metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[3-di­methyl­amino-N-(2-pyridylmethyl­ene)propyl­amine-κ3N,N′,N′′]cadmium(II)

aJinhua Professional Technical College, Jinhua, Zhejiang 321007, People's Republic of China, and bZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: jh_ll@126.com

(Received 13 October 2008; accepted 1 November 2008; online 8 November 2008)

In the title mononuclear Cd(II) complex, [CdCl2(C11H17N3)], the Cd(II) atom is coordinated by two Cl atoms and three N atoms from the tridentate Schiff base ligand in a distorted square-pyramidal environment. The three N atoms and one Cl atom constitute the base of the pyramid, whereas the other Cl atom occupies the apical position.

Related literature

For the properties of transition metal complexes with multidentate Schiff base ligands, see: Mukherjee et al. (2004[Mukherjee, S. K., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). Inorg. Chem. 43, 2427-2434.]); Saha et al. (2003[Saha, M. K., Dey, D. K., Samanta, B., Edwards, A. J., Clegg, W. & Mitra, S. (2003). J. Chem. Soc. Dalton Trans. pp. 488-492.]). For Schiff base ligands derived from pyridine-2-carboxaldehyde and diamine acting as tridentate (NNN) ligands, see: Dalai et al. (2002[Dalai, S., Mukherjee, S. K., Drew, M. B. G., Lu, T.-H. & Chaudhuri, N. R. (2002). Inorg. Chim. Acta, 335, 85-90.]); Mukherjee et al. (2001a[Mukherjee, S. K., Dalai, S., Mostafa, G., Lu, T.-H., Rentschler, E. & Chaudhuri, N. R. (2001a). New J. Chem. 25, 1203-1207.],b[Mukherjee, S. K., Dalai, S., Zangrando, E., Lloret, F. & Chaudhuri, N. R. (2001b). Chem. Commun. pp. 1444-1445.]). For the synthesis, see: Choudhury et al. (2001[Choudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr. 31, 57-62.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C11H17N3)]

  • Mr = 374.59

  • Triclinic, [P \overline 1]

  • a = 7.6407 (15) Å

  • b = 9.0312 (18) Å

  • c = 11.860 (2) Å

  • α = 97.81 (3)°

  • β = 103.95 (3)°

  • γ = 111.11 (3)°

  • V = 718.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 293 (2) K

  • 0.27 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.631, Tmax = 0.753

  • 12281 measured reflections

  • 3251 independent reflections

  • 3149 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.050

  • S = 1.14

  • 3251 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with multidentate Schiff base ligands have been extensively studied recently for their various crystallographic features, enzymatic reactions, catalysis, electrochemical and magnetic properties (Mukherjee et al., 2004; Saha et al., 2003). Literatures (Dalai et al., 2002; Mukherjee et al., 2001a,b) revealed that Schiff base ligands derived from pyridine-2-carboxaldehyde and diamine usually act tridentate (NNN) ones. The molecule of the title complex (I) (Fig.1) comprises one cadmium(II) ion, one neutral N-(pyridin-2-yl-methylene)-3-dimethylaminopropylamine ligand and two Cl- ions. The Cd(II) atom is coordinated by two chlorine atoms and three nitrogen atoms from the tridentate ligand in a distorted square pyramidal environment. Four coordinated atoms of N(1), N(2), N(3) and Cl(1) constitute the base of the pyramid, whereas Cl(2) atom occupies the apical position.

Related literature top

For the properties of transition metal complexes with multidentate Schiff base ligands, see: Mukherjee et al. (2004); Saha et al. (2003). For Schiff base ligands derived from pyridine-2-carboxaldehyde and diamine acting as tridentate (NNN) ligands, see: Dalai et al. (2002); Mukherjee et al. (2001a,b). For the synthesis, see: Choudhury et al. (2001).

Experimental top

The tridentate Schiff base, N-(pyridin-2-yl-methylene)-3-dimethylaminopropylamine (C11H17N3), were prepared by reflux of 0.5 mmol of 3-dimethylaminopropylamine and 0.5 mmol of pyridine-2-carboxaldehyde in 10 ml of ethanol for 30 min, according to the literature method (Choudhury, et al., 2001). To 20 ml ethanolic and chloroformic solution (1:1) of the Schiff base (0.5 mmol), CdCl2.2.5H2O (0.5 mmol) in 5 ml water was added, with refluxing for 30 min. This mixture was cooled to room temperature and left to stand undisturbed. After 5 days colourless crystals (I) suitable for X-ray analysis were obtained.

Refinement top

The methyl groups were allowed to rotate to fit the electron density [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)]; the other H atoms were positioned geometrically [aromatic C—Haromatic 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Dichlorido[3-dimethylamino-N-(2-pyridylmethylene)propylamine- κ3N,N',N'']cadmium(II) top
Crystal data top
[Cd(C11H17N3)Cl2]Z = 2
Mr = 374.59F(000) = 372
Triclinic, P1Dx = 1.732 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6407 (15) ÅCell parameters from 3284 reflections
b = 9.0312 (18) Åθ = 1.8–27.5°
c = 11.860 (2) ŵ = 1.88 mm1
α = 97.81 (3)°T = 293 K
β = 103.95 (3)°Block, colourless
γ = 111.11 (3)°0.27 × 0.20 × 0.16 mm
V = 718.2 (3) Å3
Data collection top
Bruker APEX-II area-detector
diffractometer
3251 independent reflections
Radiation source: fine-focus sealed tube3149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.632, Tmax = 0.754k = 1111
12281 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0281P)2 + 0.1317P]
where P = (Fo2 + 2Fc2)/3
3251 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Cd(C11H17N3)Cl2]γ = 111.11 (3)°
Mr = 374.59V = 718.2 (3) Å3
Triclinic, P1Z = 2
a = 7.6407 (15) ÅMo Kα radiation
b = 9.0312 (18) ŵ = 1.88 mm1
c = 11.860 (2) ÅT = 293 K
α = 97.81 (3)°0.27 × 0.20 × 0.16 mm
β = 103.95 (3)°
Data collection top
Bruker APEX-II area-detector
diffractometer
3251 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3149 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.754Rint = 0.020
12281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.14Δρmax = 0.33 e Å3
3251 reflectionsΔρmin = 0.72 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.203590 (15)0.391482 (13)0.743794 (9)0.03482 (5)
Cl20.08758 (6)0.21422 (6)0.57078 (4)0.04931 (11)
Cl10.15476 (8)0.61916 (7)0.85160 (5)0.05592 (12)
N20.4378 (2)0.28768 (18)0.72437 (13)0.0403 (3)
N30.1569 (2)0.2335 (2)0.88963 (13)0.0475 (4)
N10.4442 (2)0.57453 (17)0.67777 (13)0.0367 (3)
C10.5909 (2)0.5312 (2)0.66530 (14)0.0374 (3)
C20.7401 (3)0.6249 (3)0.62553 (16)0.0472 (4)
H2A0.84080.59290.61890.057*
C30.7372 (3)0.7664 (2)0.59584 (17)0.0511 (5)
H3A0.83550.83100.56840.061*
C40.5876 (3)0.8108 (2)0.60728 (17)0.0508 (4)
H4A0.58290.90570.58730.061*
C50.4430 (3)0.7125 (2)0.64904 (17)0.0450 (4)
H5A0.34220.74350.65730.054*
C60.5781 (3)0.3739 (2)0.69156 (15)0.0422 (4)
H6A0.67500.33740.68380.051*
C70.4187 (3)0.1243 (2)0.7381 (2)0.0545 (5)
H7A0.53900.11230.73570.065*
H7B0.31090.04260.67120.065*
C80.3807 (4)0.0927 (3)0.8542 (2)0.0617 (6)
H8A0.39400.00780.86480.074*
H8B0.48170.18110.92020.074*
C90.1804 (4)0.0784 (3)0.8609 (2)0.0611 (5)
H9A0.08250.01250.78450.073*
H9B0.15050.01920.92110.073*
C100.0528 (3)0.1931 (3)0.8813 (2)0.0671 (6)
H10A0.08740.12890.93710.101*
H10B0.13600.13170.80140.101*
H10C0.07070.29240.90000.101*
C110.2795 (4)0.3281 (3)1.01250 (18)0.0676 (6)
H11A0.25520.25921.06690.101*
H11B0.24710.41921.03340.101*
H11C0.41650.36761.01740.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03228 (8)0.03880 (8)0.03500 (8)0.01555 (5)0.01208 (5)0.00852 (5)
Cl20.0374 (2)0.0603 (3)0.0398 (2)0.01477 (19)0.00686 (17)0.00374 (19)
Cl10.0643 (3)0.0572 (3)0.0562 (3)0.0338 (2)0.0266 (2)0.0059 (2)
N20.0416 (7)0.0423 (7)0.0395 (7)0.0232 (6)0.0094 (6)0.0068 (6)
N30.0484 (8)0.0496 (8)0.0342 (7)0.0104 (7)0.0097 (6)0.0114 (6)
N10.0354 (7)0.0394 (7)0.0366 (7)0.0163 (6)0.0137 (5)0.0070 (6)
C10.0317 (7)0.0468 (9)0.0297 (7)0.0156 (7)0.0076 (6)0.0024 (6)
C20.0326 (8)0.0654 (12)0.0386 (9)0.0165 (8)0.0120 (7)0.0057 (8)
C30.0444 (9)0.0539 (11)0.0396 (9)0.0032 (8)0.0164 (8)0.0050 (8)
C40.0613 (11)0.0404 (9)0.0455 (10)0.0133 (8)0.0205 (9)0.0087 (7)
C50.0500 (10)0.0421 (9)0.0476 (9)0.0212 (8)0.0205 (8)0.0101 (7)
C60.0379 (8)0.0535 (10)0.0401 (8)0.0269 (8)0.0111 (7)0.0062 (7)
C70.0593 (12)0.0429 (10)0.0631 (12)0.0289 (9)0.0131 (10)0.0075 (9)
C80.0744 (14)0.0457 (10)0.0634 (13)0.0297 (10)0.0078 (11)0.0193 (9)
C90.0699 (14)0.0435 (10)0.0601 (12)0.0121 (10)0.0175 (11)0.0188 (9)
C100.0568 (12)0.0839 (16)0.0576 (12)0.0151 (11)0.0277 (10)0.0289 (12)
C110.0787 (16)0.0705 (14)0.0348 (10)0.0200 (12)0.0046 (10)0.0076 (9)
Geometric parameters (Å, º) top
Cd1—N22.3418 (15)C4—C51.390 (3)
Cd1—N12.3627 (16)C4—H4A0.9300
Cd1—N32.3992 (16)C5—H5A0.9300
Cd1—Cl22.4624 (15)C6—H6A0.9300
Cd1—Cl12.4637 (8)C7—C81.517 (3)
N2—C61.260 (2)C7—H7A0.9700
N2—C71.465 (2)C7—H7B0.9700
N3—C111.469 (3)C8—C91.512 (3)
N3—C91.480 (3)C8—H8A0.9700
N3—C101.484 (3)C8—H8B0.9700
N1—C51.338 (2)C9—H9A0.9700
N1—C11.346 (2)C9—H9B0.9700
C1—C21.382 (2)C10—H10A0.9600
C1—C61.470 (3)C10—H10B0.9600
C2—C31.378 (3)C10—H10C0.9600
C2—H2A0.9300C11—H11A0.9600
C3—C41.370 (3)C11—H11B0.9600
C3—H3A0.9300C11—H11C0.9600
N2—Cd1—N170.27 (5)N1—C5—H5A119.0
N2—Cd1—N384.79 (6)C4—C5—H5A119.0
N1—Cd1—N3144.00 (6)N2—C6—C1120.98 (15)
N2—Cd1—Cl2102.80 (4)N2—C6—H6A119.5
N1—Cd1—Cl2109.74 (5)C1—C6—H6A119.5
N3—Cd1—Cl2100.64 (5)N2—C7—C8112.77 (17)
N2—Cd1—Cl1144.32 (5)N2—C7—H7A109.0
N1—Cd1—Cl191.30 (4)C8—C7—H7A109.0
N3—Cd1—Cl194.73 (5)N2—C7—H7B109.0
Cl2—Cd1—Cl1112.28 (3)C8—C7—H7B109.0
C6—N2—C7119.48 (16)H7A—C7—H7B107.8
C6—N2—Cd1117.01 (12)C9—C8—C7114.81 (19)
C7—N2—Cd1123.28 (12)C9—C8—H8A108.6
C11—N3—C9110.90 (18)C7—C8—H8A108.6
C11—N3—C10107.96 (18)C9—C8—H8B108.6
C9—N3—C10108.30 (18)C7—C8—H8B108.6
C11—N3—Cd1112.97 (13)H8A—C8—H8B107.5
C9—N3—Cd1113.53 (12)N3—C9—C8116.67 (17)
C10—N3—Cd1102.61 (13)N3—C9—H9A108.1
C5—N1—C1118.26 (15)C8—C9—H9A108.1
C5—N1—Cd1125.78 (12)N3—C9—H9B108.1
C1—N1—Cd1115.93 (11)C8—C9—H9B108.1
N1—C1—C2122.39 (17)H9A—C9—H9B107.3
N1—C1—C6115.78 (15)N3—C10—H10A109.5
C2—C1—C6121.77 (16)N3—C10—H10B109.5
C3—C2—C1118.88 (18)H10A—C10—H10B109.5
C3—C2—H2A120.6N3—C10—H10C109.5
C1—C2—H2A120.6H10A—C10—H10C109.5
C4—C3—C2119.15 (17)H10B—C10—H10C109.5
C4—C3—H3A120.4N3—C11—H11A109.5
C2—C3—H3A120.4N3—C11—H11B109.5
C3—C4—C5119.26 (19)H11A—C11—H11B109.5
C3—C4—H4A120.4N3—C11—H11C109.5
C5—C4—H4A120.4H11A—C11—H11C109.5
N1—C5—C4122.05 (18)H11B—C11—H11C109.5
N1—Cd1—N2—C61.15 (12)N3—Cd1—N1—C147.48 (16)
N3—Cd1—N2—C6152.45 (14)Cl2—Cd1—N1—C198.36 (11)
Cl2—Cd1—N2—C6107.80 (13)Cl1—Cd1—N1—C1147.36 (11)
Cl1—Cd1—N2—C661.59 (16)C5—N1—C1—C20.8 (2)
N1—Cd1—N2—C7173.34 (15)Cd1—N1—C1—C2178.90 (13)
N3—Cd1—N2—C733.06 (14)C5—N1—C1—C6176.60 (15)
Cl2—Cd1—N2—C766.69 (14)Cd1—N1—C1—C61.52 (18)
Cl1—Cd1—N2—C7123.92 (13)N1—C1—C2—C31.0 (3)
N2—Cd1—N3—C1193.26 (16)C6—C1—C2—C3176.24 (16)
N1—Cd1—N3—C1147.9 (2)C1—C2—C3—C40.4 (3)
Cl2—Cd1—N3—C11164.66 (15)C2—C3—C4—C50.3 (3)
Cl1—Cd1—N3—C1150.92 (16)C1—N1—C5—C40.0 (3)
N2—Cd1—N3—C934.13 (14)Cd1—N1—C5—C4177.95 (14)
N1—Cd1—N3—C979.53 (16)C3—C4—C5—N10.5 (3)
Cl2—Cd1—N3—C967.95 (14)C7—N2—C6—C1173.88 (16)
Cl1—Cd1—N3—C9178.31 (13)Cd1—N2—C6—C10.8 (2)
N2—Cd1—N3—C10150.77 (14)N1—C1—C6—N20.5 (2)
N1—Cd1—N3—C10163.83 (13)C2—C1—C6—N2177.89 (17)
Cl2—Cd1—N3—C1048.69 (14)C6—N2—C7—C8133.5 (2)
Cl1—Cd1—N3—C1065.05 (14)Cd1—N2—C7—C852.1 (2)
N2—Cd1—N1—C5176.55 (16)N2—C7—C8—C968.8 (2)
N3—Cd1—N1—C5134.56 (15)C11—N3—C9—C866.7 (2)
Cl2—Cd1—N1—C579.59 (15)C10—N3—C9—C8175.00 (18)
Cl1—Cd1—N1—C534.69 (14)Cd1—N3—C9—C861.7 (2)
N2—Cd1—N1—C11.40 (11)C7—C8—C9—N379.3 (2)

Experimental details

Crystal data
Chemical formula[Cd(C11H17N3)Cl2]
Mr374.59
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6407 (15), 9.0312 (18), 11.860 (2)
α, β, γ (°)97.81 (3), 103.95 (3), 111.11 (3)
V3)718.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.27 × 0.20 × 0.16
Data collection
DiffractometerBruker APEX-II area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.632, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
12281, 3251, 3149
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.050, 1.14
No. of reflections3251
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.72

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr. 31, 57–62.  Web of Science CSD CrossRef CAS Google Scholar
First citationDalai, S., Mukherjee, S. K., Drew, M. B. G., Lu, T.-H. & Chaudhuri, N. R. (2002). Inorg. Chim. Acta, 335, 85–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, S. K., Dalai, S., Mostafa, G., Lu, T.-H., Rentschler, E. & Chaudhuri, N. R. (2001a). New J. Chem. 25, 1203–1207.  CSD CrossRef CAS Google Scholar
First citationMukherjee, S. K., Dalai, S., Zangrando, E., Lloret, F. & Chaudhuri, N. R. (2001b). Chem. Commun. pp. 1444–1445.  Web of Science CSD CrossRef Google Scholar
First citationMukherjee, S. K., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). Inorg. Chem. 43, 2427–2434.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSaha, M. K., Dey, D. K., Samanta, B., Edwards, A. J., Clegg, W. & Mitra, S. (2003). J. Chem. Soc. Dalton Trans. pp. 488–492.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds