organic compounds
Ethyl 1-(6-chloro-3-pyridylmethyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate
aDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China, and cDepartment of Chemistry and Life Science, Xianning College, Xianning 4371000, People's Republic of China
*Correspondence e-mail: lwj_018@yahoo.com.cn
In the title compound, C12H13ClN4O2, the triazole ring carries methyl and ethoxycarbonyl groups, and is bound via a methylene bridge to a chloropyridine unit. There is evidence for significant electron delocalization in the triazolyl system. Intramolecular C—H⋯O and intermolecular C—H⋯N hydrogen bonds stabilize the structure.
Related literature
For applications of triazoles, see: Abu-Orabi et al. (1989); Fan & Katritzky (1996); Dehne (1994); Wang et al. (1998). For bond-length data, see: Sasada (1984).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808034430/at2655sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808034430/at2655Isup2.hkl
Ethyl acetylacetate (2 mmol) and 5-azidomethyl-2-chloropyridine (2 mmol) were added to a suspension of milled potassium carbonate (2 mmol) in DMSO (10 ml). The mixture was stirred at room temperature for 6 h (monitored by thin-layer chromatography) and poured to water (50 ml). The solid was collected by filtration, washed with water and diethyl ether, respectively, and dried to give 0.52 g of the title compound (yield 91%). Colourless crystals of (I) suitable for X-ray structure analysis were grown from acetone and petroleum ether (2:1, v/v).
H atoms were placed at calculated positions, with C-H distances of 0.93 (aromatic CH), 0.97 (CH3) and 0.97Å (CH2). They were refined using a riding model, for methyl H atoms, Uiso(H) = 1.5Ueq(C); for all other H atoms, Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C12H13ClN4O2 | F(000) = 584 |
Mr = 280.71 | Dx = 1.416 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3288 reflections |
a = 24.984 (4) Å | θ = 3.3–25.5° |
b = 4.3919 (8) Å | µ = 0.29 mm−1 |
c = 12.040 (2) Å | T = 291 K |
β = 94.415 (2)° | Block, colourless |
V = 1317.2 (4) Å3 | 0.46 × 0.38 × 0.33 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 1991 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 25.5°, θmin = 3.3° |
ϕ and ω scans | h = −30→29 |
9219 measured reflections | k = −5→5 |
2450 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0461P)2 + 0.4886P] where P = (Fo2 + 2Fc2)/3 |
2450 reflections | (Δ/σ)max < 0.001 |
174 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C12H13ClN4O2 | V = 1317.2 (4) Å3 |
Mr = 280.71 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 24.984 (4) Å | µ = 0.29 mm−1 |
b = 4.3919 (8) Å | T = 291 K |
c = 12.040 (2) Å | 0.46 × 0.38 × 0.33 mm |
β = 94.415 (2)° |
Bruker SMART APEX CCD area-detector diffractometer | 1991 reflections with I > 2σ(I) |
9219 measured reflections | Rint = 0.023 |
2450 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.19 e Å−3 |
2450 reflections | Δρmin = −0.23 e Å−3 |
174 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.46436 (2) | 0.66788 (16) | 0.65329 (5) | 0.0704 (2) | |
O1 | 0.11409 (5) | 0.5500 (3) | 0.20263 (11) | 0.0531 (4) | |
O2 | 0.09737 (6) | 0.7643 (4) | 0.36514 (13) | 0.0737 (5) | |
N1 | 0.37666 (7) | 0.9857 (5) | 0.61900 (13) | 0.0649 (5) | |
N2 | 0.25163 (6) | 1.1289 (3) | 0.32725 (12) | 0.0424 (4) | |
N3 | 0.25643 (6) | 0.9861 (4) | 0.22765 (12) | 0.0489 (4) | |
N4 | 0.21318 (6) | 0.8240 (4) | 0.20603 (13) | 0.0471 (4) | |
C1 | 0.41512 (7) | 0.8561 (5) | 0.56801 (16) | 0.0484 (5) | |
C2 | 0.41911 (8) | 0.8610 (6) | 0.45476 (17) | 0.0593 (6) | |
H2 | 0.4473 | 0.7647 | 0.4228 | 0.071* | |
C3 | 0.37992 (8) | 1.0133 (6) | 0.39049 (16) | 0.0576 (6) | |
H3 | 0.3814 | 1.0215 | 0.3136 | 0.069* | |
C4 | 0.33851 (7) | 1.1538 (4) | 0.43968 (14) | 0.0426 (4) | |
C5 | 0.33924 (9) | 1.1340 (6) | 0.55394 (16) | 0.0625 (6) | |
H5 | 0.3118 | 1.2305 | 0.5885 | 0.075* | |
C6 | 0.29525 (8) | 1.3267 (5) | 0.37236 (17) | 0.0507 (5) | |
H6A | 0.2806 | 1.4811 | 0.4191 | 0.061* | |
H6B | 0.3109 | 1.4293 | 0.3113 | 0.061* | |
C7 | 0.20468 (7) | 1.0550 (4) | 0.36960 (14) | 0.0415 (4) | |
C8 | 0.18046 (7) | 0.8611 (4) | 0.29077 (14) | 0.0413 (4) | |
C9 | 0.18798 (9) | 1.1716 (5) | 0.47790 (16) | 0.0597 (6) | |
H9A | 0.2023 | 1.0422 | 0.5372 | 0.090* | |
H9B | 0.1495 | 1.1728 | 0.4764 | 0.090* | |
H9C | 0.2013 | 1.3748 | 0.4899 | 0.090* | |
C10 | 0.12697 (8) | 0.7226 (5) | 0.29187 (16) | 0.0477 (5) | |
C11 | 0.06017 (8) | 0.4189 (6) | 0.19684 (19) | 0.0606 (6) | |
H11A | 0.0336 | 0.5791 | 0.1999 | 0.073* | |
H11B | 0.0567 | 0.2824 | 0.2592 | 0.073* | |
C12 | 0.05159 (10) | 0.2481 (6) | 0.0894 (2) | 0.0700 (7) | |
H12A | 0.0555 | 0.3845 | 0.0283 | 0.105* | |
H12B | 0.0161 | 0.1623 | 0.0833 | 0.105* | |
H12C | 0.0776 | 0.0878 | 0.0878 | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0538 (3) | 0.0928 (5) | 0.0629 (4) | 0.0083 (3) | −0.0057 (2) | 0.0110 (3) |
O1 | 0.0436 (7) | 0.0630 (9) | 0.0533 (8) | −0.0077 (6) | 0.0074 (6) | −0.0061 (7) |
O2 | 0.0623 (9) | 0.1011 (13) | 0.0607 (9) | −0.0154 (9) | 0.0240 (8) | −0.0149 (9) |
N1 | 0.0567 (10) | 0.1005 (15) | 0.0377 (9) | 0.0146 (10) | 0.0050 (8) | −0.0002 (10) |
N2 | 0.0477 (8) | 0.0423 (8) | 0.0367 (8) | 0.0002 (7) | 0.0010 (6) | 0.0047 (7) |
N3 | 0.0515 (9) | 0.0565 (10) | 0.0392 (8) | −0.0032 (8) | 0.0071 (7) | −0.0004 (7) |
N4 | 0.0486 (9) | 0.0538 (10) | 0.0391 (8) | −0.0028 (8) | 0.0047 (7) | −0.0002 (7) |
C1 | 0.0432 (10) | 0.0573 (12) | 0.0444 (10) | −0.0048 (9) | 0.0015 (8) | 0.0010 (9) |
C2 | 0.0496 (11) | 0.0821 (16) | 0.0476 (11) | 0.0122 (11) | 0.0130 (9) | −0.0023 (11) |
C3 | 0.0568 (12) | 0.0809 (16) | 0.0362 (10) | 0.0054 (11) | 0.0110 (9) | 0.0024 (10) |
C4 | 0.0457 (10) | 0.0429 (10) | 0.0392 (10) | −0.0068 (8) | 0.0029 (7) | −0.0024 (8) |
C5 | 0.0570 (12) | 0.0909 (17) | 0.0404 (11) | 0.0193 (12) | 0.0078 (9) | −0.0083 (11) |
C6 | 0.0559 (11) | 0.0436 (11) | 0.0515 (11) | −0.0048 (9) | −0.0017 (9) | 0.0015 (9) |
C7 | 0.0480 (10) | 0.0422 (10) | 0.0342 (9) | 0.0067 (8) | 0.0022 (7) | 0.0066 (8) |
C8 | 0.0448 (10) | 0.0443 (10) | 0.0349 (9) | 0.0038 (8) | 0.0034 (7) | 0.0052 (8) |
C9 | 0.0690 (13) | 0.0692 (15) | 0.0416 (11) | 0.0010 (12) | 0.0092 (9) | −0.0065 (10) |
C10 | 0.0468 (10) | 0.0517 (11) | 0.0447 (10) | 0.0020 (9) | 0.0050 (8) | 0.0046 (9) |
C11 | 0.0448 (11) | 0.0683 (14) | 0.0692 (14) | −0.0100 (10) | 0.0085 (10) | −0.0011 (11) |
C12 | 0.0587 (13) | 0.0816 (17) | 0.0690 (15) | −0.0187 (12) | 0.0004 (11) | −0.0038 (13) |
Cl1—C1 | 1.748 (2) | C4—C6 | 1.505 (3) |
O1—C10 | 1.334 (2) | C5—H5 | 0.9300 |
O1—C11 | 1.462 (2) | C6—H6A | 0.9700 |
O2—C10 | 1.208 (2) | C6—H6B | 0.9700 |
N1—C1 | 1.310 (3) | C7—C8 | 1.380 (3) |
N1—C5 | 1.341 (3) | C7—C9 | 1.490 (3) |
N2—C7 | 1.354 (2) | C8—C10 | 1.469 (3) |
N2—N3 | 1.367 (2) | C9—H9A | 0.9600 |
N2—C6 | 1.465 (2) | C9—H9B | 0.9600 |
N3—N4 | 1.303 (2) | C9—H9C | 0.9600 |
N4—C8 | 1.365 (2) | C11—C12 | 1.496 (3) |
C1—C2 | 1.375 (3) | C11—H11A | 0.9700 |
C2—C3 | 1.374 (3) | C11—H11B | 0.9700 |
C2—H2 | 0.9300 | C12—H12A | 0.9600 |
C3—C4 | 1.377 (3) | C12—H12B | 0.9600 |
C3—H3 | 0.9300 | C12—H12C | 0.9600 |
C4—C5 | 1.377 (3) | ||
C10—O1—C11 | 115.24 (15) | N2—C7—C8 | 103.62 (15) |
C1—N1—C5 | 116.16 (17) | N2—C7—C9 | 123.82 (17) |
C7—N2—N3 | 110.96 (15) | C8—C7—C9 | 132.56 (18) |
C7—N2—C6 | 130.06 (16) | N4—C8—C7 | 109.36 (16) |
N3—N2—C6 | 118.97 (15) | N4—C8—C10 | 123.69 (16) |
N4—N3—N2 | 107.36 (14) | C7—C8—C10 | 126.89 (16) |
N3—N4—C8 | 108.69 (15) | C7—C9—H9A | 109.5 |
N1—C1—C2 | 124.75 (19) | C7—C9—H9B | 109.5 |
N1—C1—Cl1 | 116.01 (15) | H9A—C9—H9B | 109.5 |
C2—C1—Cl1 | 119.23 (16) | C7—C9—H9C | 109.5 |
C3—C2—C1 | 117.59 (18) | H9A—C9—H9C | 109.5 |
C3—C2—H2 | 121.2 | H9B—C9—H9C | 109.5 |
C1—C2—H2 | 121.2 | O2—C10—O1 | 123.45 (18) |
C2—C3—C4 | 120.15 (18) | O2—C10—C8 | 123.52 (19) |
C2—C3—H3 | 119.9 | O1—C10—C8 | 113.02 (16) |
C4—C3—H3 | 119.9 | O1—C11—C12 | 107.99 (17) |
C5—C4—C3 | 116.66 (18) | O1—C11—H11A | 110.1 |
C5—C4—C6 | 121.56 (17) | C12—C11—H11A | 110.1 |
C3—C4—C6 | 121.77 (17) | O1—C11—H11B | 110.1 |
N1—C5—C4 | 124.68 (19) | C12—C11—H11B | 110.1 |
N1—C5—H5 | 117.7 | H11A—C11—H11B | 108.4 |
C4—C5—H5 | 117.7 | C11—C12—H12A | 109.5 |
N2—C6—C4 | 112.53 (15) | C11—C12—H12B | 109.5 |
N2—C6—H6A | 109.1 | H12A—C12—H12B | 109.5 |
C4—C6—H6A | 109.1 | C11—C12—H12C | 109.5 |
N2—C6—H6B | 109.1 | H12A—C12—H12C | 109.5 |
C4—C6—H6B | 109.1 | H12B—C12—H12C | 109.5 |
H6A—C6—H6B | 107.8 | ||
C7—N2—N3—N4 | 0.3 (2) | N3—N2—C7—C8 | −0.43 (19) |
C6—N2—N3—N4 | 179.64 (15) | C6—N2—C7—C8 | −179.72 (17) |
N2—N3—N4—C8 | 0.0 (2) | N3—N2—C7—C9 | 179.32 (17) |
C5—N1—C1—C2 | −0.5 (3) | C6—N2—C7—C9 | 0.0 (3) |
C5—N1—C1—Cl1 | 179.07 (18) | N3—N4—C8—C7 | −0.3 (2) |
N1—C1—C2—C3 | 0.1 (4) | N3—N4—C8—C10 | 177.11 (17) |
Cl1—C1—C2—C3 | −179.46 (17) | N2—C7—C8—N4 | 0.5 (2) |
C1—C2—C3—C4 | −0.1 (3) | C9—C7—C8—N4 | −179.3 (2) |
C2—C3—C4—C5 | 0.5 (3) | N2—C7—C8—C10 | −176.87 (17) |
C2—C3—C4—C6 | 179.1 (2) | C9—C7—C8—C10 | 3.4 (3) |
C1—N1—C5—C4 | 1.0 (4) | C11—O1—C10—O2 | 1.9 (3) |
C3—C4—C5—N1 | −1.0 (4) | C11—O1—C10—C8 | −177.09 (17) |
C6—C4—C5—N1 | −179.6 (2) | N4—C8—C10—O2 | −177.4 (2) |
C7—N2—C6—C4 | 93.0 (2) | C7—C8—C10—O2 | −0.4 (3) |
N3—N2—C6—C4 | −86.3 (2) | N4—C8—C10—O1 | 1.6 (3) |
C5—C4—C6—N2 | −96.2 (2) | C7—C8—C10—O1 | 178.57 (17) |
C3—C4—C6—N2 | 85.3 (2) | C10—O1—C11—C12 | 176.97 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···N3i | 0.93 | 2.57 | 3.479 (3) | 164 |
C9—H9A···N4ii | 0.96 | 2.59 | 3.523 (3) | 164 |
C9—H9B···O2 | 0.96 | 2.54 | 3.114 (3) | 119 |
Symmetry codes: (i) x, −y+5/2, z+1/2; (ii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H13ClN4O2 |
Mr | 280.71 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 291 |
a, b, c (Å) | 24.984 (4), 4.3919 (8), 12.040 (2) |
β (°) | 94.415 (2) |
V (Å3) | 1317.2 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.46 × 0.38 × 0.33 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9219, 2450, 1991 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.105, 1.05 |
No. of reflections | 2450 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.23 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···N3i | 0.93 | 2.57 | 3.479 (3) | 164 |
C9—H9A···N4ii | 0.96 | 2.59 | 3.523 (3) | 164 |
C9—H9B···O2 | 0.96 | 2.54 | 3.114 (3) | 119 |
Symmetry codes: (i) x, −y+5/2, z+1/2; (ii) x, −y+3/2, z+1/2. |
Acknowledgements
The authors gratefully acknowledge financial support of this work by Yunyang Medical College, and acknowledge the Sophisticated Analytical Instrument Facility, Luoyang Normal University, Luoyan, for the data collection.
References
Abu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari'i, F. M. & Ali, A. A. S. (1989). J. Heterocycl. Chem. 26, 1461–1468. CrossRef CAS Google Scholar
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dehne, H. (1994). In Methoden der Organischen Chemie (Houben-Weyl), Vol. E8d, edited by E. Schumann, pp. 305–405. Stuttgart: Thieme. Google Scholar
Fan, W.-Q. & Katritzky, A. R. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1–126. Oxford: Pergamon. Google Scholar
Sasada, Y. (1984). Molecular and Crystal Structures. In Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927–1929. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
[1,2,3]-Triazoles have been widely used in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne,1994; Abu-Orabi et al., 1989). Since the structure-activity relationship is very useful in the rational design of pharmaceuticals and agrochemicals. We report here the crystal structure of the title compound, (I) (Fig. 1), which was synthesized by introducing pyridine rings into a 1,2,3-triazole molecular framework.
The C—N bonds are significantly shorter than a normal single C—N bond [1.47 Å; Sasada, 1984], and closer to the value for a C=N bond [1.28 Å; Wang et al., 1998]. This indicates significant electron delocalization in the triazolyl system.
Intramolecular C—H···O and intermolecular C—H···N hydrogen bonds contribute strongly to the stability of the molecular configuration (Table 1, Fig. 2).