organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(5-Methyl­furan-2-yl)methyl­ene]isonicotinohydrazide

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 28 October 2008; accepted 11 November 2008; online 20 November 2008)

The title compound, C12H11N3O2, was prepared by the reaction of isonicotinohydrazide and 5-methyl­furan-2-carbalde­hyde. The pyridine ring makes a dihedral angle of 46.90 (9)° with the mean plane of the furan ring. The crystal packing is stabilized by a bifurcated inter­molecular N—H⋯(N,O) inter­action.

Related literature

For general background, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]). For bond-length data, see: Chiu et al. (1998[Chiu, P., Chen, B. & Cheng, K. F. (1998). Tetrahedron Lett. 39, 9229-9232.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O2

  • Mr = 229.24

  • Tetragonal, I 41 /a

  • a = 17.313 (3) Å

  • c = 15.749 (5) Å

  • V = 4720.5 (18) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 14901 measured reflections

  • 2911 independent reflections

  • 2151 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.04

  • 2911 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.18 2.9083 (19) 143
N2—H2A⋯N3i 0.86 2.58 3.3255 (19) 146
Symmetry code: (i) [-y+{\script{5\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received considerable attention in the literature. They are attractive from several points of view, such as the possibility of analytical application (Cimerman et al., 1997). As part of our search for new schiff base compounds we synthesized the title compound (I), and describe its structure here.

In the title compound (I) (Fig. 1), the C12—N3 bond length of 1.2812 (17)Å is comparable with C—N double bond [1.284 (2) Å] reported (Chiu et al., 1998). The pyridine ring (N1/C1–C5) makes a dihedral angle of 46.90 (9)°, with the plane of the furan ring (O2/C6–C9).

The crsytal packing is stabilized by intermolecular N—H···O, N—H···N hydrogen bonds (Table 1, Fig. 2).

Related literature top

For general background, see: Cimerman et al. (1997). For bond-length data, see: Chiu et al. (1998).

Experimental top

A mixture of the isonicotinohydrazide (0.1 mol), and 5-methylfuran-2-carbaldehyde (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.082 mol, yield 82%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances in the range 0.93-0.97 Å and N—H = 0.86 Å, and with Uiso=1.2–1.5Ueq(N,C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N'-[(5-Methylfuran-2-yl)methylene]isonicotinohydrazide top
Crystal data top
C12H11N3O2Dx = 1.290 Mg m3
Mr = 229.24Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 4665 reflections
Hall symbol: -I 4adθ = 2.9–27.2°
a = 17.313 (3) ŵ = 0.09 mm1
c = 15.749 (5) ÅT = 273 K
V = 4720.5 (18) Å3Block, yellow
Z = 160.25 × 0.20 × 0.19 mm
F(000) = 1920
Data collection top
Bruker SMART CCD area-detector
diffractometer
2151 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ϕ and ω scansh = 1623
14901 measured reflectionsk = 2222
2911 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0456P)2 + 2.257P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2911 reflectionsΔρmax = 0.17 e Å3
155 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (3)
Crystal data top
C12H11N3O2Z = 16
Mr = 229.24Mo Kα radiation
Tetragonal, I41/aµ = 0.09 mm1
a = 17.313 (3) ÅT = 273 K
c = 15.749 (5) Å0.25 × 0.20 × 0.19 mm
V = 4720.5 (18) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2151 reflections with I > 2σ(I)
14901 measured reflectionsRint = 0.028
2911 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2911 reflectionsΔρmin = 0.14 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.58347 (5)0.51303 (5)0.10958 (6)0.0482 (3)
N30.72302 (6)0.49350 (7)0.03623 (7)0.0427 (3)
C120.67464 (8)0.53721 (7)0.00223 (9)0.0423 (3)
H12A0.68660.55780.05520.051*
N20.79076 (6)0.47620 (7)0.00603 (7)0.0443 (3)
H2A0.79800.49010.05780.053*
C80.60143 (8)0.55421 (7)0.03726 (8)0.0417 (3)
O10.83833 (7)0.42110 (8)0.11302 (7)0.0750 (4)
C40.91448 (8)0.41092 (8)0.01179 (8)0.0442 (3)
C110.84487 (8)0.43670 (9)0.03721 (8)0.0460 (3)
C90.51105 (8)0.53616 (9)0.13450 (10)0.0513 (4)
C70.54259 (8)0.60254 (8)0.01805 (10)0.0505 (4)
H7A0.54020.63660.02760.061*
C30.91374 (8)0.39635 (10)0.09860 (9)0.0531 (4)
H3B0.86960.40560.13070.064*
N11.04629 (8)0.35518 (10)0.09513 (9)0.0736 (5)
C50.98256 (9)0.39741 (11)0.03194 (10)0.0640 (5)
H5A0.98530.40610.09010.077*
C20.98006 (9)0.36780 (11)0.13609 (10)0.0650 (5)
H2B0.97840.35660.19380.078*
C60.48512 (9)0.59116 (9)0.08124 (11)0.0561 (4)
H6A0.43820.61700.08510.067*
C11.04634 (10)0.37078 (13)0.01203 (12)0.0758 (6)
H1B1.09200.36330.01800.091*
C100.47813 (11)0.49172 (12)0.20700 (12)0.0760 (6)
H10A0.42770.51130.22030.114*
H10B0.51120.49710.25560.114*
H10C0.47430.43820.19180.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0471 (5)0.0516 (6)0.0459 (6)0.0050 (4)0.0087 (4)0.0080 (4)
N30.0440 (6)0.0466 (6)0.0374 (6)0.0030 (5)0.0080 (5)0.0042 (5)
C120.0482 (7)0.0410 (7)0.0377 (7)0.0013 (5)0.0043 (5)0.0035 (5)
N20.0455 (6)0.0564 (7)0.0309 (5)0.0060 (5)0.0089 (4)0.0086 (5)
C80.0469 (7)0.0390 (7)0.0393 (7)0.0019 (5)0.0027 (5)0.0022 (5)
O10.0740 (8)0.1156 (10)0.0355 (6)0.0391 (7)0.0150 (5)0.0225 (6)
C40.0432 (7)0.0547 (8)0.0346 (7)0.0036 (6)0.0027 (5)0.0012 (6)
C110.0493 (8)0.0564 (8)0.0324 (7)0.0078 (6)0.0065 (5)0.0053 (6)
C90.0462 (8)0.0537 (8)0.0540 (9)0.0000 (6)0.0107 (6)0.0028 (7)
C70.0529 (8)0.0440 (7)0.0545 (9)0.0040 (6)0.0006 (6)0.0051 (6)
C30.0429 (7)0.0785 (10)0.0379 (7)0.0050 (7)0.0012 (6)0.0047 (7)
N10.0497 (8)0.1162 (13)0.0550 (8)0.0166 (8)0.0024 (6)0.0196 (8)
C50.0577 (9)0.0961 (13)0.0381 (8)0.0182 (9)0.0062 (7)0.0109 (8)
C20.0546 (9)0.1006 (13)0.0399 (8)0.0090 (9)0.0034 (7)0.0151 (8)
C60.0468 (8)0.0544 (9)0.0672 (10)0.0085 (6)0.0047 (7)0.0014 (7)
C10.0483 (9)0.1212 (16)0.0579 (10)0.0220 (10)0.0099 (7)0.0188 (10)
C100.0718 (12)0.0839 (13)0.0722 (12)0.0022 (9)0.0292 (9)0.0134 (10)
Geometric parameters (Å, º) top
O2—C91.3735 (16)C7—C61.421 (2)
O2—C81.3793 (16)C7—H7A0.9300
N3—C121.2812 (17)C3—C21.383 (2)
N3—N21.3813 (15)C3—H3B0.9300
C12—C81.4421 (18)N1—C21.334 (2)
C12—H12A0.9300N1—C11.336 (2)
N2—C111.3450 (17)C5—C11.383 (2)
N2—H2A0.8600C5—H5A0.9300
C8—C71.3526 (19)C2—H2B0.9300
O1—C111.2293 (16)C6—H6A0.9300
C4—C51.385 (2)C1—H1B0.9300
C4—C31.3904 (19)C10—H10A0.9600
C4—C111.4990 (18)C10—H10B0.9600
C9—C61.346 (2)C10—H10C0.9600
C9—C101.490 (2)
C9—O2—C8106.92 (11)C2—C3—C4118.50 (14)
C12—N3—N2117.08 (11)C2—C3—H3B120.7
N3—C12—C8119.42 (12)C4—C3—H3B120.7
N3—C12—H12A120.3C2—N1—C1116.18 (14)
C8—C12—H12A120.3C1—C5—C4119.14 (14)
C11—N2—N3117.23 (11)C1—C5—H5A120.4
C11—N2—H2A121.4C4—C5—H5A120.4
N3—N2—H2A121.4N1—C2—C3124.47 (14)
C7—C8—O2109.55 (12)N1—C2—H2B117.8
C7—C8—C12133.77 (13)C3—C2—H2B117.8
O2—C8—C12116.66 (11)C9—C6—C7107.52 (13)
C5—C4—C3117.78 (13)C9—C6—H6A126.2
C5—C4—C11118.59 (12)C7—C6—H6A126.2
C3—C4—C11123.56 (12)N1—C1—C5123.88 (15)
O1—C11—N2122.64 (12)N1—C1—H1B118.1
O1—C11—C4120.56 (13)C5—C1—H1B118.1
N2—C11—C4116.79 (11)C9—C10—H10A109.5
C6—C9—O2109.43 (13)C9—C10—H10B109.5
C6—C9—C10135.66 (15)H10A—C10—H10B109.5
O2—C9—C10114.68 (14)C9—C10—H10C109.5
C8—C7—C6106.55 (13)H10A—C10—H10C109.5
C8—C7—H7A126.7H10B—C10—H10C109.5
C6—C7—H7A126.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.182.9083 (19)143
N2—H2A···N3i0.862.583.3255 (19)146
Symmetry code: (i) y+5/4, x1/4, z1/4.

Experimental details

Crystal data
Chemical formulaC12H11N3O2
Mr229.24
Crystal system, space groupTetragonal, I41/a
Temperature (K)273
a, c (Å)17.313 (3), 15.749 (5)
V3)4720.5 (18)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14901, 2911, 2151
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.04
No. of reflections2911
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.182.9083 (19)143
N2—H2A···N3i0.862.583.3255 (19)146
Symmetry code: (i) y+5/4, x1/4, z1/4.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiu, P., Chen, B. & Cheng, K. F. (1998). Tetrahedron Lett. 39, 9229–9232.  Web of Science CSD CrossRef CAS Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds