.86570.62250.44880.122*
H1B0.88450.62130.31390.122*
H1C0.95180.48820.38500.122*
C20.7312 (5)0.4448 (4)0.3101 (4)0.0581 (11)
C30.5930 (4)0.3988 (4)0.3310 (3)0.0519 (10)
H3A0.58490.34650.40390.062*
H3B0.51080.47820.33340.062*
C40.4834 (4)0.2571 (4)0.2380 (3)0.0528 (10)
C50.4966 (4)0.1810 (5)0.1410 (3)0.0578 (11)
H50.57770.17180.08450.069*
C60.3889 (4)0.1208 (4)0.1310 (3)0.0558 (10)
H60.39730.07050.06610.067*
C70.2642 (4)0.1313 (4)0.2149 (3)0.0466 (9)
C80.2522 (4)0.2083 (4)0.3138 (3)0.0447 (9)
C90.3649 (4)0.2707 (4)0.3234 (3)0.0499 (9)
H90.35930.32120.38770.060*
C100.1556 (4)0.0667 (4)0.1949 (3)0.0546 (10)
H100.17390.01670.12860.066*
C110.0766 (5)0.0142 (6)0.2262 (4)0.0791 (15)
H11A0.13440.08220.17850.095*
H11B0.03070.06620.18090.095*
C120.1694 (5)0.0249 (5)0.3272 (4)0.0785 (15)
H12A0.12650.11780.35460.094*
H12B0.26290.02410.30690.094*
C130.2968 (4)0.0871 (4)0.4993 (4)0.0567 (11)
H130.36640.03950.49380.068*
C140.3203 (4)0.1694 (4)0.5965 (3)0.0484 (9)
C150.2202 (4)0.2436 (4)0.6176 (3)0.0461 (9)
C160.2502 (4)0.3153 (4)0.7201 (3)0.0501 (10)
H160.18660.36550.73470.060*
C170.4452 (4)0.1743 (5)0.6791 (4)0.0609 (11)
H170.51270.12850.66490.073*
C180.4712 (4)0.2421 (5)0.7772 (4)0.0628 (12)
H180.55450.24200.82970.075*
C190.3721 (4)0.3127 (4)0.7997 (3)0.0548 (10)
C200.3016 (4)0.4378 (5)0.9347 (4)0.0638 (12)
H20A0.34350.48851.00400.077*
H20B0.27600.50300.87410.077*
C210.1672 (5)0.3315 (5)0.9570 (3)0.0571 (11)
C220.0779 (5)0.3088 (6)0.9761 (5)0.1005 (19)
H22A0.14890.36250.96320.151*
H22B0.11100.22900.92990.151*
H22C0.06340.27991.05620.151*
N10.1881 (3)0.0725 (3)0.4185 (3)0.0542 (8)
N20.0342 (3)0.0715 (3)0.2610 (3)0.0540 (8)
O10.1002 (3)0.2473 (3)0.5482 (2)0.0537 (7)
O20.1423 (3)0.2237 (3)0.3977 (2)0.0534 (7)
O30.4053 (3)0.3772 (3)0.9017 (2)0.0682 (8)
O40.5962 (3)0.3158 (3)0.2393 (2)0.0674 (8)
O50.1593 (3)0.2113 (3)0.9815 (3)0.0723 (9)
O60.0568 (3)0.3915 (3)0.9447 (3)0.0736 (9)
O70.7385 (3)0.5219 (3)0.3929 (2)0.0650 (8)
O80.8223 (4)0.4170 (5)0.2289 (4)0.1257 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0420 (3)0.0513 (3)0.0476 (3)0.0201 (2)0.0019 (2)0.0069 (2)
C10.071 (3)0.092 (4)0.095 (4)0.043 (3)0.011 (3)0.020 (3)
C20.058 (3)0.058 (3)0.062 (3)0.023 (2)0.001 (2)0.009 (2)
C30.051 (2)0.059 (3)0.049 (2)0.0212 (19)0.0031 (18)0.003 (2)
C40.052 (2)0.061 (3)0.048 (2)0.024 (2)0.0011 (19)0.001 (2)
C50.050 (2)0.075 (3)0.048 (2)0.023 (2)0.0092 (19)0.008 (2)
C60.056 (2)0.066 (3)0.044 (2)0.018 (2)0.0061 (19)0.016 (2)
C70.049 (2)0.044 (2)0.046 (2)0.0125 (17)0.0030 (18)0.0057 (18)
C80.042 (2)0.048 (2)0.045 (2)0.0152 (17)0.0003 (17)0.0038 (17)
C90.051 (2)0.057 (2)0.047 (2)0.0233 (19)0.0004 (18)0.0109 (19)
C100.059 (2)0.060 (3)0.049 (2)0.022 (2)0.001 (2)0.016 (2)
C110.073 (3)0.113 (4)0.069 (3)0.053 (3)0.000 (2)0.033 (3)
C120.073 (3)0.093 (4)0.086 (3)0.050 (3)0.005 (3)0.025 (3)
C130.046 (2)0.065 (3)0.066 (3)0.029 (2)0.007 (2)0.002 (2)
C140.039 (2)0.055 (2)0.053 (2)0.0189 (18)0.0059 (18)0.0068 (19)
C150.0350 (19)0.055 (2)0.047 (2)0.0136 (17)0.0037 (17)0.0067 (19)
C160.040 (2)0.062 (3)0.049 (2)0.0179 (18)0.0001 (17)0.0035 (19)
C170.044 (2)0.073 (3)0.071 (3)0.029 (2)0.004 (2)0.002 (2)
C180.041 (2)0.077 (3)0.066 (3)0.018 (2)0.011 (2)0.003 (2)
C190.041 (2)0.064 (3)0.052 (2)0.0060 (19)0.0019 (19)0.000 (2)
C200.053 (2)0.072 (3)0.061 (3)0.011 (2)0.009 (2)0.018 (2)
C210.065 (3)0.065 (3)0.038 (2)0.014 (2)0.0038 (19)0.010 (2)
C220.075 (4)0.095 (4)0.136 (5)0.007 (3)0.044 (3)0.012 (4)
N10.0485 (19)0.060 (2)0.061 (2)0.0244 (16)0.0032 (17)0.0137 (17)
N20.054 (2)0.063 (2)0.053 (2)0.0263 (17)0.0062 (16)0.0137 (17)
O10.0457 (14)0.0697 (19)0.0502 (15)0.0286 (13)0.0075 (12)0.0129 (14)
O20.0483 (15)0.0673 (18)0.0489 (15)0.0277 (13)0.0086 (12)0.0172 (13)
O30.0498 (17)0.088 (2)0.0567 (18)0.0110 (16)0.0147 (14)0.0127 (16)
O40.0584 (17)0.093 (2)0.0611 (18)0.0453 (17)0.0108 (14)0.0208 (16)
O50.087 (2)0.063 (2)0.065 (2)0.0197 (17)0.0041 (16)0.0023 (16)
O60.066 (2)0.070 (2)0.086 (2)0.0150 (17)0.0160 (17)0.0054 (18)
O70.0600 (18)0.078 (2)0.0647 (19)0.0299 (16)0.0067 (15)0.0144 (16)
O80.093 (3)0.181 (4)0.126 (3)0.091 (3)0.052 (3)0.097 (3)
Geometric parameters (Å, º) top
Cu1—O21.894 (2)C11—H11A0.9700
Cu1—O11.897 (3)C11—H11B0.9700
Cu1—N21.922 (3)C12—N11.469 (5)
Cu1—N11.941 (3)C12—H12A0.9700
C1—O71.454 (5)C12—H12B0.9700
C1—H1A0.9600C13—N11.281 (5)
C1—H1B0.9600C13—C141.419 (6)
C1—H1C0.9600C13—H130.9300
C2—O81.186 (5)C14—C171.411 (5)
C2—O71.313 (5)C14—C151.422 (5)
C2—C31.497 (5)C15—O11.309 (4)
C3—O41.407 (4)C15—C161.405 (5)
C3—H3A0.9700C16—C191.381 (5)
C3—H3B0.9700C16—H160.9300
C4—O41.366 (4)C17—C181.342 (6)
C4—C91.379 (5)C17—H170.9300
C4—C51.394 (5)C18—C191.395 (6)
C5—C61.353 (5)C18—H180.9300
C5—H50.9300C19—O31.362 (5)
C6—C71.412 (5)C20—O31.415 (5)
C6—H60.9300C20—C211.504 (6)
C7—C81.421 (5)C20—H20A0.9700
C7—C101.423 (5)C20—H20B0.9700
C8—O21.310 (4)C21—O51.200 (5)
C8—C91.410 (5)C21—O61.333 (5)
C9—H90.9300C22—O61.444 (5)
C10—N21.287 (5)C22—H22A0.9600
C10—H100.9300C22—H22B0.9600
C11—C121.453 (6)C22—H22C0.9600
C11—N21.463 (5)
O2—Cu1—O189.23 (10)C11—C12—H12B109.7
O2—Cu1—N293.86 (12)N1—C12—H12B109.7
O1—Cu1—N2175.69 (13)H12A—C12—H12B108.2
O2—Cu1—N1174.74 (13)N1—C13—C14125.7 (4)
O1—Cu1—N192.91 (12)N1—C13—H13117.2
N2—Cu1—N184.26 (13)C14—C13—H13117.2
O7—C1—H1A109.5C17—C14—C13119.1 (4)
O7—C1—H1B109.5C17—C14—C15117.9 (4)
H1A—C1—H1B109.5C13—C14—C15123.0 (3)
O7—C1—H1C109.5O1—C15—C16117.8 (3)
H1A—C1—H1C109.5O1—C15—C14124.0 (4)
H1B—C1—H1C109.5C16—C15—C14118.2 (3)
O8—C2—O7123.9 (4)C19—C16—C15121.4 (4)
O8—C2—C3124.7 (4)C19—C16—H16119.3
O7—C2—C3111.4 (4)C15—C16—H16119.3
O4—C3—C2107.1 (3)C18—C17—C14123.0 (4)
O4—C3—H3A110.3C18—C17—H17118.5
C2—C3—H3A110.3C14—C17—H17118.5
O4—C3—H3B110.3C17—C18—C19119.4 (4)
C2—C3—H3B110.3C17—C18—H18120.3
H3A—C3—H3B108.5C19—C18—H18120.3
O4—C4—C9124.2 (4)O3—C19—C16124.2 (4)
O4—C4—C5114.2 (3)O3—C19—C18115.8 (3)
C9—C4—C5121.7 (4)C16—C19—C18120.0 (4)
C6—C5—C4118.6 (4)O3—C20—C21112.0 (4)
C6—C5—H5120.7O3—C20—H20A109.2
C4—C5—H5120.7C21—C20—H20A109.2
C5—C6—C7122.7 (4)O3—C20—H20B109.2
C5—C6—H6118.6C21—C20—H20B109.2
C7—C6—H6118.6H20A—C20—H20B107.9
C6—C7—C8118.3 (3)O5—C21—O6125.0 (4)
C6—C7—C10118.4 (4)O5—C21—C20125.8 (4)
C8—C7—C10123.3 (3)O6—C21—C20109.2 (4)
O2—C8—C9117.8 (3)O6—C22—H22A109.5
O2—C8—C7123.6 (3)O6—C22—H22B109.5
C9—C8—C7118.5 (3)H22A—C22—H22B109.5
C4—C9—C8120.2 (4)O6—C22—H22C109.5
C4—C9—H9119.9H22A—C22—H22C109.5
C8—C9—H9119.9H22B—C22—H22C109.5
N2—C10—C7125.5 (4)C13—N1—C12120.7 (3)
N2—C10—H10117.2C13—N1—Cu1126.4 (3)
C7—C10—H10117.2C12—N1—Cu1112.7 (2)
C12—C11—N2110.4 (4)C10—N2—C11121.1 (3)
C12—C11—H11A109.6C10—N2—Cu1125.9 (3)
N2—C11—H11A109.6C11—N2—Cu1112.9 (3)
C12—C11—H11B109.6C15—O1—Cu1128.0 (2)
N2—C11—H11B109.6C8—O2—Cu1127.6 (2)
H11A—C11—H11B108.1C19—O3—C20118.2 (3)
C11—C12—N1109.6 (4)C4—O4—C3119.5 (3)
C11—C12—H12A109.7C21—O6—C22117.1 (4)
N1—C12—H12A109.7C2—O7—C1116.2 (3)
O8—C2—C3—O41.7 (7)C14—C13—N1—C12174.8 (4)
O7—C2—C3—O4179.1 (3)C14—C13—N1—Cu10.4 (6)
O4—C4—C5—C6178.9 (4)C11—C12—N1—C13158.0 (4)
C9—C4—C5—C60.7 (7)C11—C12—N1—Cu126.8 (5)
C4—C5—C6—C70.4 (7)O1—Cu1—N1—C130.8 (4)
C5—C6—C7—C80.1 (6)N2—Cu1—N1—C13175.9 (4)
C5—C6—C7—C10178.6 (4)O1—Cu1—N1—C12174.0 (3)
C6—C7—C8—O2179.2 (4)N2—Cu1—N1—C129.3 (3)
C10—C7—C8—O22.2 (6)C7—C10—N2—C11173.2 (4)
C6—C7—C8—C90.1 (6)C7—C10—N2—Cu14.0 (6)
C10—C7—C8—C9178.5 (4)C12—C11—N2—C10154.5 (4)
O4—C4—C9—C8178.9 (4)C12—C11—N2—Cu128.0 (5)
C5—C4—C9—C80.7 (6)O2—Cu1—N2—C102.8 (4)
O2—C8—C9—C4179.6 (4)N1—Cu1—N2—C10172.3 (4)
C7—C8—C9—C40.3 (6)O2—Cu1—N2—C11174.6 (3)
C6—C7—C10—N2177.2 (4)N1—Cu1—N2—C1110.3 (3)
C8—C7—C10—N21.4 (7)C16—C15—O1—Cu1177.8 (3)
N2—C11—C12—N134.7 (6)C14—C15—O1—Cu10.9 (5)
N1—C13—C14—C17179.5 (4)O2—Cu1—O1—C15175.7 (3)
N1—C13—C14—C152.2 (7)N1—Cu1—O1—C150.6 (3)
C17—C14—C15—O1179.8 (3)C9—C8—O2—Cu1178.0 (3)
C13—C14—C15—O12.5 (6)C7—C8—O2—Cu12.7 (5)
C17—C14—C15—C161.1 (5)O1—Cu1—O2—C8176.5 (3)
C13—C14—C15—C16176.2 (4)N2—Cu1—O2—C80.4 (3)
O1—C15—C16—C19177.8 (3)C16—C19—O3—C207.3 (6)
C14—C15—C16—C191.0 (6)C18—C19—O3—C20173.4 (4)
C13—C14—C17—C18175.5 (4)C21—C20—O3—C1965.3 (5)
C15—C14—C17—C181.9 (6)C9—C4—O4—C31.7 (6)
C14—C17—C18—C190.6 (7)C5—C4—O4—C3177.9 (4)
C15—C16—C19—O3178.4 (4)C2—C3—O4—C4178.6 (3)
C15—C16—C19—C182.4 (6)O5—C21—O6—C227.4 (6)
C17—C18—C19—O3179.1 (4)C20—C21—O6—C22172.9 (4)
C17—C18—C19—C161.5 (6)O8—C2—O7—C13.5 (7)
O3—C20—C21—O522.9 (6)C3—C2—O7—C1177.3 (4)
O3—C20—C21—O6156.8 (3)

Experimental details

Crystal data
Chemical formula[Cu(C22H22N2O8)]
Mr505.96
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.668 (1), 10.012 (1), 11.763 (2)
α, β, γ (°)85.251 (2), 80.381 (2), 75.383 (2)
V3)1085.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.677, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
6326, 4482, 3096
Rint0.018
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.124, 1.03
No. of reflections4482
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

We thank the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320) and the Analysis and Testing Foundation of Northeast Normal University for support.

References

First citationBbadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122–6130.  Google Scholar
First citationBlake, A. B., Chipperfield, J. R., Hussain, W., Paschke, R. & Sinn, E. (1995). Inorg. Chem. 34, 1125–1129.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPaschke, P., Balkow, D. & Sinn, E. (2002). Inorg. Chem. 41, 1949–1953.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShamim, M. T., Ukena, D., Padgett, W. L., Hong, O. & Daly, J. W. (1988). J. Med. Chem. 31, 613–617.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds