organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Phenyl-3H-1,5-benzodiazepin-2-yl)phenol

aCollege of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and bKey Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: minicocorain@163.com

(Received 21 October 2008; accepted 24 October 2008; online 8 November 2008)

In the title compound, C21H16N2O, the dihedral angle between the pendant aromatic rings is 74.2–(1)°.. The conformation is stabilized by an intramolecular O—H⋯N hydrogen bond.

Related literature

For the biological properties of Schiff bases, see: Abu-Hussen (2006[Abu-Hussen, A. A. A. (2006). J. Coord. Chem. 59, 157-176.]); Mladenova et al. (2002[Mladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). Eur. Polym. J. 38, 989-1000.]); Singh et al. (2006[Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147-153.]). For the applications of nitro­gen heterocyclic compounds, see: Adsule et al. (2006[Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242-7246.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N2O

  • Mr = 312.36

  • Monoclinic, P 21 /c

  • a = 6.3787 (13) Å

  • b = 16.695 (3) Å

  • c = 16.166 (4) Å

  • β = 110.72 (3)°

  • V = 1610.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: none

  • 6422 measured reflections

  • 2806 independent reflections

  • 1726 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.099

  • wR(F2) = 0.198

  • S = 1.18

  • 2806 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2 0.83 1.82 2.563 (5) 147
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Monocondensed Schiff bases use as intermediates, in the synthesis of unsymmetrical multidentate Schiff base lingands. So they are attractive. Schiff bases often exhibit important biological activities such as antifungal (Singh et al., 2006), antibacterial (Abu-Hussen et al., 2006) and antitumor (Mladenova et al., 2002). Nitrogen heterocyclic compounds have been used widely in the pharmaceutical industry, medicine and agriculture for their biological activity because of their antimicrobial, antipyretic, anti-inflammatory, and anticancer properties (Adsule et al., 2006). In this paper, we have synthesized a new Schiff base compound by the condensation of 2-(4-phenyl-3H-benzo[b][1,4]diazepin-2-yl)-phenol with diaminobenzene and characterized it by X-ray crystallography.

All the bond lengths in the compound are within normal range (Allen et al., 1987). The C9—N1 bond length is 1.289 (5) Å while C7—N2 bond length is 1.302 (5) Å that confirm they are both double bonds. Five atoms N2, C5, C7, C8 and C21 are in a plane(p1). Four atoms N1, C8, C9, C10 are in a plane(p2). The benzene ring C1—C6(p3), is approximately planar with its immediate substituent atoms C7 and O1 with a maximum deviation of 0.035 Å for O1.The benzene ring C10—C15(p4), is approximately planar with its immediate substituent atoms C9 with a maximum deviation of 0.038 Å for C9. The benzene ring C16—C21(p5). The dihedral angles formed by p1 with the p3, p4, p5 are 11.06, 80.49, 40.56°, respectively. The dihedral angles formed by p2 with the p3, p5 are 84.81, 42.56 °, respectively. The dihedral angles between p1 and p2 is 75.12 °. The molecular structure is stabilized by intramolecular O—H···N hydrogen-bonding interactions and the crystal structure is stabilized by C—H···π interactions {C13···Cg1 = 3.871, H13A···Cg1 = 3.161 Å, C13—H13A···Cg1 = 134.58° [Symmetry code: -1+x, 1/2-y, -1/2+z]; C18···Cg2 = 3.897, H18A···Cg2 = 3.126 Å, C18—H18A···Cg2 = 141.54° [Symmetry code: 1-x, -y, 1-z]; C19···Cg1 = 3.682, H19A···Cg1 = 3.169 Å, C19—H19A···Cg1 = 116.71° [Symmetry code: x, 1/2-y, 1/2+z]; C20···Cg2 = 3.685, H20A···Cg2 = 3.052 Å, C20—H20A···Cg2 = 126.85° [Symmetry code: x, 1/2-y, 1/2+z]. Cg1 and, Cg2 are the centroids of rings C1—C6, C10—C15, respectively}.

Related literature top

For the biological properties of Schiff bases, see: Abu-Hussen (2006); Mladenova et al. (2002); Singh et al. (2006). For the applications of nitrogen heterocyclic compounds, see: Adsule et al. (2006). For bond-length data, see: Allen et al. (1987). Cg1 and Cg2 are the centroids of rings C1–C6 and C10–C15, respectively.

Experimental top

1-(2-Hydroxy-phenyl)-ethanone (13.6 g, 0.10 mol), chlorosyl-benzene (14.1 g, 0.10 mol), potassa (0.42 g) refluxed in absolute piperidine (15 ml) result in the yellow product of 1-(2-hydroxy-phenyl)-3-phenyl-propane-1,3-dione. The title compound was obtained by the reaction of 1-(2-hydroxy-phenyl)-3-phenyl-propane-1,3-dione (2.04 g, 0.01 mol) and benzene-1,2-diamine (1.08 g, 0.01 mol) without solvent. Single crystals suitable for X-ray measurements were obtained by slow evaporation of an absolute ethanol at room temperature.

Refinement top

H atoms were fixed geometrically to ride on their attached atoms, with C—H = 0.93–0.97 Å and O—H = 0.84 Å, and with Uiso =1.2Ueq (C) or 1.5 Ueq (O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
2-(4-Phenyl-3H-1,5-benzodiazepin-2-yl)phenol top
Crystal data top
C21H16N2OF(000) = 656
Mr = 312.36Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2787 reflections
a = 6.3787 (13) Åθ = 2.5–26.0°
b = 16.695 (3) ŵ = 0.08 mm1
c = 16.166 (4) ÅT = 298 K
β = 110.72 (3)°Block, yellow
V = 1610.2 (7) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1726 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
Thin–slice ω scansh = 77
6422 measured reflectionsk = 919
2806 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.099Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.3681P]
where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H16N2OV = 1610.2 (7) Å3
Mr = 312.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3787 (13) ŵ = 0.08 mm1
b = 16.695 (3) ÅT = 298 K
c = 16.166 (4) Å0.20 × 0.20 × 0.10 mm
β = 110.72 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1726 reflections with I > 2σ(I)
6422 measured reflectionsRint = 0.061
2806 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0990 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.18Δρmax = 0.22 e Å3
2806 reflectionsΔρmin = 0.17 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0166 (5)0.38550 (18)0.5523 (2)0.0622 (10)
H1A0.05710.34660.57540.075*
N10.3086 (5)0.10096 (19)0.5027 (2)0.0366 (9)
N20.0328 (6)0.2397 (2)0.5993 (2)0.0407 (9)
C10.2099 (8)0.4154 (3)0.4699 (3)0.0593 (14)
H1C0.17420.46920.47180.071*
C20.3515 (9)0.3930 (3)0.4277 (3)0.0676 (16)
H2B0.41220.43170.40130.081*
C30.4051 (9)0.3140 (4)0.4237 (3)0.0678 (16)
H3A0.50270.29880.39530.081*
C40.3130 (7)0.2574 (3)0.4623 (3)0.0511 (13)
H4A0.34910.20390.45880.061*
C50.1671 (7)0.2770 (3)0.5064 (3)0.0373 (11)
C60.1186 (7)0.3587 (3)0.5099 (3)0.0456 (12)
C70.0739 (7)0.2161 (3)0.5483 (3)0.0367 (11)
C80.0850 (7)0.1287 (2)0.5304 (3)0.0377 (11)
H8A0.19080.11830.50080.045*
H8B0.12870.09800.58480.045*
C90.1498 (7)0.1083 (2)0.4713 (3)0.0351 (10)
C100.2076 (7)0.1005 (2)0.3739 (3)0.0390 (11)
C110.0546 (8)0.0730 (3)0.3376 (3)0.0517 (13)
H11A0.08830.05780.37440.062*
C120.1128 (10)0.0680 (3)0.2474 (4)0.0631 (15)
H12A0.00950.04810.22400.076*
C130.3185 (10)0.0916 (3)0.1916 (3)0.0651 (15)
H13A0.35510.08910.13070.078*
C140.4708 (8)0.1193 (3)0.2274 (3)0.0614 (15)
H14A0.61260.13500.19010.074*
C150.4170 (8)0.1242 (3)0.3174 (3)0.0515 (13)
H15A0.52180.14350.34040.062*
C160.2675 (6)0.1189 (3)0.5918 (3)0.0350 (10)
C170.3790 (7)0.0723 (3)0.6349 (3)0.0421 (11)
H17A0.46680.02940.60540.050*
C180.3612 (8)0.0887 (3)0.7201 (3)0.0550 (13)
H18A0.43210.05580.74860.066*
C190.2394 (8)0.1533 (3)0.7638 (3)0.0573 (14)
H19A0.22870.16430.82150.069*
C200.1333 (8)0.2020 (3)0.7224 (3)0.0543 (13)
H20A0.05580.24690.75150.065*
C210.1407 (7)0.1845 (3)0.6372 (3)0.0391 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.077 (2)0.041 (2)0.084 (3)0.0033 (18)0.047 (2)0.0025 (18)
N10.037 (2)0.030 (2)0.042 (2)0.0003 (16)0.0141 (17)0.0018 (17)
N20.047 (2)0.039 (2)0.040 (2)0.0006 (18)0.0201 (18)0.0035 (17)
C10.066 (3)0.042 (3)0.072 (4)0.000 (3)0.028 (3)0.003 (3)
C20.077 (4)0.060 (4)0.078 (4)0.001 (3)0.043 (3)0.021 (3)
C30.071 (4)0.069 (4)0.081 (4)0.003 (3)0.049 (3)0.011 (3)
C40.055 (3)0.046 (3)0.060 (3)0.007 (2)0.030 (3)0.010 (2)
C50.037 (3)0.039 (3)0.037 (3)0.005 (2)0.014 (2)0.002 (2)
C60.044 (3)0.040 (3)0.055 (3)0.005 (2)0.021 (2)0.001 (2)
C70.030 (2)0.038 (3)0.037 (3)0.001 (2)0.007 (2)0.001 (2)
C80.038 (3)0.036 (3)0.043 (3)0.003 (2)0.020 (2)0.002 (2)
C90.038 (2)0.019 (2)0.048 (3)0.0065 (19)0.015 (2)0.002 (2)
C100.055 (3)0.022 (2)0.047 (3)0.002 (2)0.026 (2)0.004 (2)
C110.060 (3)0.045 (3)0.053 (3)0.007 (2)0.025 (3)0.005 (2)
C120.084 (4)0.061 (4)0.058 (4)0.000 (3)0.041 (3)0.011 (3)
C130.094 (4)0.066 (4)0.041 (3)0.020 (3)0.030 (3)0.010 (3)
C140.062 (3)0.087 (4)0.033 (3)0.006 (3)0.014 (3)0.003 (3)
C150.050 (3)0.057 (3)0.050 (3)0.002 (3)0.020 (2)0.001 (2)
C160.030 (2)0.037 (3)0.037 (3)0.009 (2)0.010 (2)0.005 (2)
C170.042 (3)0.043 (3)0.044 (3)0.003 (2)0.019 (2)0.008 (2)
C180.065 (3)0.060 (4)0.044 (3)0.002 (3)0.024 (3)0.012 (3)
C190.064 (3)0.074 (4)0.041 (3)0.009 (3)0.027 (3)0.000 (3)
C200.061 (3)0.058 (4)0.047 (3)0.007 (3)0.023 (2)0.010 (3)
C210.039 (3)0.045 (3)0.035 (3)0.006 (2)0.015 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C61.353 (5)C10—C111.382 (6)
O1—H1A0.8347C10—C151.383 (6)
N1—C91.289 (5)C11—C121.375 (6)
N1—C161.402 (5)C11—H11A0.9300
N2—C71.302 (5)C12—C131.361 (7)
N2—C211.414 (5)C12—H12A0.9300
C1—C21.363 (6)C13—C141.375 (6)
C1—C61.385 (6)C13—H13A0.9300
C1—H1C0.9300C14—C151.374 (6)
C2—C31.371 (6)C14—H14A0.9300
C2—H2B0.9300C15—H15A0.9300
C3—C41.372 (6)C16—C171.396 (5)
C3—H3A0.9300C16—C211.404 (6)
C4—C51.397 (6)C17—C181.369 (6)
C4—H4A0.9300C17—H17A0.9300
C5—C61.405 (6)C18—C191.370 (6)
C5—C71.459 (6)C18—H18A0.9300
C7—C81.495 (5)C19—C201.373 (6)
C8—C91.503 (5)C19—H19A0.9300
C8—H8A0.9700C20—C211.392 (5)
C8—H8B0.9700C20—H20A0.9300
C9—C101.491 (5)
C6—O1—H1A108.9C15—C10—C9119.5 (4)
C9—N1—C16119.8 (4)C12—C11—C10120.3 (5)
C7—N2—C21121.4 (4)C12—C11—H11A119.9
C2—C1—C6120.6 (5)C10—C11—H11A119.9
C2—C1—H1C119.7C13—C12—C11121.4 (5)
C6—C1—H1C119.7C13—C12—H12A119.3
C1—C2—C3120.5 (5)C11—C12—H12A119.3
C1—C2—H2B119.7C12—C13—C14118.5 (5)
C3—C2—H2B119.7C12—C13—H13A120.7
C2—C3—C4119.1 (5)C14—C13—H13A120.7
C2—C3—H3A120.4C15—C14—C13121.1 (5)
C4—C3—H3A120.4C15—C14—H14A119.5
C3—C4—C5122.8 (5)C13—C14—H14A119.5
C3—C4—H4A118.6C14—C15—C10120.2 (4)
C5—C4—H4A118.6C14—C15—H15A119.9
C4—C5—C6116.3 (4)C10—C15—H15A119.9
C4—C5—C7121.9 (4)C17—C16—N1116.8 (4)
C6—C5—C7121.7 (4)C17—C16—C21118.3 (4)
O1—C6—C1117.4 (4)N1—C16—C21124.6 (4)
O1—C6—C5122.0 (4)C18—C17—C16121.0 (4)
C1—C6—C5120.6 (4)C18—C17—H17A119.5
N2—C7—C5118.3 (4)C16—C17—H17A119.5
N2—C7—C8119.3 (4)C17—C18—C19120.4 (5)
C5—C7—C8122.3 (4)C17—C18—H18A119.8
C7—C8—C9103.8 (3)C19—C18—H18A119.8
C7—C8—H8A111.0C18—C19—C20120.2 (5)
C9—C8—H8A111.0C18—C19—H19A119.9
C7—C8—H8B111.0C20—C19—H19A119.9
C9—C8—H8B111.0C19—C20—C21120.5 (5)
H8A—C8—H8B109.0C19—C20—H20A119.8
N1—C9—C10118.2 (4)C21—C20—H20A119.8
N1—C9—C8121.2 (4)C20—C21—C16119.5 (4)
C10—C9—C8120.6 (4)C20—C21—N2116.2 (4)
C11—C10—C15118.5 (4)C16—C21—N2124.1 (4)
C11—C10—C9122.0 (4)
C6—C1—C2—C30.3 (8)N1—C9—C10—C1531.4 (6)
C1—C2—C3—C40.5 (8)C8—C9—C10—C15145.4 (4)
C2—C3—C4—C50.6 (8)C15—C10—C11—C121.4 (7)
C3—C4—C5—C60.2 (7)C9—C10—C11—C12178.7 (4)
C3—C4—C5—C7178.9 (4)C10—C11—C12—C131.7 (8)
C2—C1—C6—O1178.5 (5)C11—C12—C13—C141.3 (8)
C2—C1—C6—C51.1 (7)C12—C13—C14—C150.8 (8)
C4—C5—C6—O1178.6 (4)C13—C14—C15—C100.6 (7)
C7—C5—C6—O10.1 (6)C11—C10—C15—C140.8 (7)
C4—C5—C6—C11.0 (6)C9—C10—C15—C14178.3 (4)
C7—C5—C6—C1179.7 (4)C9—N1—C16—C17145.2 (4)
C21—N2—C7—C5175.6 (3)C9—N1—C16—C2141.1 (6)
C21—N2—C7—C80.7 (6)N1—C16—C17—C18175.7 (4)
C4—C5—C7—N2169.8 (4)C21—C16—C17—C181.6 (6)
C6—C5—C7—N28.8 (6)C16—C17—C18—C192.4 (7)
C4—C5—C7—C814.0 (6)C17—C18—C19—C200.3 (7)
C6—C5—C7—C8167.4 (4)C18—C19—C20—C212.5 (7)
N2—C7—C8—C971.1 (5)C19—C20—C21—C163.3 (7)
C5—C7—C8—C9105.0 (4)C19—C20—C21—N2177.9 (4)
C16—N1—C9—C10171.1 (4)C17—C16—C21—C201.3 (6)
C16—N1—C9—C85.7 (6)N1—C16—C21—C20172.3 (4)
C7—C8—C9—N175.8 (4)C17—C16—C21—N2175.4 (4)
C7—C8—C9—C10100.9 (4)N1—C16—C21—N21.8 (6)
N1—C9—C10—C11151.3 (4)C7—N2—C21—C20143.7 (4)
C8—C9—C10—C1131.9 (6)C7—N2—C21—C1642.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.831.822.563 (5)147
C13—H13A···Cg1i0.933.163.871135
C18—H18A···Cg2ii0.933.133.897142
C19—H19A···Cg1iii0.933.173.682117
C20—H20A···Cg2iii0.933.053.685127
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H16N2O
Mr312.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.3787 (13), 16.695 (3), 16.166 (4)
β (°) 110.72 (3)
V3)1610.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6422, 2806, 1726
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.099, 0.198, 1.18
No. of reflections2806
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.831.822.563 (5)147
C13—H13A···Cg1i0.933.1613.871134.58
C18—H18A···Cg2ii0.933.1263.897141.54
C19—H19A···Cg1iii0.933.1693.682116.71
C20—H20A···Cg2iii0.933.0523.685126.85
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No.Q2006B02).

References

First citationAbu-Hussen, A. A. A. (2006). J. Coord. Chem. 59, 157–176.  Web of Science CrossRef CAS Google Scholar
First citationAdsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242–7246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). Eur. Polym. J. 38, 989–1000.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds