metal-organic compounds
{5,5′-Bis(methoxycarbonylmethoxy)-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}copper(II)
aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn
The title compound, [Cu(C22H22N2O8)], is a tetradentate Schiff base complex. The CuII ion has a nearly square-planar geometry, being coordinated by two N atoms and two O atoms. The two chemically equivalent halves of the molecule are crystallographically independent. One of the carboxylic acid methyl ester units is located in the main plane of the molecule and the other is rotated by 65.3 (5)° with respect to this unit. In the there are π–π stacking interactions between adjacent six-membered chelate rings, with centroid-to-centroid distances of 3.602 (2) Å.
Related literature
For general background, see: Paschke et al. (2002); Blake et al. (1995). For related structures, see: Bbadbhade & Srinivas (1993). Shamim et al. (1988) report the synthesis of the precursor of the organic ligand.
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808033084/zl2141sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808033084/zl2141Isup2.hkl
The first step is the preparation of 2-hydroxy-4-[(carboxymethyl)oxy]benzaldehyde methyl ester according to the reported procedure (Shamim et al., 1988). The second step is the preparation of the ligand C22H24N2O8 (H2L). The white powder obtained in the first step (2.10 g, 10 mmol) was dissolved in methanol (40 ml), and ethylenediamine (0.30 g, 5 mmol) was added dropwise. The solution was stirred for 1 h, the yellow precipitation was collected, washed with ethanol, and then dried in a vacuum desiccator. The resulting yellow precipitate was H2L (1.55 g, 3.5 mmol, yield 70%).
H2L (0.022 g, 0.05 mmol) then dissolved in CHCl3 (20 ml), was stirred at room temperature and was added to the solution of CuNO3 (0.012 g, 0.05 mmol) in ethanol (20 ml). The mixture was stirred for 1 h and then the resulting solution was filtered and left in a dark place to slowly evaporate. Brown single crystals were obtained after several days (0.027 g, 0.04 mmol, yeild 80%). IR (cm-1, KBr): ν(C═N), 1606vs; ν(C═O), 1758vs; ν(C—OMe), 1213vs; ν(Ar—O), 1278vs.
All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C22H22N2O8)] | Z = 2 |
Mr = 505.96 | F(000) = 522 |
Triclinic, P1 | Dx = 1.548 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 9.668 (1) Å | Cell parameters from 4482 reflections |
b = 10.012 (1) Å | θ = 1.8–26.7° |
c = 11.763 (2) Å | µ = 1.06 mm−1 |
α = 85.251 (2)° | T = 293 K |
β = 80.381 (2)° | Block, brown |
γ = 75.383 (2)° | 0.40 × 0.30 × 0.25 mm |
V = 1085.3 (2) Å3 |
Bruker APEX CCD area-detector diffractometer | 4482 independent reflections |
Radiation source: fine-focus sealed tube | 3096 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 26.7°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→12 |
Tmin = 0.677, Tmax = 0.778 | k = −9→12 |
6326 measured reflections | l = −13→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0435P)2 + 0.7616P] where P = (Fo2 + 2Fc2)/3 |
4482 reflections | (Δ/σ)max < 0.001 |
298 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[Cu(C22H22N2O8)] | γ = 75.383 (2)° |
Mr = 505.96 | V = 1085.3 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.668 (1) Å | Mo Kα radiation |
b = 10.012 (1) Å | µ = 1.06 mm−1 |
c = 11.763 (2) Å | T = 293 K |
α = 85.251 (2)° | 0.40 × 0.30 × 0.25 mm |
β = 80.381 (2)° |
Bruker APEX CCD area-detector diffractometer | 4482 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3096 reflections with I > 2σ(I) |
Tmin = 0.677, Tmax = 0.778 | Rint = 0.018 |
6326 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.47 e Å−3 |
4482 reflections | Δρmin = −0.32 e Å−3 |
298 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | −0.02639 (5) | 0.15738 (5) | 0.40718 (4) | 0.04568 (17) | |
C1 | 0.8714 (5) | 0.5674 (5) | 0.3845 (4) | 0.0811 (15) | |
H1A | 0.8657 | 0.6225 | 0.4488 | 0.122* | |
H1B | 0.8845 | 0.6213 | 0.3139 | 0.122* | |
H1C | 0.9518 | 0.4882 | 0.3850 | 0.122* | |
C2 | 0.7312 (5) | 0.4448 (4) | 0.3101 (4) | 0.0581 (11) | |
C3 | 0.5930 (4) | 0.3988 (4) | 0.3310 (3) | 0.0519 (10) | |
H3A | 0.5849 | 0.3465 | 0.4039 | 0.062* | |
H3B | 0.5108 | 0.4782 | 0.3334 | 0.062* | |
C4 | 0.4834 (4) | 0.2571 (4) | 0.2380 (3) | 0.0528 (10) | |
C5 | 0.4966 (4) | 0.1810 (5) | 0.1410 (3) | 0.0578 (11) | |
H5 | 0.5777 | 0.1718 | 0.0845 | 0.069* | |
C6 | 0.3889 (4) | 0.1208 (4) | 0.1310 (3) | 0.0558 (10) | |
H6 | 0.3973 | 0.0705 | 0.0661 | 0.067* | |
C7 | 0.2642 (4) | 0.1313 (4) | 0.2149 (3) | 0.0466 (9) | |
C8 | 0.2522 (4) | 0.2083 (4) | 0.3138 (3) | 0.0447 (9) | |
C9 | 0.3649 (4) | 0.2707 (4) | 0.3234 (3) | 0.0499 (9) | |
H9 | 0.3593 | 0.3212 | 0.3877 | 0.060* | |
C10 | 0.1556 (4) | 0.0667 (4) | 0.1949 (3) | 0.0546 (10) | |
H10 | 0.1739 | 0.0167 | 0.1286 | 0.066* | |
C11 | −0.0766 (5) | 0.0142 (6) | 0.2262 (4) | 0.0791 (15) | |
H11A | −0.1344 | 0.0822 | 0.1785 | 0.095* | |
H11B | −0.0307 | −0.0662 | 0.1809 | 0.095* | |
C12 | −0.1694 (5) | −0.0249 (5) | 0.3272 (4) | 0.0785 (15) | |
H12A | −0.1265 | −0.1178 | 0.3546 | 0.094* | |
H12B | −0.2629 | −0.0241 | 0.3069 | 0.094* | |
C13 | −0.2968 (4) | 0.0871 (4) | 0.4993 (4) | 0.0567 (11) | |
H13 | −0.3664 | 0.0395 | 0.4938 | 0.068* | |
C14 | −0.3203 (4) | 0.1694 (4) | 0.5965 (3) | 0.0484 (9) | |
C15 | −0.2202 (4) | 0.2436 (4) | 0.6176 (3) | 0.0461 (9) | |
C16 | −0.2502 (4) | 0.3153 (4) | 0.7201 (3) | 0.0501 (10) | |
H16 | −0.1866 | 0.3655 | 0.7347 | 0.060* | |
C17 | −0.4452 (4) | 0.1743 (5) | 0.6791 (4) | 0.0609 (11) | |
H17 | −0.5127 | 0.1285 | 0.6649 | 0.073* | |
C18 | −0.4712 (4) | 0.2421 (5) | 0.7772 (4) | 0.0628 (12) | |
H18 | −0.5545 | 0.2420 | 0.8297 | 0.075* | |
C19 | −0.3721 (4) | 0.3127 (4) | 0.7997 (3) | 0.0548 (10) | |
C20 | −0.3016 (4) | 0.4378 (5) | 0.9347 (4) | 0.0638 (12) | |
H20A | −0.3435 | 0.4885 | 1.0040 | 0.077* | |
H20B | −0.2760 | 0.5030 | 0.8741 | 0.077* | |
C21 | −0.1672 (5) | 0.3315 (5) | 0.9570 (3) | 0.0571 (11) | |
C22 | 0.0779 (5) | 0.3088 (6) | 0.9761 (5) | 0.1005 (19) | |
H22A | 0.1489 | 0.3625 | 0.9632 | 0.151* | |
H22B | 0.1110 | 0.2290 | 0.9299 | 0.151* | |
H22C | 0.0634 | 0.2799 | 1.0562 | 0.151* | |
N1 | −0.1881 (3) | 0.0725 (3) | 0.4185 (3) | 0.0542 (8) | |
N2 | 0.0342 (3) | 0.0715 (3) | 0.2610 (3) | 0.0540 (8) | |
O1 | −0.1002 (3) | 0.2473 (3) | 0.5482 (2) | 0.0537 (7) | |
O2 | 0.1423 (3) | 0.2237 (3) | 0.3977 (2) | 0.0534 (7) | |
O3 | −0.4053 (3) | 0.3772 (3) | 0.9017 (2) | 0.0682 (8) | |
O4 | 0.5962 (3) | 0.3158 (3) | 0.2393 (2) | 0.0674 (8) | |
O5 | −0.1593 (3) | 0.2113 (3) | 0.9815 (3) | 0.0723 (9) | |
O6 | −0.0568 (3) | 0.3915 (3) | 0.9447 (3) | 0.0736 (9) | |
O7 | 0.7385 (3) | 0.5219 (3) | 0.3929 (2) | 0.0650 (8) | |
O8 | 0.8223 (4) | 0.4170 (5) | 0.2289 (4) | 0.1257 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0420 (3) | 0.0513 (3) | 0.0476 (3) | −0.0201 (2) | −0.0019 (2) | −0.0069 (2) |
C1 | 0.071 (3) | 0.092 (4) | 0.095 (4) | −0.043 (3) | −0.011 (3) | −0.020 (3) |
C2 | 0.058 (3) | 0.058 (3) | 0.062 (3) | −0.023 (2) | 0.001 (2) | −0.009 (2) |
C3 | 0.051 (2) | 0.059 (3) | 0.049 (2) | −0.0212 (19) | −0.0031 (18) | −0.003 (2) |
C4 | 0.052 (2) | 0.061 (3) | 0.048 (2) | −0.024 (2) | −0.0011 (19) | −0.001 (2) |
C5 | 0.050 (2) | 0.075 (3) | 0.048 (2) | −0.023 (2) | 0.0092 (19) | −0.008 (2) |
C6 | 0.056 (2) | 0.066 (3) | 0.044 (2) | −0.018 (2) | 0.0061 (19) | −0.016 (2) |
C7 | 0.049 (2) | 0.044 (2) | 0.046 (2) | −0.0125 (17) | −0.0030 (18) | −0.0057 (18) |
C8 | 0.042 (2) | 0.048 (2) | 0.045 (2) | −0.0152 (17) | 0.0003 (17) | −0.0038 (17) |
C9 | 0.051 (2) | 0.057 (2) | 0.047 (2) | −0.0233 (19) | 0.0004 (18) | −0.0109 (19) |
C10 | 0.059 (2) | 0.060 (3) | 0.049 (2) | −0.022 (2) | −0.001 (2) | −0.016 (2) |
C11 | 0.073 (3) | 0.113 (4) | 0.069 (3) | −0.053 (3) | 0.000 (2) | −0.033 (3) |
C12 | 0.073 (3) | 0.093 (4) | 0.086 (3) | −0.050 (3) | −0.005 (3) | −0.025 (3) |
C13 | 0.046 (2) | 0.065 (3) | 0.066 (3) | −0.029 (2) | −0.007 (2) | 0.002 (2) |
C14 | 0.039 (2) | 0.055 (2) | 0.053 (2) | −0.0189 (18) | −0.0059 (18) | 0.0068 (19) |
C15 | 0.0350 (19) | 0.055 (2) | 0.047 (2) | −0.0136 (17) | −0.0037 (17) | 0.0067 (19) |
C16 | 0.040 (2) | 0.062 (3) | 0.049 (2) | −0.0179 (18) | −0.0001 (17) | −0.0035 (19) |
C17 | 0.044 (2) | 0.073 (3) | 0.071 (3) | −0.029 (2) | −0.004 (2) | 0.002 (2) |
C18 | 0.041 (2) | 0.077 (3) | 0.066 (3) | −0.018 (2) | 0.011 (2) | 0.003 (2) |
C19 | 0.041 (2) | 0.064 (3) | 0.052 (2) | −0.0060 (19) | 0.0019 (19) | 0.000 (2) |
C20 | 0.053 (2) | 0.072 (3) | 0.061 (3) | −0.011 (2) | 0.009 (2) | −0.018 (2) |
C21 | 0.065 (3) | 0.065 (3) | 0.038 (2) | −0.014 (2) | 0.0038 (19) | −0.010 (2) |
C22 | 0.075 (4) | 0.095 (4) | 0.136 (5) | −0.007 (3) | −0.044 (3) | −0.012 (4) |
N1 | 0.0485 (19) | 0.060 (2) | 0.061 (2) | −0.0244 (16) | −0.0032 (17) | −0.0137 (17) |
N2 | 0.054 (2) | 0.063 (2) | 0.053 (2) | −0.0263 (17) | −0.0062 (16) | −0.0137 (17) |
O1 | 0.0457 (14) | 0.0697 (19) | 0.0502 (15) | −0.0286 (13) | 0.0075 (12) | −0.0129 (14) |
O2 | 0.0483 (15) | 0.0673 (18) | 0.0489 (15) | −0.0277 (13) | 0.0086 (12) | −0.0172 (13) |
O3 | 0.0498 (17) | 0.088 (2) | 0.0567 (18) | −0.0110 (16) | 0.0147 (14) | −0.0127 (16) |
O4 | 0.0584 (17) | 0.093 (2) | 0.0611 (18) | −0.0453 (17) | 0.0108 (14) | −0.0208 (16) |
O5 | 0.087 (2) | 0.063 (2) | 0.065 (2) | −0.0197 (17) | −0.0041 (16) | −0.0023 (16) |
O6 | 0.066 (2) | 0.070 (2) | 0.086 (2) | −0.0150 (17) | −0.0160 (17) | −0.0054 (18) |
O7 | 0.0600 (18) | 0.078 (2) | 0.0647 (19) | −0.0299 (16) | −0.0067 (15) | −0.0144 (16) |
O8 | 0.093 (3) | 0.181 (4) | 0.126 (3) | −0.091 (3) | 0.052 (3) | −0.097 (3) |
Cu1—O2 | 1.894 (2) | C11—H11A | 0.9700 |
Cu1—O1 | 1.897 (3) | C11—H11B | 0.9700 |
Cu1—N2 | 1.922 (3) | C12—N1 | 1.469 (5) |
Cu1—N1 | 1.941 (3) | C12—H12A | 0.9700 |
C1—O7 | 1.454 (5) | C12—H12B | 0.9700 |
C1—H1A | 0.9600 | C13—N1 | 1.281 (5) |
C1—H1B | 0.9600 | C13—C14 | 1.419 (6) |
C1—H1C | 0.9600 | C13—H13 | 0.9300 |
C2—O8 | 1.186 (5) | C14—C17 | 1.411 (5) |
C2—O7 | 1.313 (5) | C14—C15 | 1.422 (5) |
C2—C3 | 1.497 (5) | C15—O1 | 1.309 (4) |
C3—O4 | 1.407 (4) | C15—C16 | 1.405 (5) |
C3—H3A | 0.9700 | C16—C19 | 1.381 (5) |
C3—H3B | 0.9700 | C16—H16 | 0.9300 |
C4—O4 | 1.366 (4) | C17—C18 | 1.342 (6) |
C4—C9 | 1.379 (5) | C17—H17 | 0.9300 |
C4—C5 | 1.394 (5) | C18—C19 | 1.395 (6) |
C5—C6 | 1.353 (5) | C18—H18 | 0.9300 |
C5—H5 | 0.9300 | C19—O3 | 1.362 (5) |
C6—C7 | 1.412 (5) | C20—O3 | 1.415 (5) |
C6—H6 | 0.9300 | C20—C21 | 1.504 (6) |
C7—C8 | 1.421 (5) | C20—H20A | 0.9700 |
C7—C10 | 1.423 (5) | C20—H20B | 0.9700 |
C8—O2 | 1.310 (4) | C21—O5 | 1.200 (5) |
C8—C9 | 1.410 (5) | C21—O6 | 1.333 (5) |
C9—H9 | 0.9300 | C22—O6 | 1.444 (5) |
C10—N2 | 1.287 (5) | C22—H22A | 0.9600 |
C10—H10 | 0.9300 | C22—H22B | 0.9600 |
C11—C12 | 1.453 (6) | C22—H22C | 0.9600 |
C11—N2 | 1.463 (5) | ||
O2—Cu1—O1 | 89.23 (10) | C11—C12—H12B | 109.7 |
O2—Cu1—N2 | 93.86 (12) | N1—C12—H12B | 109.7 |
O1—Cu1—N2 | 175.69 (13) | H12A—C12—H12B | 108.2 |
O2—Cu1—N1 | 174.74 (13) | N1—C13—C14 | 125.7 (4) |
O1—Cu1—N1 | 92.91 (12) | N1—C13—H13 | 117.2 |
N2—Cu1—N1 | 84.26 (13) | C14—C13—H13 | 117.2 |
O7—C1—H1A | 109.5 | C17—C14—C13 | 119.1 (4) |
O7—C1—H1B | 109.5 | C17—C14—C15 | 117.9 (4) |
H1A—C1—H1B | 109.5 | C13—C14—C15 | 123.0 (3) |
O7—C1—H1C | 109.5 | O1—C15—C16 | 117.8 (3) |
H1A—C1—H1C | 109.5 | O1—C15—C14 | 124.0 (4) |
H1B—C1—H1C | 109.5 | C16—C15—C14 | 118.2 (3) |
O8—C2—O7 | 123.9 (4) | C19—C16—C15 | 121.4 (4) |
O8—C2—C3 | 124.7 (4) | C19—C16—H16 | 119.3 |
O7—C2—C3 | 111.4 (4) | C15—C16—H16 | 119.3 |
O4—C3—C2 | 107.1 (3) | C18—C17—C14 | 123.0 (4) |
O4—C3—H3A | 110.3 | C18—C17—H17 | 118.5 |
C2—C3—H3A | 110.3 | C14—C17—H17 | 118.5 |
O4—C3—H3B | 110.3 | C17—C18—C19 | 119.4 (4) |
C2—C3—H3B | 110.3 | C17—C18—H18 | 120.3 |
H3A—C3—H3B | 108.5 | C19—C18—H18 | 120.3 |
O4—C4—C9 | 124.2 (4) | O3—C19—C16 | 124.2 (4) |
O4—C4—C5 | 114.2 (3) | O3—C19—C18 | 115.8 (3) |
C9—C4—C5 | 121.7 (4) | C16—C19—C18 | 120.0 (4) |
C6—C5—C4 | 118.6 (4) | O3—C20—C21 | 112.0 (4) |
C6—C5—H5 | 120.7 | O3—C20—H20A | 109.2 |
C4—C5—H5 | 120.7 | C21—C20—H20A | 109.2 |
C5—C6—C7 | 122.7 (4) | O3—C20—H20B | 109.2 |
C5—C6—H6 | 118.6 | C21—C20—H20B | 109.2 |
C7—C6—H6 | 118.6 | H20A—C20—H20B | 107.9 |
C6—C7—C8 | 118.3 (3) | O5—C21—O6 | 125.0 (4) |
C6—C7—C10 | 118.4 (4) | O5—C21—C20 | 125.8 (4) |
C8—C7—C10 | 123.3 (3) | O6—C21—C20 | 109.2 (4) |
O2—C8—C9 | 117.8 (3) | O6—C22—H22A | 109.5 |
O2—C8—C7 | 123.6 (3) | O6—C22—H22B | 109.5 |
C9—C8—C7 | 118.5 (3) | H22A—C22—H22B | 109.5 |
C4—C9—C8 | 120.2 (4) | O6—C22—H22C | 109.5 |
C4—C9—H9 | 119.9 | H22A—C22—H22C | 109.5 |
C8—C9—H9 | 119.9 | H22B—C22—H22C | 109.5 |
N2—C10—C7 | 125.5 (4) | C13—N1—C12 | 120.7 (3) |
N2—C10—H10 | 117.2 | C13—N1—Cu1 | 126.4 (3) |
C7—C10—H10 | 117.2 | C12—N1—Cu1 | 112.7 (2) |
C12—C11—N2 | 110.4 (4) | C10—N2—C11 | 121.1 (3) |
C12—C11—H11A | 109.6 | C10—N2—Cu1 | 125.9 (3) |
N2—C11—H11A | 109.6 | C11—N2—Cu1 | 112.9 (3) |
C12—C11—H11B | 109.6 | C15—O1—Cu1 | 128.0 (2) |
N2—C11—H11B | 109.6 | C8—O2—Cu1 | 127.6 (2) |
H11A—C11—H11B | 108.1 | C19—O3—C20 | 118.2 (3) |
C11—C12—N1 | 109.6 (4) | C4—O4—C3 | 119.5 (3) |
C11—C12—H12A | 109.7 | C21—O6—C22 | 117.1 (4) |
N1—C12—H12A | 109.7 | C2—O7—C1 | 116.2 (3) |
O8—C2—C3—O4 | 1.7 (7) | C14—C13—N1—C12 | 174.8 (4) |
O7—C2—C3—O4 | −179.1 (3) | C14—C13—N1—Cu1 | 0.4 (6) |
O4—C4—C5—C6 | −178.9 (4) | C11—C12—N1—C13 | 158.0 (4) |
C9—C4—C5—C6 | 0.7 (7) | C11—C12—N1—Cu1 | −26.8 (5) |
C4—C5—C6—C7 | −0.4 (7) | O1—Cu1—N1—C13 | 0.8 (4) |
C5—C6—C7—C8 | −0.1 (6) | N2—Cu1—N1—C13 | −175.9 (4) |
C5—C6—C7—C10 | 178.6 (4) | O1—Cu1—N1—C12 | −174.0 (3) |
C6—C7—C8—O2 | −179.2 (4) | N2—Cu1—N1—C12 | 9.3 (3) |
C10—C7—C8—O2 | 2.2 (6) | C7—C10—N2—C11 | 173.2 (4) |
C6—C7—C8—C9 | 0.1 (6) | C7—C10—N2—Cu1 | −4.0 (6) |
C10—C7—C8—C9 | −178.5 (4) | C12—C11—N2—C10 | 154.5 (4) |
O4—C4—C9—C8 | 178.9 (4) | C12—C11—N2—Cu1 | −28.0 (5) |
C5—C4—C9—C8 | −0.7 (6) | O2—Cu1—N2—C10 | 2.8 (4) |
O2—C8—C9—C4 | 179.6 (4) | N1—Cu1—N2—C10 | −172.3 (4) |
C7—C8—C9—C4 | 0.3 (6) | O2—Cu1—N2—C11 | −174.6 (3) |
C6—C7—C10—N2 | −177.2 (4) | N1—Cu1—N2—C11 | 10.3 (3) |
C8—C7—C10—N2 | 1.4 (7) | C16—C15—O1—Cu1 | 177.8 (3) |
N2—C11—C12—N1 | 34.7 (6) | C14—C15—O1—Cu1 | −0.9 (5) |
N1—C13—C14—C17 | −179.5 (4) | O2—Cu1—O1—C15 | −175.7 (3) |
N1—C13—C14—C15 | −2.2 (7) | N1—Cu1—O1—C15 | −0.6 (3) |
C17—C14—C15—O1 | 179.8 (3) | C9—C8—O2—Cu1 | 178.0 (3) |
C13—C14—C15—O1 | 2.5 (6) | C7—C8—O2—Cu1 | −2.7 (5) |
C17—C14—C15—C16 | 1.1 (5) | O1—Cu1—O2—C8 | −176.5 (3) |
C13—C14—C15—C16 | −176.2 (4) | N2—Cu1—O2—C8 | 0.4 (3) |
O1—C15—C16—C19 | −177.8 (3) | C16—C19—O3—C20 | −7.3 (6) |
C14—C15—C16—C19 | 1.0 (6) | C18—C19—O3—C20 | 173.4 (4) |
C13—C14—C17—C18 | 175.5 (4) | C21—C20—O3—C19 | −65.3 (5) |
C15—C14—C17—C18 | −1.9 (6) | C9—C4—O4—C3 | −1.7 (6) |
C14—C17—C18—C19 | 0.6 (7) | C5—C4—O4—C3 | 177.9 (4) |
C15—C16—C19—O3 | 178.4 (4) | C2—C3—O4—C4 | 178.6 (3) |
C15—C16—C19—C18 | −2.4 (6) | O5—C21—O6—C22 | −7.4 (6) |
C17—C18—C19—O3 | −179.1 (4) | C20—C21—O6—C22 | 172.9 (4) |
C17—C18—C19—C16 | 1.5 (6) | O8—C2—O7—C1 | −3.5 (7) |
O3—C20—C21—O5 | −22.9 (6) | C3—C2—O7—C1 | 177.3 (4) |
O3—C20—C21—O6 | 156.8 (3) |
Experimental details
Crystal data | |
Chemical formula | [Cu(C22H22N2O8)] |
Mr | 505.96 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.668 (1), 10.012 (1), 11.763 (2) |
α, β, γ (°) | 85.251 (2), 80.381 (2), 75.383 (2) |
V (Å3) | 1085.3 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.06 |
Crystal size (mm) | 0.40 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.677, 0.778 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6326, 4482, 3096 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.632 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.124, 1.03 |
No. of reflections | 4482 |
No. of parameters | 298 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.32 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).
Acknowledgements
We thank the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320) and the Analysis and Testing Foundation of Northeast Normal University for support.
References
Bbadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122–6130. Google Scholar
Blake, A. B., Chipperfield, J. R., Hussain, W., Paschke, R. & Sinn, E. (1995). Inorg. Chem. 34, 1125–1129. CSD CrossRef CAS Web of Science Google Scholar
Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Paschke, P., Balkow, D. & Sinn, E. (2002). Inorg. Chem. 41, 1949–1953. Web of Science CSD CrossRef PubMed CAS Google Scholar
Shamim, M. T., Ukena, D., Padgett, W. L., Hong, O. & Daly, J. W. (1988). J. Med. Chem. 31, 613–617. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There is a great interest in the use of Schiff base metal complexes as symmetrical and unsymmetrical liquid crystal compounds, because of their ready chemical modifiability (Paschke et al., 2002). Substitution around the aromatic rings can drastically influence the structures and the properties of liquid crystal compounds. Many symmetrically substituted Salen-copper complexes reported are characterized by high melting and clearing temperatures, whereby detailed investigation is difficult because of decomposition after entering the SA phase (Blake et al., 1995). This work was incomplete in lacking direct structural evidence and the absence of ways to lower the melt temperatures. Afterwards, a series of asymmetrically substituted Salen-copper(II) complexes and ways of decreasing the melting temperatures by lateral and unsymmetrical substitution were reported (Paschke et al., 2002). To further widen the scope of application of such compounds, we synthesized a new salen copper(II) compound and its structure is described in this paper.
As shown in Fig. 1, the title compound CuC22H22N2O8 is a tetradentate salen Schiff base complex. The CuII ion has a nearly square-planar geometry, being coordinated by two N atoms and two O atoms from the Schiff base ligand consisting of two Cu—O bonds [Cu(1)—O(1) = 1.897 (3) Å and Cu(1)—O(2) = 1.894 (2) Å], and two Cu—N bonds [Cu(1)—N(1) = 1.941 (3) Å and Cu(1)—N(2) = 1.922 (3) Å]. These bond distances are within the normal range observed in similar complexes (Bbadbhade & Srinivas, 1993). The two chemically equivalent halves of the molecule are crystallographically independent. One of the carboxylic acid methyl ester units is located in the main plane of the molecule, the other is rotated by 65.3 (5)° with respect to this unit.
As shown in Fig. 2, there are π–π stacking interactions between adjacent six-membered chelate rings, with a centroid–centroid distance of 3.602 (2) Å [symmetry code: -x, -y, 1 - z], which leads to the formation of π-stacked dimers of the title complex.