organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(6-chloro-3-pyridylmeth­yl)-5-methyl-1H-1,2,3-triazole-4-carboxyl­ate

aDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China, and cDepartment of Chemistry and Life Science, Xianning College, Xianning 4371000, People's Republic of China
*Correspondence e-mail: lwj_018@yahoo.com.cn

(Received 17 October 2008; accepted 21 October 2008; online 13 November 2008)

In the title compound, C12H13ClN4O2, the triazole ring carries methyl and ethoxy­carbonyl groups, and is bound via a methyl­ene bridge to a chloro­pyridine unit. There is evidence for significant electron delocalization in the triazolyl system. Intra­molecular C—H⋯O and inter­molecular C—H⋯N hydrogen bonds stabilize the structure.

Related literature

For applications of triazoles, see: Abu-Orabi et al. (1989[Abu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari'i, F. M. & Ali, A. A. S. (1989). J. Heterocycl. Chem. 26, 1461-1468.]); Fan & Katritzky (1996[Fan, W.-Q. & Katritzky, A. R. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1-126. Oxford: Pergamon.]); Dehne (1994[Dehne, H. (1994). In Methoden der Organischen Chemie (Houben-Weyl), Vol. E8d, edited by E. Schumann, pp. 305-405. Stuttgart: Thieme.]); Wang et al. (1998[Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927-1929.]). For bond-length data, see: Sasada (1984[Sasada, Y. (1984). Molecular and Crystal Structures. In Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13ClN4O2

  • Mr = 280.71

  • Monoclinic, P 21 /c

  • a = 24.984 (4) Å

  • b = 4.3919 (8) Å

  • c = 12.040 (2) Å

  • β = 94.415 (2)°

  • V = 1317.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 (2) K

  • 0.46 × 0.38 × 0.33 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 9219 measured reflections

  • 2450 independent reflections

  • 1991 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.05

  • 2450 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N3i 0.93 2.57 3.479 (3) 164
C9—H9A⋯N4ii 0.96 2.59 3.523 (3) 164
C9—H9B⋯O2 0.96 2.54 3.114 (3) 119
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

[1,2,3]-Triazoles have been widely used in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne,1994; Abu-Orabi et al., 1989). Since the structure-activity relationship is very useful in the rational design of pharmaceuticals and agrochemicals. We report here the crystal structure of the title compound, (I) (Fig. 1), which was synthesized by introducing pyridine rings into a 1,2,3-triazole molecular framework.

The C—N bonds are significantly shorter than a normal single C—N bond [1.47 Å; Sasada, 1984], and closer to the value for a C=N bond [1.28 Å; Wang et al., 1998]. This indicates significant electron delocalization in the triazolyl system.

Intramolecular C—H···O and intermolecular C—H···N hydrogen bonds contribute strongly to the stability of the molecular configuration (Table 1, Fig. 2).

Related literature top

For applications of triazoles, see: Abu-Orabi et al. (1989); Fan & Katritzky (1996); Dehne (1994); Wang et al. (1998). For bond-length data, see: Sasada (1984).

Experimental top

Ethyl acetylacetate (2 mmol) and 5-azidomethyl-2-chloropyridine (2 mmol) were added to a suspension of milled potassium carbonate (2 mmol) in DMSO (10 ml). The mixture was stirred at room temperature for 6 h (monitored by thin-layer chromatography) and poured to water (50 ml). The solid was collected by filtration, washed with water and diethyl ether, respectively, and dried to give 0.52 g of the title compound (yield 91%). Colourless crystals of (I) suitable for X-ray structure analysis were grown from acetone and petroleum ether (2:1, v/v).

Refinement top

H atoms were placed at calculated positions, with C-H distances of 0.93 (aromatic CH), 0.97 (CH3) and 0.97Å (CH2). They were refined using a riding model, for methyl H atoms, Uiso(H) = 1.5Ueq(C); for all other H atoms, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the atom labelling schemeand with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of (I), showing the formation of C—H···O and C—H···N hydrogen-bonds (dashed lines).
Ethyl 1-(6-chloro-3-pyridylmethyl)-5-methyl-1H-1,2,3- triazole-4-carboxylate top
Crystal data top
C12H13ClN4O2F(000) = 584
Mr = 280.71Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3288 reflections
a = 24.984 (4) Åθ = 3.3–25.5°
b = 4.3919 (8) ŵ = 0.29 mm1
c = 12.040 (2) ÅT = 291 K
β = 94.415 (2)°Block, colourless
V = 1317.2 (4) Å30.46 × 0.38 × 0.33 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1991 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.5°, θmin = 3.3°
ϕ and ω scansh = 3029
9219 measured reflectionsk = 55
2450 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.4886P]
where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H13ClN4O2V = 1317.2 (4) Å3
Mr = 280.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 24.984 (4) ŵ = 0.29 mm1
b = 4.3919 (8) ÅT = 291 K
c = 12.040 (2) Å0.46 × 0.38 × 0.33 mm
β = 94.415 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1991 reflections with I > 2σ(I)
9219 measured reflectionsRint = 0.023
2450 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
2450 reflectionsΔρmin = 0.23 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46436 (2)0.66788 (16)0.65329 (5)0.0704 (2)
O10.11409 (5)0.5500 (3)0.20263 (11)0.0531 (4)
O20.09737 (6)0.7643 (4)0.36514 (13)0.0737 (5)
N10.37666 (7)0.9857 (5)0.61900 (13)0.0649 (5)
N20.25163 (6)1.1289 (3)0.32725 (12)0.0424 (4)
N30.25643 (6)0.9861 (4)0.22765 (12)0.0489 (4)
N40.21318 (6)0.8240 (4)0.20603 (13)0.0471 (4)
C10.41512 (7)0.8561 (5)0.56801 (16)0.0484 (5)
C20.41911 (8)0.8610 (6)0.45476 (17)0.0593 (6)
H20.44730.76470.42280.071*
C30.37992 (8)1.0133 (6)0.39049 (16)0.0576 (6)
H30.38141.02150.31360.069*
C40.33851 (7)1.1538 (4)0.43968 (14)0.0426 (4)
C50.33924 (9)1.1340 (6)0.55394 (16)0.0625 (6)
H50.31181.23050.58850.075*
C60.29525 (8)1.3267 (5)0.37236 (17)0.0507 (5)
H6A0.28061.48110.41910.061*
H6B0.31091.42930.31130.061*
C70.20468 (7)1.0550 (4)0.36960 (14)0.0415 (4)
C80.18046 (7)0.8611 (4)0.29077 (14)0.0413 (4)
C90.18798 (9)1.1716 (5)0.47790 (16)0.0597 (6)
H9A0.20231.04220.53720.090*
H9B0.14951.17280.47640.090*
H9C0.20131.37480.48990.090*
C100.12697 (8)0.7226 (5)0.29187 (16)0.0477 (5)
C110.06017 (8)0.4189 (6)0.19684 (19)0.0606 (6)
H11A0.03360.57910.19990.073*
H11B0.05670.28240.25920.073*
C120.05159 (10)0.2481 (6)0.0894 (2)0.0700 (7)
H12A0.05550.38450.02830.105*
H12B0.01610.16230.08330.105*
H12C0.07760.08780.08780.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0538 (3)0.0928 (5)0.0629 (4)0.0083 (3)0.0057 (2)0.0110 (3)
O10.0436 (7)0.0630 (9)0.0533 (8)0.0077 (6)0.0074 (6)0.0061 (7)
O20.0623 (9)0.1011 (13)0.0607 (9)0.0154 (9)0.0240 (8)0.0149 (9)
N10.0567 (10)0.1005 (15)0.0377 (9)0.0146 (10)0.0050 (8)0.0002 (10)
N20.0477 (8)0.0423 (8)0.0367 (8)0.0002 (7)0.0010 (6)0.0047 (7)
N30.0515 (9)0.0565 (10)0.0392 (8)0.0032 (8)0.0071 (7)0.0004 (7)
N40.0486 (9)0.0538 (10)0.0391 (8)0.0028 (8)0.0047 (7)0.0002 (7)
C10.0432 (10)0.0573 (12)0.0444 (10)0.0048 (9)0.0015 (8)0.0010 (9)
C20.0496 (11)0.0821 (16)0.0476 (11)0.0122 (11)0.0130 (9)0.0023 (11)
C30.0568 (12)0.0809 (16)0.0362 (10)0.0054 (11)0.0110 (9)0.0024 (10)
C40.0457 (10)0.0429 (10)0.0392 (10)0.0068 (8)0.0029 (7)0.0024 (8)
C50.0570 (12)0.0909 (17)0.0404 (11)0.0193 (12)0.0078 (9)0.0083 (11)
C60.0559 (11)0.0436 (11)0.0515 (11)0.0048 (9)0.0017 (9)0.0015 (9)
C70.0480 (10)0.0422 (10)0.0342 (9)0.0067 (8)0.0022 (7)0.0066 (8)
C80.0448 (10)0.0443 (10)0.0349 (9)0.0038 (8)0.0034 (7)0.0052 (8)
C90.0690 (13)0.0692 (15)0.0416 (11)0.0010 (12)0.0092 (9)0.0065 (10)
C100.0468 (10)0.0517 (11)0.0447 (10)0.0020 (9)0.0050 (8)0.0046 (9)
C110.0448 (11)0.0683 (14)0.0692 (14)0.0100 (10)0.0085 (10)0.0011 (11)
C120.0587 (13)0.0816 (17)0.0690 (15)0.0187 (12)0.0004 (11)0.0038 (13)
Geometric parameters (Å, º) top
Cl1—C11.748 (2)C4—C61.505 (3)
O1—C101.334 (2)C5—H50.9300
O1—C111.462 (2)C6—H6A0.9700
O2—C101.208 (2)C6—H6B0.9700
N1—C11.310 (3)C7—C81.380 (3)
N1—C51.341 (3)C7—C91.490 (3)
N2—C71.354 (2)C8—C101.469 (3)
N2—N31.367 (2)C9—H9A0.9600
N2—C61.465 (2)C9—H9B0.9600
N3—N41.303 (2)C9—H9C0.9600
N4—C81.365 (2)C11—C121.496 (3)
C1—C21.375 (3)C11—H11A0.9700
C2—C31.374 (3)C11—H11B0.9700
C2—H20.9300C12—H12A0.9600
C3—C41.377 (3)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
C4—C51.377 (3)
C10—O1—C11115.24 (15)N2—C7—C8103.62 (15)
C1—N1—C5116.16 (17)N2—C7—C9123.82 (17)
C7—N2—N3110.96 (15)C8—C7—C9132.56 (18)
C7—N2—C6130.06 (16)N4—C8—C7109.36 (16)
N3—N2—C6118.97 (15)N4—C8—C10123.69 (16)
N4—N3—N2107.36 (14)C7—C8—C10126.89 (16)
N3—N4—C8108.69 (15)C7—C9—H9A109.5
N1—C1—C2124.75 (19)C7—C9—H9B109.5
N1—C1—Cl1116.01 (15)H9A—C9—H9B109.5
C2—C1—Cl1119.23 (16)C7—C9—H9C109.5
C3—C2—C1117.59 (18)H9A—C9—H9C109.5
C3—C2—H2121.2H9B—C9—H9C109.5
C1—C2—H2121.2O2—C10—O1123.45 (18)
C2—C3—C4120.15 (18)O2—C10—C8123.52 (19)
C2—C3—H3119.9O1—C10—C8113.02 (16)
C4—C3—H3119.9O1—C11—C12107.99 (17)
C5—C4—C3116.66 (18)O1—C11—H11A110.1
C5—C4—C6121.56 (17)C12—C11—H11A110.1
C3—C4—C6121.77 (17)O1—C11—H11B110.1
N1—C5—C4124.68 (19)C12—C11—H11B110.1
N1—C5—H5117.7H11A—C11—H11B108.4
C4—C5—H5117.7C11—C12—H12A109.5
N2—C6—C4112.53 (15)C11—C12—H12B109.5
N2—C6—H6A109.1H12A—C12—H12B109.5
C4—C6—H6A109.1C11—C12—H12C109.5
N2—C6—H6B109.1H12A—C12—H12C109.5
C4—C6—H6B109.1H12B—C12—H12C109.5
H6A—C6—H6B107.8
C7—N2—N3—N40.3 (2)N3—N2—C7—C80.43 (19)
C6—N2—N3—N4179.64 (15)C6—N2—C7—C8179.72 (17)
N2—N3—N4—C80.0 (2)N3—N2—C7—C9179.32 (17)
C5—N1—C1—C20.5 (3)C6—N2—C7—C90.0 (3)
C5—N1—C1—Cl1179.07 (18)N3—N4—C8—C70.3 (2)
N1—C1—C2—C30.1 (4)N3—N4—C8—C10177.11 (17)
Cl1—C1—C2—C3179.46 (17)N2—C7—C8—N40.5 (2)
C1—C2—C3—C40.1 (3)C9—C7—C8—N4179.3 (2)
C2—C3—C4—C50.5 (3)N2—C7—C8—C10176.87 (17)
C2—C3—C4—C6179.1 (2)C9—C7—C8—C103.4 (3)
C1—N1—C5—C41.0 (4)C11—O1—C10—O21.9 (3)
C3—C4—C5—N11.0 (4)C11—O1—C10—C8177.09 (17)
C6—C4—C5—N1179.6 (2)N4—C8—C10—O2177.4 (2)
C7—N2—C6—C493.0 (2)C7—C8—C10—O20.4 (3)
N3—N2—C6—C486.3 (2)N4—C8—C10—O11.6 (3)
C5—C4—C6—N296.2 (2)C7—C8—C10—O1178.57 (17)
C3—C4—C6—N285.3 (2)C10—O1—C11—C12176.97 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N3i0.932.573.479 (3)164
C9—H9A···N4ii0.962.593.523 (3)164
C9—H9B···O20.962.543.114 (3)119
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H13ClN4O2
Mr280.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)24.984 (4), 4.3919 (8), 12.040 (2)
β (°) 94.415 (2)
V3)1317.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.46 × 0.38 × 0.33
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9219, 2450, 1991
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.05
No. of reflections2450
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N3i0.932.573.479 (3)164
C9—H9A···N4ii0.962.593.523 (3)164
C9—H9B···O20.962.543.114 (3)119
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by Yunyang Medical College, and acknowledge the Sophisticated Analytical Instrument Facility, Luoyang Normal University, Luoyan, for the data collection.

References

First citationAbu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari'i, F. M. & Ali, A. A. S. (1989). J. Heterocycl. Chem. 26, 1461–1468.  CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDehne, H. (1994). In Methoden der Organischen Chemie (Houben-Weyl), Vol. E8d, edited by E. Schumann, pp. 305–405. Stuttgart: Thieme.  Google Scholar
First citationFan, W.-Q. & Katritzky, A. R. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1–126. Oxford: Pergamon.  Google Scholar
First citationSasada, Y. (1984). Molecular and Crystal Structures. In Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927–1929.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds