organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(5-chloro-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 13 October 2008; accepted 15 October 2008; online 18 October 2008)

The title compound, C12H11ClO4S, was prepared by the oxidation of methyl 2-(5-chloro-3-methyl­sulfanyl-1-benzofuran-2-yl)acetate with 3-chloro­peroxy­benzoic acid. The O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The crystal structure is stabilized by aromatic ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid-to-centroid distance = 3.809 (2) Å], and by C—H⋯π inter­actions between a methyl H atom and the furan ring of an adjacent mol­ecule. In addition, the crystal structure exhibits inter­molecular C—H⋯O hydrogen bonds.

Related literature

For details of the pharmacological activities of benzofuran compounds, see: Ward (1999[Ward, R. S. (1999). Nat. Prod. Rep. 16, 75-96.]). For the crystal structures of similar 2-(3-methyl­sulfinyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3832.], 2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1711.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11ClO4S

  • Mr = 286.72

  • Triclinic, [P \overline 1]

  • a = 7.8910 (5) Å

  • b = 8.9416 (6) Å

  • c = 10.4048 (7) Å

  • α = 73.774 (1)°

  • β = 78.743 (1)°

  • γ = 68.559 (1)°

  • V = 652.55 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 298 (2) K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.827, Tmax = 0.907

  • 3753 measured reflections

  • 2525 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.06

  • 2525 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11CCg1i 0.96 2.92 3.858 (2) 165
C3—H3⋯O4ii 0.94 (2) 2.41 (2) 3.320 (3) 162.7 (17)
C9—H9B⋯O1iii 0.97 2.59 3.550 (2) 172
C9—H9A⋯O4iv 0.97 2.23 3.183 (3) 169
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran derivatives occur widely in natural products and show a variety of interesting pharmacological activities such as antimicrobial, fungicidal, insecticidal and antioxidant properties (Ward, 1999). As a part of our ongoing studies on the synthesis and structure of 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetic acid analogues, the crystal structure of ethyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2007) and methyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008) have been described in the literature. Here we report the crystal structure of the title compound, methyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.011 (2) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by aromatic ππ stacking interactions between the benzene rings of adjacent molecules. The Cg2···Cg2ii distance is 3.809 (2) Å (Cg2 is the centroid of the C2–C7 benzene ring; symmetry code as in Fig. 2). The molecular packing is further stabilized by C—H···π interactions between a methyl H atom and the furan ring of the benzofuran uint, with a C11—H11C···Cg1i separation of 2.92 Å (Fig. 2 and Table 1; Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring). Additionally, intermolecular C—H···O hydrogen bonds in the structure were observed (Table 1).

Related literature top

For details of the pharmacological activities of benzofuran compounds, see: Ward (1999). For the crystal structures of similar 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2007, 2008).

Experimental top

77% 3-Chloroperoxybenzoic acid (292 mg, 1.3 mmol) was added in small portions to a stirred solution of methyl 2-(5-chloro-3-methylsulfanyl-1-benzofuran-2-yl)acetate (325 mg, 1.2 mmol) in dichloromethane (40 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 77%, m.p. 415–416 K; Rf = 0.72 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 3.07 (s, 3H), 3.75 (s, 3H), 4.05 (s, 2H), 7.34 (dd, J = 8.76 Hz and J = 1.80 Hz, 1H), 7.44 (d, J = 8.80 Hz, 1H), 7.90 (d, J = 1.80 Hz, 1H); EI–MS 288 [M+2], 286[M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), and 0.96 Å (methyl) H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) (aromatic & methylene), and 1.5Ueq(C) (methyl) H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. ππ and C—H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) x, y + 1, z; (ii) -x, -y + 1, -z + 2; (iii) x, y - 1, z.]
Methyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C12H11ClO4SZ = 2
Mr = 286.72F(000) = 296
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P_1Melting point = 415–416 K
a = 7.8910 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9416 (6) ÅCell parameters from 2313 reflections
c = 10.4048 (7) Åθ = 2.8–28.2°
α = 73.774 (1)°µ = 0.46 mm1
β = 78.743 (1)°T = 298 K
γ = 68.559 (1)°Block, colourless
V = 652.55 (7) Å30.40 × 0.40 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2525 independent reflections
Radiation source: fine-focus sealed tube2123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.5°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 117
Tmin = 0.827, Tmax = 0.907l = 1212
3753 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2053P]
where P = (Fo2 + 2Fc2)/3
2525 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H11ClO4Sγ = 68.559 (1)°
Mr = 286.72V = 652.55 (7) Å3
Triclinic, P1Z = 2
a = 7.8910 (5) ÅMo Kα radiation
b = 8.9416 (6) ŵ = 0.46 mm1
c = 10.4048 (7) ÅT = 298 K
α = 73.774 (1)°0.40 × 0.40 × 0.20 mm
β = 78.743 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2525 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2123 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.907Rint = 0.012
3753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
2525 reflectionsΔρmin = 0.25 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.22541 (8)0.20560 (7)0.87139 (8)0.0834 (2)
S0.23616 (7)0.63233 (7)0.54121 (5)0.05176 (17)
O10.33659 (17)0.45642 (16)0.92043 (12)0.0468 (3)
O20.5278 (2)0.89402 (19)0.72451 (19)0.0728 (5)
O30.2521 (2)0.9006 (2)0.69823 (19)0.0748 (5)
O40.2462 (2)0.4995 (2)0.47609 (15)0.0688 (4)
C10.2400 (2)0.5423 (2)0.71481 (17)0.0429 (4)
C20.1418 (2)0.4347 (2)0.79676 (17)0.0424 (4)
C30.0067 (3)0.3789 (2)0.7780 (2)0.0489 (4)
H30.040 (3)0.409 (3)0.694 (2)0.053 (6)*
C40.0519 (3)0.2747 (2)0.8878 (2)0.0555 (5)
C50.0180 (3)0.2229 (3)1.0116 (2)0.0596 (5)
H50.02540.15111.08180.072*
C60.1517 (3)0.2778 (2)1.0307 (2)0.0556 (5)
H60.20070.24471.11240.067*
C70.2087 (2)0.3845 (2)0.92181 (19)0.0450 (4)
C80.3537 (2)0.5507 (2)0.79220 (18)0.0433 (4)
C90.4870 (3)0.6396 (2)0.7667 (2)0.0494 (4)
H9A0.58010.60240.69590.059*
H9B0.54700.61050.84750.059*
C100.4045 (3)0.8245 (3)0.72678 (19)0.0489 (4)
C110.4682 (5)1.0733 (3)0.6855 (4)0.1092 (12)
H11A0.41581.11040.60160.164*
H11B0.57131.10980.67540.164*
H11C0.37821.11800.75370.164*
C120.0024 (3)0.7661 (3)0.5437 (2)0.0661 (6)
H12A0.02230.82970.45430.099*
H12B0.01830.83900.60180.099*
H12C0.07720.70110.57640.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0594 (4)0.0550 (3)0.1360 (6)0.0274 (3)0.0214 (4)0.0029 (4)
S0.0541 (3)0.0652 (3)0.0390 (3)0.0251 (2)0.0121 (2)0.0044 (2)
O10.0496 (7)0.0499 (7)0.0406 (7)0.0133 (6)0.0141 (5)0.0075 (5)
O20.0579 (9)0.0575 (9)0.1130 (14)0.0244 (7)0.0186 (9)0.0208 (9)
O30.0557 (9)0.0564 (9)0.1072 (13)0.0179 (7)0.0286 (9)0.0023 (9)
O40.0751 (10)0.0872 (11)0.0505 (8)0.0219 (9)0.0140 (7)0.0269 (8)
C10.0460 (9)0.0439 (10)0.0394 (9)0.0139 (8)0.0101 (7)0.0081 (7)
C20.0436 (9)0.0383 (9)0.0431 (9)0.0087 (7)0.0086 (7)0.0096 (7)
C30.0465 (10)0.0432 (10)0.0584 (12)0.0125 (8)0.0119 (9)0.0123 (9)
C40.0449 (10)0.0376 (10)0.0800 (14)0.0101 (8)0.0095 (10)0.0100 (9)
C50.0537 (12)0.0419 (10)0.0671 (13)0.0109 (9)0.0000 (10)0.0018 (9)
C60.0564 (12)0.0489 (11)0.0489 (11)0.0091 (9)0.0087 (9)0.0009 (9)
C70.0437 (9)0.0416 (10)0.0455 (10)0.0078 (8)0.0086 (7)0.0093 (8)
C80.0428 (9)0.0448 (10)0.0417 (9)0.0107 (8)0.0107 (7)0.0093 (7)
C90.0449 (10)0.0534 (11)0.0534 (11)0.0163 (8)0.0143 (8)0.0115 (9)
C100.0472 (10)0.0557 (11)0.0468 (10)0.0193 (9)0.0064 (8)0.0124 (8)
C110.095 (2)0.0580 (16)0.186 (4)0.0338 (16)0.030 (2)0.0244 (19)
C120.0659 (13)0.0603 (13)0.0673 (14)0.0152 (11)0.0275 (11)0.0009 (11)
Geometric parameters (Å, º) top
Cl—C41.748 (2)C4—C51.391 (3)
S—O41.4950 (17)C5—C61.381 (3)
S—C11.7613 (18)C5—H50.9300
S—C121.794 (2)C6—C71.380 (3)
O1—C81.376 (2)C6—H60.9300
O1—C71.377 (2)C8—C91.482 (3)
O2—C101.327 (2)C9—C101.504 (3)
O2—C111.454 (3)C9—H9A0.9700
O3—C101.194 (2)C9—H9B0.9700
C1—C81.350 (2)C11—H11A0.9600
C1—C21.443 (3)C11—H11B0.9600
C2—C71.394 (3)C11—H11C0.9600
C2—C31.396 (3)C12—H12A0.9600
C3—C41.378 (3)C12—H12B0.9600
C3—H30.94 (2)C12—H12C0.9600
O4—S—C1105.98 (9)C6—C7—C2123.72 (18)
O4—S—C12106.01 (11)C1—C8—O1110.86 (16)
C1—S—C1298.50 (10)C1—C8—C9133.29 (17)
C8—O1—C7106.35 (13)O1—C8—C9115.85 (15)
C10—O2—C11116.4 (2)C8—C9—C10114.36 (15)
C8—C1—C2107.57 (15)C8—C9—H9A108.7
C8—C1—S124.18 (15)C10—C9—H9A108.7
C2—C1—S127.95 (14)C8—C9—H9B108.7
C7—C2—C3119.64 (17)C10—C9—H9B108.7
C7—C2—C1104.63 (16)H9A—C9—H9B107.6
C3—C2—C1135.72 (17)O3—C10—O2123.6 (2)
C4—C3—C2116.31 (19)O3—C10—C9126.28 (19)
C4—C3—H3121.9 (13)O2—C10—C9110.06 (16)
C2—C3—H3121.8 (13)O2—C11—H11A109.5
C3—C4—C5123.7 (2)O2—C11—H11B109.5
C3—C4—Cl118.25 (17)H11A—C11—H11B109.5
C5—C4—Cl118.09 (16)O2—C11—H11C109.5
C6—C5—C4120.25 (19)H11A—C11—H11C109.5
C6—C5—H5119.9H11B—C11—H11C109.5
C4—C5—H5119.9S—C12—H12A109.5
C7—C6—C5116.40 (19)S—C12—H12B109.5
C7—C6—H6121.8H12A—C12—H12B109.5
C5—C6—H6121.8S—C12—H12C109.5
O1—C7—C6125.70 (17)H12A—C12—H12C109.5
O1—C7—C2110.58 (15)H12B—C12—H12C109.5
O4—S—C1—C8129.68 (17)C5—C6—C7—C21.4 (3)
C12—S—C1—C8120.88 (18)C3—C2—C7—O1178.32 (15)
O4—S—C1—C243.19 (19)C1—C2—C7—O11.0 (2)
C12—S—C1—C266.26 (19)C3—C2—C7—C61.4 (3)
C8—C1—C2—C70.4 (2)C1—C2—C7—C6179.31 (18)
S—C1—C2—C7173.45 (14)C2—C1—C8—O10.4 (2)
C8—C1—C2—C3178.8 (2)S—C1—C8—O1174.49 (13)
S—C1—C2—C37.4 (3)C2—C1—C8—C9179.77 (19)
C7—C2—C3—C40.2 (3)S—C1—C8—C96.1 (3)
C1—C2—C3—C4179.2 (2)C7—O1—C8—C11.0 (2)
C2—C3—C4—C51.0 (3)C7—O1—C8—C9179.52 (15)
C2—C3—C4—Cl178.26 (14)C1—C8—C9—C1060.7 (3)
C3—C4—C5—C61.0 (3)O1—C8—C9—C10118.61 (18)
Cl—C4—C5—C6178.22 (16)C11—O2—C10—O30.5 (4)
C4—C5—C6—C70.2 (3)C11—O2—C10—C9179.1 (2)
C8—O1—C7—C6179.08 (18)C8—C9—C10—O310.1 (3)
C8—O1—C7—C21.22 (19)C8—C9—C10—O2171.31 (17)
C5—C6—C7—O1178.32 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···Cg1i0.962.923.858 (2)165
C3—H3···O4ii0.94 (2)2.41 (2)3.320 (3)162.7 (17)
C9—H9B···O1iii0.972.593.550 (2)172
C9—H9A···O4iv0.972.233.183 (3)169
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H11ClO4S
Mr286.72
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.8910 (5), 8.9416 (6), 10.4048 (7)
α, β, γ (°)73.774 (1), 78.743 (1), 68.559 (1)
V3)652.55 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.827, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
3753, 2525, 2123
Rint0.012
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.06
No. of reflections2525
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···Cg1i0.962.923.858 (2)165.2
C3—H3···O4ii0.94 (2)2.41 (2)3.320 (3)162.7 (17)
C9—H9B···O1iii0.972.593.550 (2)172.3
C9—H9A···O4iv0.972.233.183 (3)168.9
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, R. S. (1999). Nat. Prod. Rep. 16, 75–96.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds