metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(phenanthroline-κ2N,N′)cobalt(II) tetra­fluoridoborate aceto­nitrile solvate

aMolecular Technology Unit Cell, Department of Chemistry, Walailak University, Thasala, Nakorn Si Thammarat 80161, Thailand, and bDepartment of Chemistry, Faculty of Science, University of Sheffield, Brook Hill, Sheffield S3 7HF, England
*Correspondence e-mail: hdavid@wu.ac.th

(Received 29 October 2008; accepted 7 November 2008; online 13 November 2008)

In the crystal structure of the title compound, [Co(C12H8N2)3](BF4)2·CH3CN, the mol­ecular packing involves dimers of distorted octahedrally coordinated cations which are held together by one ππ [centroid–centroid = 3.542 (4) Å] and two C—H⋯π inter­actions [2.573 (4) Å] resulting in a P4AE (Parallel Fourfold Aryl Embrace) motif. The anions are found in aryl boxes formed from the phenanthroline ligands.

Related literature

For other [Co(phen)3]2+ complexes, see: Boys et al. (1984[Boys, D., Escobar, C. & Wittke, O. (1984). Acta Cryst. C40, 1359-1362.]); Geraghty et al. (1999[Geraghty, M., McCann, M., Devereux, M. & McKee, V. (1999). Inorg. Chim. Acta, 293, 160-166.]); Russell et al. (2001[Russell, V., Scudder, M. & Dance, I. (2001). J. Chem. Soc. Dalton Trans. pp. 789-799.]); Tershansy et al. (2005[Tershansy, M. A., Goforth, A. M., Smith, M. D., Peterson, L. R. Jr & zur Loye, H.-C. (2005). Acta Cryst. E61, m1680-m1681.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H8N2)3](BF4)2·C2H3N

  • Mr = 814.22

  • Monoclinic, P 21 /n

  • a = 18.0443 (2) Å

  • b = 9.36230 (10) Å

  • c = 22.0702 (2) Å

  • β = 107.3610 (10)°

  • V = 3558.60 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 150 (2) K

  • 0.32 × 0.28 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.840, Tmax = 0.935

  • 56541 measured reflections

  • 6276 independent reflections

  • 5268 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.213

  • S = 1.03

  • 6276 reflections

  • 501 parameters

  • H-atom parameters constrained

  • Δρmax = 2.96 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N4 2.123 (4)
Co1—N2 2.129 (4)
Co1—N6 2.129 (4)
Co1—N1 2.131 (3)
Co1—N5 2.133 (4)
Co1—N3 2.142 (4)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The reaction of anhydrous cobalt(II) chloride with AgBF4 in the presence of phenanthroline yields the coordination compound tris(phenanthroline)cobalt(II) tetrafluoroborate (1), [Co(phen)3][BF4]2.MeCN. Crystals were grown by allowing ether to diffuse into a concentrated solution of the complex in MeCN. The title complex crystallizes in the space group P21/n in contrast to the related compound [Co(phen)3][BF4]2.H2O.EtOH which crystallizes in P1 (Russell et al., 2001). The structure of (1) is shown in Fig. 1 while important bond lengths and angles are given in Table 1. The cobalt centre is octahedrally coordinated with Co—N bond lengths and N—Co—N angles for the chelating phenanthroline ligands essentially identical to those reported for other [Co(phen)3]2+ complexes (Boys et al., 1984; Geraghty et al., 1999; Russell et al., 2001; Tershansy et al., 2005).

The crystal lattice of (1) contains dimers of [Co(phen)3]2+ cations in which there is a P4AE (Parallel Fourfold Aryl Embrace) motif involving one ππ [centroid···centroid 3.542 (4) Å] and two C—H···π interactions between the phenanthroline ligands as shown in Fig. 2 (Cg1 is the centroid of the ring C31–C35; Russell et al., 2001). The offset between the central aryl ring of the two phenanthroline ligands is 6.443 (3) Å and indicative of overlap of a single aryl ring (Russell et al., 2001). The dimers found in (1) are isolated from each other unlike in the structure of [Co(phen)3][BF4]2.H2O.EtOH where a further P4AE interaction results in formation of a zig-zag chain. A further difference is that the anions are not found in hydrophilic channels between chains of the cations but rather in aryl boxes formed from six phenanthroline ligands. This difference is presumeably the result of a lack of suitable hydrogen bonding solvent in the current structure.

Related literature top

For other [Co(phen)3]2+ complexes, see: Boys et al. (1984); Geraghty et al. (1999); Russell et al. (2001); Tershansy et al. (2005).

Experimental top

Cobalt(II) chloride (130 mg, 1 mmol) was suspended in MeCN (20 ml). AgBF4 (389 mg, 2 mmol) was then added resulting in precipitation of a white solid. The solution was filtered through celite to remove AgCl and phenanthroline (541 mg, 3 mmol) was added giving an orange solution. The volume of the solution was reduced in vacuo to ca. 10 ml and then layered with Et2O (60 ml). After two days yellow crystals formed (602 mg, 74%) Analysis calculated for C38H27N7B2F8Co: C 56.06, H 3.34, N 12.04%; found: C 56.27, H 3.40, N 12.41%. ESI+ MS: (m/z) Anal. Calc. 814.22; found: [M]+ 814.19.

Refinement top

Hydrogen atoms were placed geometrically and refined with a riding model and with Uiso constrained to be 1.2 (aromatic CH) or 1.5 (Me) times Ueq of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing in (1) showing the C—H···π and ππ interactions which make up the P4AE structural motif. Only selected H atoms are labelled for clarity. [Symmetry codes:(i) -x, -y, 1 - z].
Tris(phenanthroline-κ2N,N')cobalt(II) tetrafluoridoborate acetonitrile solvate top
Crystal data top
[Co(C12H8N2)3](BF4)2·C2H3NF(000) = 1652
Mr = 814.22Dx = 1.520 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9965 reflections
a = 18.0443 (2) Åθ = 2.4–24.8°
b = 9.3623 (1) ŵ = 0.57 mm1
c = 22.0702 (2) ÅT = 150 K
β = 107.361 (1)°Plate, yellow
V = 3558.60 (6) Å30.32 × 0.28 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6276 independent reflections
Radiation source: fine-focus sealed tube5268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 100 pixels mm-1θmax = 25.0°, θmin = 1.3°
ϕ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 1111
Tmin = 0.840, Tmax = 0.935l = 2626
56541 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1194P)2 + 14.1582P]
where P = (Fo2 + 2Fc2)/3
6276 reflections(Δ/σ)max < 0.001
501 parametersΔρmax = 2.96 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Co(C12H8N2)3](BF4)2·C2H3NV = 3558.60 (6) Å3
Mr = 814.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 18.0443 (2) ŵ = 0.57 mm1
b = 9.3623 (1) ÅT = 150 K
c = 22.0702 (2) Å0.32 × 0.28 × 0.12 mm
β = 107.361 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6276 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
5268 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.935Rint = 0.046
56541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.213H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1194P)2 + 14.1582P]
where P = (Fo2 + 2Fc2)/3
6276 reflectionsΔρmax = 2.96 e Å3
501 parametersΔρmin = 0.94 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.22845 (3)0.04969 (6)0.47231 (3)0.0198 (2)
N10.1221 (2)0.0494 (4)0.47236 (17)0.0223 (8)
N20.1549 (2)0.1052 (4)0.38050 (17)0.0233 (8)
N30.2689 (2)0.1362 (4)0.43523 (17)0.0235 (8)
N40.3331 (2)0.1259 (4)0.45860 (17)0.0232 (8)
N50.2832 (2)0.0047 (4)0.57022 (17)0.0235 (8)
N60.20568 (19)0.2398 (4)0.51664 (17)0.0216 (8)
C10.1066 (3)0.1261 (5)0.5179 (2)0.0252 (9)
H10.14480.13430.55680.030*
C20.0356 (3)0.1949 (5)0.5099 (2)0.0289 (10)
H20.02670.24740.54280.035*
C30.0204 (3)0.1836 (5)0.4530 (2)0.0313 (11)
H30.06750.23070.44650.038*
C40.0075 (2)0.1013 (5)0.4041 (2)0.0278 (10)
C50.0641 (3)0.0811 (6)0.3436 (2)0.0339 (11)
H50.11210.12580.33510.041*
C60.0489 (3)0.0016 (6)0.2988 (2)0.0365 (12)
H60.08720.01540.26040.044*
C70.0253 (3)0.0685 (5)0.3093 (2)0.0289 (10)
C80.0446 (3)0.1556 (6)0.2640 (2)0.0348 (11)
H80.00810.17390.22500.042*
C90.1171 (3)0.2124 (6)0.2777 (2)0.0349 (11)
H90.13030.27010.24820.042*
C100.1712 (3)0.1839 (5)0.3359 (2)0.0290 (10)
H100.22100.22130.34400.035*
C110.0829 (2)0.0478 (5)0.3671 (2)0.0237 (9)
C120.0656 (2)0.0368 (5)0.4164 (2)0.0234 (9)
C130.2350 (3)0.2627 (5)0.4210 (2)0.0312 (10)
H130.18770.27850.42880.037*
C140.2679 (3)0.3736 (5)0.3948 (2)0.0379 (12)
H140.24190.46000.38430.046*
C150.3377 (3)0.3543 (6)0.3847 (2)0.0375 (12)
H150.36050.42820.36850.045*
C160.3749 (3)0.2222 (5)0.3990 (2)0.0319 (11)
C170.4484 (3)0.1899 (7)0.3889 (2)0.0408 (13)
H170.47450.26130.37420.049*
C180.4802 (3)0.0585 (7)0.4003 (3)0.0430 (14)
H180.52730.04090.39270.052*
C190.4429 (3)0.0541 (6)0.4237 (2)0.0331 (11)
C200.4724 (3)0.1939 (6)0.4353 (2)0.0393 (12)
H200.51860.21800.42740.047*
C210.4328 (3)0.2934 (6)0.4580 (2)0.0374 (12)
H210.45210.38590.46590.045*
C220.3631 (3)0.2568 (5)0.4695 (2)0.0288 (10)
H220.33680.32610.48520.035*
C230.3720 (2)0.0255 (5)0.4363 (2)0.0242 (9)
C240.3377 (2)0.1148 (5)0.42359 (19)0.0238 (9)
C250.3210 (3)0.1131 (5)0.5963 (2)0.0315 (10)
H250.32530.18840.57010.038*
C260.3545 (3)0.1271 (7)0.6623 (3)0.0437 (14)
H260.38120.20990.67920.052*
C270.3477 (3)0.0184 (7)0.7013 (3)0.0437 (14)
H270.36960.02690.74500.052*
C280.3075 (3)0.1062 (6)0.6756 (2)0.0333 (11)
C290.2966 (3)0.2253 (6)0.7135 (2)0.0405 (13)
H290.31750.22150.75740.049*
C300.2569 (3)0.3414 (6)0.6863 (2)0.0383 (12)
H300.25060.41670.71180.046*
C310.2242 (3)0.3520 (5)0.6191 (2)0.0301 (10)
C320.1828 (3)0.4708 (5)0.5884 (3)0.0370 (12)
H320.17490.54860.61200.044*
C330.1537 (3)0.4724 (5)0.5234 (3)0.0369 (12)
H330.12580.55070.50250.044*
C340.1667 (3)0.3550 (5)0.4893 (2)0.0271 (10)
H340.14710.35720.44520.033*
C350.2344 (2)0.2377 (5)0.5808 (2)0.0235 (9)
C360.2759 (2)0.1130 (5)0.6095 (2)0.0244 (9)
B10.5917 (3)0.4996 (7)0.3923 (3)0.0366 (13)
B20.4925 (4)1.0025 (7)0.1490 (4)0.0475 (17)
F10.5174 (3)0.4621 (5)0.3646 (2)0.0922 (17)
F20.6209 (3)0.4429 (4)0.45093 (17)0.0689 (12)
F30.60229 (15)0.6448 (3)0.39024 (15)0.0399 (7)
F40.6351 (3)0.4370 (5)0.3547 (2)0.0865 (15)
F50.4886 (3)0.9846 (5)0.2141 (2)0.0738 (12)
F60.5557 (2)1.0845 (4)0.15558 (16)0.0625 (11)
F70.4259 (2)1.0742 (5)0.1195 (2)0.0742 (13)
F80.4948 (3)0.8703 (4)0.1273 (2)0.0852 (14)
C1S0.9015 (5)0.2643 (9)0.7541 (3)0.079 (2)
H1S10.89860.36100.76770.118*
H1S20.90170.26400.71060.118*
H1S30.94820.22050.78020.118*
C2S0.8353 (5)0.1856 (8)0.7595 (4)0.072 (2)
N1S0.7831 (5)0.1217 (10)0.7631 (4)0.098 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0168 (3)0.0217 (3)0.0215 (3)0.0008 (2)0.0067 (2)0.0004 (2)
N10.0199 (17)0.0226 (18)0.0255 (19)0.0003 (14)0.0086 (15)0.0029 (14)
N20.0244 (18)0.0242 (18)0.0228 (19)0.0015 (15)0.0094 (15)0.0027 (15)
N30.0224 (18)0.0256 (19)0.0237 (19)0.0007 (15)0.0086 (15)0.0003 (15)
N40.0196 (17)0.028 (2)0.0206 (18)0.0017 (15)0.0048 (14)0.0022 (15)
N50.0180 (17)0.0275 (19)0.0243 (19)0.0005 (15)0.0055 (14)0.0053 (15)
N60.0198 (17)0.0225 (18)0.0239 (19)0.0019 (14)0.0085 (14)0.0003 (14)
C10.024 (2)0.025 (2)0.029 (2)0.0014 (18)0.0118 (18)0.0010 (18)
C20.030 (2)0.027 (2)0.037 (3)0.0012 (19)0.020 (2)0.0002 (19)
C30.023 (2)0.026 (2)0.049 (3)0.0038 (18)0.016 (2)0.005 (2)
C40.019 (2)0.029 (2)0.038 (3)0.0007 (18)0.0127 (19)0.008 (2)
C50.019 (2)0.040 (3)0.039 (3)0.001 (2)0.003 (2)0.008 (2)
C60.025 (2)0.041 (3)0.036 (3)0.001 (2)0.003 (2)0.007 (2)
C70.027 (2)0.031 (2)0.027 (2)0.0050 (19)0.0053 (19)0.0032 (19)
C80.037 (3)0.040 (3)0.023 (2)0.005 (2)0.003 (2)0.002 (2)
C90.042 (3)0.039 (3)0.024 (2)0.001 (2)0.012 (2)0.002 (2)
C100.031 (2)0.031 (2)0.026 (2)0.003 (2)0.0093 (19)0.0006 (19)
C110.021 (2)0.024 (2)0.025 (2)0.0012 (17)0.0064 (18)0.0034 (17)
C120.020 (2)0.024 (2)0.027 (2)0.0009 (17)0.0081 (18)0.0053 (17)
C130.035 (3)0.027 (2)0.034 (3)0.001 (2)0.013 (2)0.0016 (19)
C140.052 (3)0.025 (2)0.034 (3)0.002 (2)0.009 (2)0.004 (2)
C150.046 (3)0.037 (3)0.032 (3)0.015 (2)0.016 (2)0.002 (2)
C160.033 (2)0.041 (3)0.021 (2)0.012 (2)0.0076 (19)0.001 (2)
C170.030 (3)0.066 (4)0.030 (3)0.012 (3)0.014 (2)0.006 (2)
C180.027 (2)0.073 (4)0.035 (3)0.003 (3)0.019 (2)0.004 (3)
C190.022 (2)0.056 (3)0.022 (2)0.002 (2)0.0085 (19)0.005 (2)
C200.024 (2)0.062 (3)0.033 (3)0.015 (2)0.011 (2)0.004 (2)
C210.033 (3)0.042 (3)0.034 (3)0.016 (2)0.006 (2)0.002 (2)
C220.028 (2)0.031 (2)0.025 (2)0.0075 (19)0.0041 (18)0.0014 (19)
C230.020 (2)0.035 (2)0.016 (2)0.0003 (18)0.0035 (16)0.0008 (17)
C240.024 (2)0.032 (2)0.015 (2)0.0033 (18)0.0057 (16)0.0008 (17)
C250.023 (2)0.036 (3)0.036 (3)0.004 (2)0.010 (2)0.008 (2)
C260.031 (3)0.056 (3)0.043 (3)0.009 (2)0.007 (2)0.023 (3)
C270.030 (3)0.068 (4)0.030 (3)0.002 (3)0.004 (2)0.016 (3)
C280.024 (2)0.052 (3)0.022 (2)0.008 (2)0.0049 (19)0.006 (2)
C290.040 (3)0.064 (4)0.018 (2)0.014 (3)0.009 (2)0.007 (2)
C300.040 (3)0.045 (3)0.034 (3)0.011 (2)0.017 (2)0.014 (2)
C310.029 (2)0.034 (3)0.032 (3)0.010 (2)0.015 (2)0.011 (2)
C320.042 (3)0.026 (2)0.051 (3)0.005 (2)0.026 (3)0.012 (2)
C330.045 (3)0.027 (3)0.045 (3)0.004 (2)0.023 (2)0.001 (2)
C340.027 (2)0.027 (2)0.030 (2)0.0017 (18)0.0120 (19)0.0040 (18)
C350.018 (2)0.028 (2)0.026 (2)0.0055 (17)0.0089 (17)0.0021 (18)
C360.0172 (19)0.033 (2)0.023 (2)0.0053 (18)0.0060 (17)0.0001 (18)
B10.035 (3)0.042 (3)0.032 (3)0.010 (3)0.008 (2)0.001 (3)
B20.034 (3)0.035 (3)0.061 (4)0.006 (3)0.004 (3)0.006 (3)
F10.066 (3)0.086 (3)0.096 (3)0.043 (2)0.020 (2)0.043 (3)
F20.096 (3)0.051 (2)0.040 (2)0.005 (2)0.0088 (19)0.0005 (16)
F30.0271 (14)0.0351 (16)0.060 (2)0.0011 (12)0.0168 (13)0.0045 (14)
F40.129 (4)0.062 (3)0.089 (3)0.011 (3)0.066 (3)0.017 (2)
F50.078 (3)0.089 (3)0.059 (2)0.013 (2)0.027 (2)0.001 (2)
F60.055 (2)0.075 (2)0.043 (2)0.0238 (18)0.0066 (16)0.0258 (18)
F70.0396 (19)0.105 (3)0.069 (3)0.012 (2)0.0018 (18)0.033 (2)
F80.132 (4)0.048 (2)0.091 (3)0.007 (2)0.057 (3)0.008 (2)
C1S0.116 (7)0.074 (5)0.045 (4)0.001 (5)0.023 (4)0.008 (4)
C2S0.094 (6)0.059 (4)0.080 (5)0.030 (4)0.051 (5)0.024 (4)
Geometric parameters (Å, º) top
Co1—N42.123 (4)C17—C181.349 (8)
Co1—N22.129 (4)C17—H170.9300
Co1—N62.129 (4)C18—C191.428 (8)
Co1—N12.131 (3)C18—H180.9300
Co1—N52.133 (4)C19—C201.407 (8)
Co1—N32.142 (4)C19—C231.413 (6)
N1—C11.331 (6)C20—C211.357 (8)
N1—C121.353 (6)C20—H200.9300
N2—C101.331 (6)C21—C221.398 (7)
N2—C111.355 (6)C21—H210.9300
N3—C131.327 (6)C22—H220.9300
N3—C241.355 (6)C23—C241.444 (7)
N4—C221.332 (6)C25—C261.406 (7)
N4—C231.351 (6)C25—H250.9300
N5—C251.334 (6)C26—C271.362 (9)
N5—C361.366 (6)C26—H260.9300
N6—C341.331 (6)C27—C281.401 (8)
N6—C351.356 (6)C27—H270.9300
C1—C21.398 (6)C28—C361.400 (6)
C1—H10.9300C28—C291.441 (8)
C2—C31.361 (7)C29—C301.342 (8)
C2—H20.9300C29—H290.9300
C3—C41.400 (7)C30—C311.428 (7)
C3—H30.9300C30—H300.9300
C4—C121.401 (6)C31—C321.396 (7)
C4—C51.432 (7)C31—C351.409 (6)
C5—C61.346 (8)C32—C331.373 (8)
C5—H50.9300C32—H320.9300
C6—C71.432 (7)C33—C341.392 (7)
C6—H60.9300C33—H330.9300
C7—C111.399 (6)C34—H340.9300
C7—C81.413 (7)C35—C361.429 (6)
C8—C91.359 (7)B1—F11.344 (7)
C8—H80.9300B1—F21.351 (7)
C9—C101.388 (7)B1—F31.376 (7)
C9—H90.9300B1—F41.426 (8)
C10—H100.9300B2—F81.333 (8)
C11—C121.451 (6)B2—F61.346 (7)
C13—C141.405 (7)B2—F71.360 (7)
C13—H130.9300B2—F51.468 (9)
C14—C151.353 (8)C1S—C2S1.438 (12)
C14—H140.9300C1S—H1S10.9600
C15—C161.398 (8)C1S—H1S20.9600
C15—H150.9300C1S—H1S30.9600
C16—C241.405 (6)C2S—N1S1.139 (11)
C16—C171.440 (7)
N4—Co1—N296.35 (14)C24—C16—C17118.5 (5)
N4—Co1—N694.96 (14)C18—C17—C16121.5 (5)
N2—Co1—N694.71 (14)C18—C17—H17119.3
N4—Co1—N1170.19 (14)C16—C17—H17119.3
N2—Co1—N178.55 (14)C17—C18—C19121.4 (5)
N6—Co1—N193.82 (13)C17—C18—H18119.3
N4—Co1—N592.75 (13)C19—C18—H18119.3
N2—Co1—N5168.89 (14)C20—C19—C23117.1 (5)
N6—Co1—N578.11 (14)C20—C19—C18124.0 (5)
N1—Co1—N593.34 (14)C23—C19—C18118.9 (5)
N4—Co1—N378.43 (14)C21—C20—C19119.6 (4)
N2—Co1—N391.24 (14)C21—C20—H20120.2
N6—Co1—N3171.57 (13)C19—C20—H20120.2
N1—Co1—N393.21 (13)C20—C21—C22120.0 (5)
N5—Co1—N396.84 (14)C20—C21—H21120.0
C1—N1—C12117.8 (4)C22—C21—H21120.0
C1—N1—Co1128.9 (3)N4—C22—C21122.1 (5)
C12—N1—Co1113.2 (3)N4—C22—H22118.9
C10—N2—C11117.9 (4)C21—C22—H22118.9
C10—N2—Co1128.8 (3)N4—C23—C19122.6 (4)
C11—N2—Co1113.3 (3)N4—C23—C24117.7 (4)
C13—N3—C24118.1 (4)C19—C23—C24119.7 (4)
C13—N3—Co1129.0 (3)N3—C24—C16122.6 (4)
C24—N3—Co1112.9 (3)N3—C24—C23117.5 (4)
C22—N4—C23118.6 (4)C16—C24—C23119.9 (4)
C22—N4—Co1127.9 (3)N5—C25—C26122.1 (5)
C23—N4—Co1113.5 (3)N5—C25—H25119.0
C25—N5—C36118.2 (4)C26—C25—H25119.0
C25—N5—Co1128.6 (3)C27—C26—C25119.5 (5)
C36—N5—Co1113.2 (3)C27—C26—H26120.2
C34—N6—C35118.1 (4)C25—C26—H26120.2
C34—N6—Co1128.1 (3)C26—C27—C28120.0 (5)
C35—N6—Co1113.7 (3)C26—C27—H27120.0
N1—C1—C2123.0 (4)C28—C27—H27120.0
N1—C1—H1118.5C36—C28—C27117.4 (5)
C2—C1—H1118.5C36—C28—C29119.1 (5)
C3—C2—C1118.7 (4)C27—C28—C29123.6 (5)
C3—C2—H2120.6C30—C29—C28120.9 (5)
C1—C2—H2120.6C30—C29—H29119.5
C2—C3—C4120.4 (4)C28—C29—H29119.5
C2—C3—H3119.8C29—C30—C31121.4 (5)
C4—C3—H3119.8C29—C30—H30119.3
C3—C4—C12116.9 (4)C31—C30—H30119.3
C3—C4—C5123.7 (4)C32—C31—C35117.5 (4)
C12—C4—C5119.4 (4)C32—C31—C30123.6 (5)
C6—C5—C4121.1 (4)C35—C31—C30118.8 (5)
C6—C5—H5119.5C33—C32—C31119.8 (4)
C4—C5—H5119.5C33—C32—H32120.1
C5—C6—C7121.2 (4)C31—C32—H32120.1
C5—C6—H6119.4C32—C33—C34119.0 (5)
C7—C6—H6119.4C32—C33—H33120.5
C11—C7—C8116.9 (4)C34—C33—H33120.5
C11—C7—C6119.3 (4)N6—C34—C33123.1 (4)
C8—C7—C6123.7 (4)N6—C34—H34118.4
C9—C8—C7119.5 (4)C33—C34—H34118.4
C9—C8—H8120.2N6—C35—C31122.5 (4)
C7—C8—H8120.2N6—C35—C36117.5 (4)
C8—C9—C10119.7 (5)C31—C35—C36120.0 (4)
C8—C9—H9120.1N5—C36—C28122.8 (4)
C10—C9—H9120.1N5—C36—C35117.5 (4)
N2—C10—C9122.7 (4)C28—C36—C35119.7 (4)
N2—C10—H10118.6F1—B1—F2112.6 (5)
C9—C10—H10118.6F1—B1—F3111.9 (5)
N2—C11—C7123.1 (4)F2—B1—F3113.7 (5)
N2—C11—C12117.4 (4)F1—B1—F4105.9 (5)
C7—C11—C12119.5 (4)F2—B1—F4105.7 (5)
N1—C12—C4123.2 (4)F3—B1—F4106.3 (4)
N1—C12—C11117.4 (4)F8—B2—F6116.8 (6)
C4—C12—C11119.4 (4)F8—B2—F7113.9 (5)
N3—C13—C14122.3 (5)F6—B2—F7111.6 (5)
N3—C13—H13118.8F8—B2—F5105.2 (5)
C14—C13—H13118.8F6—B2—F5104.2 (5)
C15—C14—C13119.9 (5)F7—B2—F5103.5 (6)
C15—C14—H14120.1C2S—C1S—H1S1109.5
C13—C14—H14120.1C2S—C1S—H1S2109.5
C14—C15—C16119.3 (5)H1S1—C1S—H1S2109.5
C14—C15—H15120.4C2S—C1S—H1S3109.5
C16—C15—H15120.4H1S1—C1S—H1S3109.5
C15—C16—C24117.8 (4)H1S2—C1S—H1S3109.5
C15—C16—C17123.6 (5)N1S—C2S—C1S178.8 (10)

Experimental details

Crystal data
Chemical formula[Co(C12H8N2)3](BF4)2·C2H3N
Mr814.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)18.0443 (2), 9.3623 (1), 22.0702 (2)
β (°) 107.361 (1)
V3)3558.60 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.32 × 0.28 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.840, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
56541, 6276, 5268
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.213, 1.03
No. of reflections6276
No. of parameters501
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1194P)2 + 14.1582P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.96, 0.94

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N42.123 (4)Co1—N12.131 (3)
Co1—N22.129 (4)Co1—N52.133 (4)
Co1—N62.129 (4)Co1—N32.142 (4)
N2—Co1—N178.55 (14)N4—Co1—N378.43 (14)
N6—Co1—N578.11 (14)
 

Acknowledgements

The authors gratefully acknowledge the Thailand Research fund for supporting this work (grant No. RMU5080029).

References

First citationBoys, D., Escobar, C. & Wittke, O. (1984). Acta Cryst. C40, 1359–1362.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeraghty, M., McCann, M., Devereux, M. & McKee, V. (1999). Inorg. Chim. Acta, 293, 160–166.  Web of Science CSD CrossRef CAS Google Scholar
First citationRussell, V., Scudder, M. & Dance, I. (2001). J. Chem. Soc. Dalton Trans. pp. 789–799.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTershansy, M. A., Goforth, A. M., Smith, M. D., Peterson, L. R. Jr & zur Loye, H.-C. (2005). Acta Cryst. E61, m1680–m1681.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds