metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]­phenolato-κO1}bis­­(thio­cyanato-κN)zinc(II)

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 10 October 2008; accepted 29 October 2008; online 8 November 2008)

The Schiff base 2-[(4-methyl­phen­yl)imino­meth­yl]-6-methoxy­phenol (HL) forms a complex with a Zn2+ atom and two independent thio­cyanate ions, [Zn(NCS)2(C15H15NO2)2], in which two phenolate O atoms the two independent Schiff base ligands are coordinated to thee Zn2+ atom. The protonated imine N atoms are involved in an intramolecular hydrogen bond with the phenoxide group. The Zn atom is also coordinated by two N atoms of two thio­cyanate ligands. The coordination environment of the Zn atom is distorted-tetra­hedral.

Related literature

For related literature, see: Groeneveld et al. (1982[Groeneveld, L. R., Vos, G., Gorter, S. & Haasnoot, J. G. (1982). Acta Cryst. B38, 2248-2250.]); Iyere et al. (2004[Iyere, P. A., Boadi, W. Y. & Ross, L. (2004). Acta Cryst. E60, m304-m306.]); Li (2007[Li, Y. (2007). Acta Cryst. E63, m2359.]); Maurya et al. (1994[Maurya, R. C., Mishra, D. D., Rathore, R. & Jain, S. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 427-439.]); Sen et al. (2006[Sen, S., Talukder, P., Dey, S. K., Mitra, S., Rosair, G., Hughes, D. L., Yap, G. P. A., Pilet, G., Gramlich, V. & Matsushita, T. (2006). Dalton Trans. pp. 1758-1767.]); Yu et al. (2007[Yu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem. 26, 1395-1402.]); Zhang & Wang (2007[Zhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652-m653.]); Zhao et al. (2007[Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267-m268.]); Zhou & Zhao (2007[Zhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43-m44.]); Zhou et al. (2007[Zhou, M. D., Zhao, J., Li, J., Yue, S., Bao, C. N., Mink, J., Zang, S. L. & Kühn, F. E. (2007). Chem. Eur. J. 13, 158-166.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C15H15NO2)2]

  • Mr = 664.13

  • Triclinic, [P \overline 1]

  • a = 9.3830 (2) Å

  • b = 11.7146 (2) Å

  • c = 15.7328 (3) Å

  • α = 107.7830 (10)°

  • β = 99.4450 (10)°

  • γ = 94.1730 (10)°

  • V = 1610.41 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 (2) K

  • 0.23 × 0.18 × 0.07 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.817, Tmax = 0.940

  • 20903 measured reflections

  • 5672 independent reflections

  • 3679 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.02

  • 5672 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2 0.86 1.91 2.594 (3) 135
N4—H4A⋯O4 0.86 1.91 2.589 (3) 135

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff base ligands, the products of condensation of o-vanillin with amines, viewed several different kind of coordination modes with the centre metals (Sen et al., 2006). And, in early articles, researchers have reported three coordination modes of the Schiff base ligand, HL, derived from condensation of o-vanillin and p-toluidine. The first mode was that two O atoms of the Schiff base ligand were coordinated to the centre metal (Zhou & Zhao, 2007; Yu et al., 2007; Zhao et al., 2007). The second one was that the ligands coordinate to centre metal through hydroxy O atom and the azomethine N atom (Iyere et al., 2004). The third one was that the centre metal only coordinated to the phenol O atoms (Zhou et al., 2007). In fact, there was still another coordination mode of the Schiff base ligand. It was that all the three donor atoms were coordinated to centre metal, but without its X-ray crystallographic conformations (Maurya et al., 1994). Here we decribe the synthesis and crystal structure of a new zinc(II) complex (Fig. 1), Zn(HL)2(NCS)2, involing the Schiff base HL, with the third coordination mode.

As shown in Fig. 1, the tridentate ligands coordinate to the Zn atom through two phenolic hydroxy O atoms and two isothiocyanate N atoms, forming a distorted tetrahedral geometry around the metal ion. The isothiocyanate group was not used as a bridged ligand, in the same way to the other Zn complexes with the ligand of isothiocyanate (Li, 2007; Zhang & Wang, 2007; Groeneveld et al., 1982).

Related literature top

For related literature, see: Groeneveld et al. (1982); Iyere et al. (2004); Li (2007); Maurya et al. (1994); Sen et al. (2006); Yu et al. (2007); Zhang & Wang (2007); Zhao et al. (2007); Zhou & Zhao (2007); Zhou et al. (2007). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

The Schiff base was prepared by refluxing o-vanillin (10 mmol, 1.5251 g) and p-toluidine (10 mmol, 1.0700 g) in ethanol. The colour of the mixture changed from light yellow to orange. Then, for the preparation of the complex, the zinc sulfate heptahydrate (1 mmol, 0.2876 g) and potassium thiocyanate (0.1945 g, 2 mmol) in methanol (10 ml) was added to a methanol (30 ml) solution of the Schiff base ligand (2 mmol, 0.4826 g). Red crystals were obtained after 10 days.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, methylic C—H = 0.96 Å, N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N)].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Bis{6-methoxy-6-[(4-methylphenyl)iminiomethyl]phenolato- κO1}bis(thiocyanato-κN)zinc(II) top
Crystal data top
[Zn(NCS)2(C15H15NO2)2]Z = 2
Mr = 664.13F(000) = 688
Triclinic, P1Dx = 1.370 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3830 (2) ÅCell parameters from 5295 reflections
b = 11.7146 (2) Åθ = 1.4–25.0°
c = 15.7328 (3) ŵ = 0.93 mm1
α = 107.783 (1)°T = 296 K
β = 99.445 (1)°Block, red
γ = 94.173 (1)°0.23 × 0.18 × 0.07 mm
V = 1610.41 (5) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
5672 independent reflections
Radiation source: fine-focus sealed tube3679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.817, Tmax = 0.940k = 1313
20903 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
5672 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Zn(NCS)2(C15H15NO2)2]γ = 94.173 (1)°
Mr = 664.13V = 1610.41 (5) Å3
Triclinic, P1Z = 2
a = 9.3830 (2) ÅMo Kα radiation
b = 11.7146 (2) ŵ = 0.93 mm1
c = 15.7328 (3) ÅT = 296 K
α = 107.783 (1)°0.23 × 0.18 × 0.07 mm
β = 99.445 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
5672 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3679 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.940Rint = 0.034
20903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
5672 reflectionsΔρmin = 0.24 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.34621 (3)0.06960 (3)0.25870 (2)0.06223 (15)
S10.56733 (13)0.44672 (8)0.24413 (7)0.1062 (4)
O10.3477 (3)0.1704 (2)0.25578 (15)0.0886 (7)
N10.4233 (3)0.2404 (3)0.2301 (2)0.0835 (8)
C11.0051 (5)0.6559 (3)0.1553 (2)0.1179 (15)
H1B1.10120.65140.18520.177*
H1C1.01180.69750.11180.177*
H1D0.95220.69900.19960.177*
S20.05039 (9)0.03726 (9)0.14475 (6)0.0846 (3)
O20.5052 (2)0.04420 (18)0.16903 (13)0.0691 (6)
N20.1629 (3)0.0426 (3)0.22310 (19)0.0825 (8)
C20.9261 (5)0.5293 (3)0.1067 (2)0.0859 (11)
N30.7024 (2)0.1806 (2)0.03326 (16)0.0646 (7)
H3A0.63580.17430.07970.077*
O30.1914 (2)0.1235 (2)0.39664 (15)0.0845 (7)
C30.7856 (5)0.5117 (4)0.0581 (3)0.0969 (12)
H3B0.73860.57860.05710.116*
O40.3720 (2)0.03332 (17)0.37738 (12)0.0650 (5)
N40.5101 (2)0.2110 (2)0.44824 (15)0.0573 (6)
H4A0.48960.16120.40040.069*
C40.7124 (4)0.3966 (3)0.0106 (2)0.0852 (10)
H4B0.61860.38670.02320.102*
C50.7802 (3)0.2975 (3)0.0143 (2)0.0650 (8)
C60.9205 (4)0.3138 (3)0.0617 (2)0.0771 (9)
H6A0.96790.24720.06310.093*
C70.9912 (4)0.4295 (4)0.1073 (2)0.0851 (10)
H7A1.08620.43930.13950.102*
C80.7217 (3)0.0826 (3)0.0137 (2)0.0647 (8)
H8A0.79440.08790.03570.078*
C90.6408 (3)0.0308 (3)0.06162 (19)0.0576 (8)
C100.5307 (3)0.0460 (3)0.13859 (19)0.0560 (7)
C110.4505 (3)0.1624 (3)0.18105 (19)0.0637 (8)
C120.4809 (4)0.2564 (3)0.1503 (2)0.0739 (9)
H12A0.42680.33220.17940.089*
C130.5930 (4)0.2400 (3)0.0753 (2)0.0845 (10)
H13A0.61410.30510.05550.101*
C140.6699 (4)0.1308 (3)0.0321 (2)0.0747 (9)
H14A0.74350.12060.01800.090*
C150.2359 (5)0.2698 (3)0.2892 (3)0.1144 (14)
H15A0.17250.26350.34160.172*
H15B0.27830.34370.30590.172*
H15C0.18100.26970.24280.172*
C160.9135 (4)0.5296 (3)0.3767 (3)0.1022 (12)
H16A0.95940.50090.31350.153*
H16B0.86130.60890.39110.153*
H16C0.98650.53330.41330.153*
C170.8083 (3)0.4442 (3)0.3958 (2)0.0697 (9)
C180.7874 (3)0.3444 (3)0.3287 (2)0.0785 (10)
H18A0.84040.32710.26980.094*
C190.6886 (3)0.2687 (3)0.3468 (2)0.0693 (9)
H19A0.67550.20150.30020.083*
C200.6098 (3)0.2925 (3)0.4334 (2)0.0553 (7)
C210.6300 (3)0.3916 (3)0.5016 (2)0.0731 (9)
H21A0.57740.40870.56050.088*
C220.7291 (4)0.4658 (3)0.4820 (2)0.0789 (10)
H22A0.74280.53270.52870.095*
C230.4469 (3)0.2038 (3)0.52612 (19)0.0588 (8)
H23A0.46720.25730.57860.071*
C240.3500 (3)0.1207 (3)0.53644 (19)0.0538 (7)
C250.2911 (3)0.1204 (3)0.6247 (2)0.0752 (9)
H25A0.31540.17540.67510.090*
C260.1992 (3)0.0401 (3)0.6363 (2)0.0848 (10)
H26A0.16060.04040.69470.102*
C270.1621 (3)0.0424 (3)0.5618 (2)0.0712 (9)
H27A0.09740.09590.57120.085*
C280.2183 (3)0.0470 (3)0.4748 (2)0.0597 (8)
C290.3157 (3)0.0361 (2)0.45939 (19)0.0517 (7)
C300.1088 (4)0.2196 (3)0.4021 (3)0.0940 (11)
H30A0.09820.26610.34210.141*
H30B0.15830.27080.42840.141*
H30C0.01420.18650.43940.141*
C310.4834 (4)0.3275 (3)0.2352 (2)0.0683 (8)
C320.0746 (3)0.0081 (3)0.1911 (2)0.0637 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0619 (2)0.0679 (3)0.0583 (2)0.01883 (18)0.00923 (17)0.02127 (19)
S10.1446 (10)0.0636 (6)0.1012 (8)0.0019 (6)0.0117 (7)0.0221 (6)
O10.1016 (17)0.0752 (16)0.0740 (15)0.0010 (14)0.0175 (13)0.0231 (13)
N10.091 (2)0.068 (2)0.094 (2)0.0205 (17)0.0160 (17)0.0277 (17)
C10.181 (4)0.076 (3)0.079 (3)0.021 (3)0.019 (3)0.013 (2)
S20.0689 (5)0.1181 (8)0.0777 (6)0.0175 (5)0.0134 (4)0.0466 (6)
O20.0714 (13)0.0656 (13)0.0665 (13)0.0135 (11)0.0055 (10)0.0249 (11)
N20.0642 (19)0.113 (2)0.080 (2)0.0202 (17)0.0182 (16)0.0419 (18)
C20.120 (3)0.080 (3)0.055 (2)0.003 (3)0.016 (2)0.022 (2)
N30.0606 (15)0.0660 (18)0.0606 (16)0.0136 (14)0.0010 (12)0.0167 (14)
O30.0943 (16)0.0877 (16)0.0815 (16)0.0515 (13)0.0201 (13)0.0313 (13)
C30.122 (3)0.071 (3)0.107 (3)0.029 (3)0.024 (3)0.038 (2)
O40.0726 (13)0.0752 (13)0.0516 (12)0.0326 (11)0.0090 (10)0.0234 (10)
N40.0544 (14)0.0630 (15)0.0558 (15)0.0177 (12)0.0084 (12)0.0198 (12)
C40.088 (2)0.076 (3)0.092 (3)0.022 (2)0.007 (2)0.031 (2)
C50.075 (2)0.067 (2)0.0516 (18)0.0148 (18)0.0102 (16)0.0172 (17)
C60.083 (2)0.073 (2)0.066 (2)0.0131 (19)0.0044 (18)0.0201 (19)
C70.090 (3)0.085 (3)0.069 (2)0.003 (2)0.0082 (19)0.024 (2)
C80.0597 (19)0.078 (2)0.0592 (19)0.0197 (18)0.0087 (15)0.0245 (18)
C90.0566 (18)0.066 (2)0.0523 (18)0.0186 (16)0.0108 (14)0.0198 (16)
C100.0558 (18)0.062 (2)0.0538 (18)0.0172 (16)0.0166 (15)0.0193 (16)
C110.070 (2)0.072 (2)0.0499 (18)0.0168 (18)0.0112 (16)0.0187 (17)
C120.090 (2)0.061 (2)0.070 (2)0.0114 (18)0.0161 (19)0.0201 (18)
C130.104 (3)0.078 (3)0.082 (2)0.025 (2)0.008 (2)0.043 (2)
C140.078 (2)0.078 (2)0.070 (2)0.018 (2)0.0012 (18)0.032 (2)
C150.125 (3)0.088 (3)0.098 (3)0.015 (3)0.027 (3)0.015 (2)
C160.097 (3)0.097 (3)0.128 (3)0.054 (2)0.022 (2)0.050 (2)
C170.068 (2)0.064 (2)0.088 (3)0.0226 (17)0.0203 (19)0.0348 (19)
C180.083 (2)0.081 (2)0.074 (2)0.0329 (19)0.0022 (18)0.031 (2)
C190.079 (2)0.067 (2)0.063 (2)0.0283 (17)0.0113 (17)0.0206 (17)
C200.0506 (17)0.0580 (18)0.0591 (19)0.0140 (14)0.0116 (14)0.0195 (15)
C210.085 (2)0.071 (2)0.061 (2)0.0288 (18)0.0097 (17)0.0163 (17)
C220.090 (2)0.068 (2)0.080 (2)0.0352 (19)0.024 (2)0.0155 (19)
C230.0541 (17)0.066 (2)0.0525 (18)0.0096 (15)0.0063 (14)0.0161 (15)
C240.0471 (16)0.0634 (19)0.0547 (18)0.0124 (14)0.0087 (14)0.0237 (15)
C250.072 (2)0.100 (3)0.054 (2)0.0248 (19)0.0032 (16)0.0266 (18)
C260.078 (2)0.117 (3)0.068 (2)0.026 (2)0.0025 (19)0.047 (2)
C270.060 (2)0.082 (2)0.086 (3)0.0214 (17)0.0061 (18)0.049 (2)
C280.0475 (17)0.068 (2)0.071 (2)0.0136 (15)0.0096 (15)0.0323 (18)
C290.0443 (16)0.0576 (18)0.0579 (19)0.0072 (14)0.0064 (14)0.0271 (15)
C300.096 (3)0.082 (2)0.124 (3)0.048 (2)0.035 (2)0.047 (2)
C310.084 (2)0.0578 (18)0.0596 (19)0.0249 (14)0.0083 (17)0.0139 (17)
C320.0567 (19)0.078 (2)0.059 (2)0.0226 (17)0.0036 (14)0.0260 (16)
Geometric parameters (Å, º) top
Zn1—N21.928 (3)C10—C111.415 (4)
Zn1—O41.9531 (19)C11—C121.362 (4)
Zn1—N11.965 (3)C12—C131.400 (4)
Zn1—O21.9837 (18)C12—H12A0.9300
S1—C311.609 (4)C13—C141.339 (4)
O1—C111.367 (3)C13—H13A0.9300
O1—C151.414 (4)C14—H14A0.9300
N1—C311.160 (4)C15—H15A0.9600
C1—C21.514 (5)C15—H15B0.9600
C1—H1B0.9600C15—H15C0.9600
C1—H1C0.9600C16—C171.516 (4)
C1—H1D0.9600C16—H16A0.9600
S2—C321.617 (4)C16—H16B0.9600
O2—C101.308 (3)C16—H16C0.9600
N2—C321.147 (4)C17—C181.367 (4)
C2—C71.361 (5)C17—C221.373 (4)
C2—C31.377 (5)C18—C191.383 (4)
N3—C81.293 (3)C18—H18A0.9300
N3—C51.421 (4)C19—C201.374 (4)
N3—H3A0.8600C19—H19A0.9300
O3—C281.357 (3)C20—C211.368 (4)
O3—C301.428 (3)C21—C221.380 (4)
C3—C41.389 (5)C21—H21A0.9300
C3—H3B0.9300C22—H22A0.9300
O4—C291.301 (3)C23—C241.406 (4)
N4—C231.301 (3)C23—H23A0.9300
N4—C201.427 (3)C24—C251.409 (4)
N4—H4A0.8600C24—C291.413 (4)
C4—C51.375 (4)C25—C261.353 (4)
C4—H4B0.9300C25—H25A0.9300
C5—C61.371 (4)C26—C271.386 (4)
C6—C71.382 (4)C26—H26A0.9300
C6—H6A0.9300C27—C281.366 (4)
C7—H7A0.9300C27—H27A0.9300
C8—C91.401 (4)C28—C291.430 (4)
C8—H8A0.9300C30—H30A0.9600
C9—C101.413 (4)C30—H30B0.9600
C9—C141.414 (4)C30—H30C0.9600
N2—Zn1—O4117.69 (10)C13—C14—H14A119.5
N2—Zn1—N1114.93 (12)C9—C14—H14A119.5
O4—Zn1—N1113.62 (10)O1—C15—H15A109.5
N2—Zn1—O2108.86 (10)O1—C15—H15B109.5
O4—Zn1—O2105.37 (7)H15A—C15—H15B109.5
N1—Zn1—O292.68 (10)O1—C15—H15C109.5
C11—O1—C15118.8 (3)H15A—C15—H15C109.5
C31—N1—Zn1160.9 (3)H15B—C15—H15C109.5
C2—C1—H1B109.5C17—C16—H16A109.5
C2—C1—H1C109.5C17—C16—H16B109.5
H1B—C1—H1C109.5H16A—C16—H16B109.5
C2—C1—H1D109.5C17—C16—H16C109.5
H1B—C1—H1D109.5H16A—C16—H16C109.5
H1C—C1—H1D109.5H16B—C16—H16C109.5
C10—O2—Zn1133.72 (19)C18—C17—C22117.7 (3)
C32—N2—Zn1161.8 (3)C18—C17—C16121.7 (3)
C7—C2—C3117.6 (3)C22—C17—C16120.6 (3)
C7—C2—C1121.8 (4)C17—C18—C19121.0 (3)
C3—C2—C1120.6 (4)C17—C18—H18A119.5
C8—N3—C5126.5 (3)C19—C18—H18A119.5
C8—N3—H3A116.8C20—C19—C18120.3 (3)
C5—N3—H3A116.8C20—C19—H19A119.8
C28—O3—C30118.5 (2)C18—C19—H19A119.8
C2—C3—C4121.7 (3)C21—C20—C19119.5 (3)
C2—C3—H3B119.2C21—C20—N4122.7 (3)
C4—C3—H3B119.2C19—C20—N4117.8 (3)
C29—O4—Zn1131.10 (17)C20—C21—C22119.3 (3)
C23—N4—C20127.2 (2)C20—C21—H21A120.4
C23—N4—H4A116.4C22—C21—H21A120.4
C20—N4—H4A116.4C17—C22—C21122.2 (3)
C5—C4—C3119.2 (3)C17—C22—H22A118.9
C5—C4—H4B120.4C21—C22—H22A118.9
C3—C4—H4B120.4N4—C23—C24124.6 (3)
C6—C5—C4119.6 (3)N4—C23—H23A117.7
C6—C5—N3122.0 (3)C24—C23—H23A117.7
C4—C5—N3118.4 (3)C23—C24—C25119.1 (3)
C5—C6—C7119.8 (3)C23—C24—C29120.6 (2)
C5—C6—H6A120.1C25—C24—C29120.4 (2)
C7—C6—H6A120.1C26—C25—C24120.1 (3)
C2—C7—C6122.0 (3)C26—C25—H25A119.9
C2—C7—H7A119.0C24—C25—H25A119.9
C6—C7—H7A119.0C25—C26—C27120.5 (3)
N3—C8—C9124.7 (3)C25—C26—H26A119.7
N3—C8—H8A117.7C27—C26—H26A119.7
C9—C8—H8A117.7C28—C27—C26121.5 (3)
C8—C9—C10120.7 (3)C28—C27—H27A119.2
C8—C9—C14119.4 (3)C26—C27—H27A119.2
C10—C9—C14119.9 (3)O3—C28—C27127.2 (3)
O2—C10—C9121.0 (3)O3—C28—C29113.0 (3)
O2—C10—C11121.8 (3)C27—C28—C29119.8 (3)
C9—C10—C11117.2 (3)O4—C29—C24121.1 (2)
C12—C11—O1124.9 (3)O4—C29—C28121.3 (3)
C12—C11—C10121.3 (3)C24—C29—C28117.6 (3)
O1—C11—C10113.8 (3)O3—C30—H30A109.5
C11—C12—C13120.6 (3)O3—C30—H30B109.5
C11—C12—H12A119.7H30A—C30—H30B109.5
C13—C12—H12A119.7O3—C30—H30C109.5
C14—C13—C12120.1 (3)H30A—C30—H30C109.5
C14—C13—H13A119.9H30B—C30—H30C109.5
C12—C13—H13A119.9N1—C31—S1178.8 (3)
C13—C14—C9121.0 (3)N2—C32—S2178.7 (3)
N2—Zn1—N1—C31147.9 (8)O1—C11—C12—C13177.1 (3)
O4—Zn1—N1—C318.2 (9)C10—C11—C12—C130.1 (5)
O2—Zn1—N1—C3199.8 (8)C11—C12—C13—C141.1 (5)
N2—Zn1—O2—C1055.9 (3)C12—C13—C14—C90.7 (5)
O4—Zn1—O2—C1071.2 (3)C8—C9—C14—C13178.8 (3)
N1—Zn1—O2—C10173.4 (3)C10—C9—C14—C131.0 (5)
O4—Zn1—N2—C3294.6 (10)C22—C17—C18—C190.7 (5)
N1—Zn1—N2—C32127.4 (10)C16—C17—C18—C19178.5 (3)
O2—Zn1—N2—C3225.1 (10)C17—C18—C19—C200.3 (5)
C7—C2—C3—C40.6 (5)C18—C19—C20—C210.1 (5)
C1—C2—C3—C4178.0 (3)C18—C19—C20—N4179.7 (3)
N2—Zn1—O4—C2972.2 (3)C23—N4—C20—C2113.6 (5)
N1—Zn1—O4—C2966.3 (3)C23—N4—C20—C19166.0 (3)
O2—Zn1—O4—C29166.2 (2)C19—C20—C21—C220.0 (5)
C2—C3—C4—C51.9 (6)N4—C20—C21—C22179.6 (3)
C3—C4—C5—C62.5 (5)C18—C17—C22—C210.7 (5)
C3—C4—C5—N3178.7 (3)C16—C17—C22—C21178.5 (3)
C8—N3—C5—C627.7 (5)C20—C21—C22—C170.4 (5)
C8—N3—C5—C4153.5 (3)C20—N4—C23—C24179.5 (3)
C4—C5—C6—C71.7 (5)N4—C23—C24—C25178.6 (3)
N3—C5—C6—C7179.6 (3)N4—C23—C24—C290.7 (4)
C3—C2—C7—C60.2 (5)C23—C24—C25—C26179.1 (3)
C1—C2—C7—C6178.8 (3)C29—C24—C25—C261.1 (5)
C5—C6—C7—C20.3 (5)C24—C25—C26—C270.0 (5)
C5—N3—C8—C9179.0 (3)C25—C26—C27—C281.1 (5)
N3—C8—C9—C101.4 (5)C30—O3—C28—C277.6 (5)
N3—C8—C9—C14178.4 (3)C30—O3—C28—C29173.2 (3)
Zn1—O2—C10—C9168.24 (19)C26—C27—C28—O3179.6 (3)
Zn1—O2—C10—C1112.0 (4)C26—C27—C28—C291.1 (5)
C8—C9—C10—O22.6 (4)Zn1—O4—C29—C24179.42 (18)
C14—C9—C10—O2177.6 (3)Zn1—O4—C29—C281.2 (4)
C8—C9—C10—C11177.7 (3)C23—C24—C29—O40.4 (4)
C14—C9—C10—C112.1 (4)C25—C24—C29—O4178.3 (3)
C15—O1—C11—C1219.6 (5)C23—C24—C29—C28179.0 (3)
C15—O1—C11—C10163.2 (3)C25—C24—C29—C281.1 (4)
O2—C10—C11—C12178.0 (3)O3—C28—C29—O41.2 (4)
C9—C10—C11—C121.7 (4)C27—C28—C29—O4179.4 (3)
O2—C10—C11—O10.7 (4)O3—C28—C29—C24179.4 (2)
C9—C10—C11—O1179.0 (2)C27—C28—C29—C240.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O20.861.912.594 (3)135
N4—H4A···O40.861.912.589 (3)135

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C15H15NO2)2]
Mr664.13
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.3830 (2), 11.7146 (2), 15.7328 (3)
α, β, γ (°)107.783 (1), 99.445 (1), 94.173 (1)
V3)1610.41 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.23 × 0.18 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.817, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
20903, 5672, 3679
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.02
No. of reflections5672
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O20.8601.9122.594 (3)135.14
N4—H4A···O40.8601.9062.589 (3)135.38
 

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroeneveld, L. R., Vos, G., Gorter, S. & Haasnoot, J. G. (1982). Acta Cryst. B38, 2248–2250.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIyere, P. A., Boadi, W. Y. & Ross, L. (2004). Acta Cryst. E60, m304–m306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y. (2007). Acta Cryst. E63, m2359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaurya, R. C., Mishra, D. D., Rathore, R. & Jain, S. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 427–439.  CrossRef CAS Web of Science Google Scholar
First citationSen, S., Talukder, P., Dey, S. K., Mitra, S., Rosair, G., Hughes, D. L., Yap, G. P. A., Pilet, G., Gramlich, V. & Matsushita, T. (2006). Dalton Trans. pp. 1758–1767.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem. 26, 1395–1402.  CAS Google Scholar
First citationZhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652–m653.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.  CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43–m44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, M. D., Zhao, J., Li, J., Yue, S., Bao, C. N., Mink, J., Zang, S. L. & Kühn, F. E. (2007). Chem. Eur. J. 13, 158–166.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds