organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Meth­oxy-4-(4-nitro­benz­yl­oxy)­benzaldehyde

aCollege of Sciences, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
*Correspondence e-mail: li_mei999@163.com

(Received 29 October 2008; accepted 3 November 2008; online 8 November 2008)

In the title compound, C15H13NO5, the vanillin group makes a dihedral angle of 4.95 (8)° with the benzene ring of the nitro­benzene group. The packing is stabilized by weak, non-classical inter­molecular C—H⋯O inter­actions which link mol­ecules into chains running along the c axis.

Related literature

For general background on Schiff bases, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]);

[Scheme 1]

Experimental

Crystal data
  • C15H13NO5

  • Mr = 287.26

  • Orthorhombic, P b c a

  • a = 13.743 (3) Å

  • b = 12.526 (3) Å

  • c = 16.384 (3) Å

  • V = 2820.4 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 (2) K

  • 0.23 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.988

  • 15172 measured reflections

  • 2877 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.132

  • S = 0.99

  • 2877 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O5i 0.93 2.60 3.405 (3) 146
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-base ligands have received a good deal of attention in biology and chemistry (Kahwa et al., 1986). Many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics (Santos et al., 2001). As a part of our interest in the coordination properties of Schiff bases functioning as ligands, we investigated the title compound, (I), used as a precursor in the preparation of Schiff bases.

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). The vanillin group (C1—C7/O3/O4) is essentially planar (except the methyl H atoms), with an r.m.s. deviation for fitted atoms of 0.035 (3) Å. This group makes a dihedral angle of 4.95 (8)° with the benzene ring (C10—C15) of the nitrobenzene group.

The crystal packing is stabilized by weak, non-classical intermolecular C14—H14···O5C7 interactions that link adjacent molecules into one-dimensional chains running along the c axis (Table 1, Fig. 2).

Related literature top

For general background on Schiff bases, see: Kahwa et al. (1986); Santos et al. (2001). For bond-length data, see: Allen et al. (1987);

Experimental top

An anhydrous acetonitrile solution (100 ml) of 4-hydroxy-3-methoxybenzaldehyde (1.52 g, 10 mmol) was added dropwise to a solution (50 ml) of 1-(bromomethyl)-4-nitrobenzene (2.16 g, 10 mmol) and pyridine (0.79 g, 10 mmol) in acetonitrile, in 30 min., and the mixture refluxed for 24 h under nitrogen atmosphere. The solvent was removed and the resultant mixture poured into ice-water (100 ml). The yellow precipitate was then isolated and recrystallized from acetonitrile, and then dried in a vacuum to give the pure compound in 74% yield. Pale-yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for (I), with H bonds drawn as dashed lines.
3-Methoxy-4-(4-nitrobenzyloxy)benzaldehyde top
Crystal data top
C15H13NO5F(000) = 1200
Mr = 287.26Dx = 1.353 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3156 reflections
a = 13.743 (3) Åθ = 2.2–26.5°
b = 12.526 (3) ŵ = 0.10 mm1
c = 16.384 (3) ÅT = 294 K
V = 2820.4 (10) Å3Block, pale-yellow
Z = 80.23 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2877 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1617
Tmin = 0.932, Tmax = 0.988k = 1415
15172 measured reflectionsl = 2018
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0424P)2 + 1.1393P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2877 reflectionsΔρmax = 0.16 e Å3
192 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (5)
Crystal data top
C15H13NO5V = 2820.4 (10) Å3
Mr = 287.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.743 (3) ŵ = 0.10 mm1
b = 12.526 (3) ÅT = 294 K
c = 16.384 (3) Å0.23 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2877 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1540 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.988Rint = 0.045
15172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.99Δρmax = 0.16 e Å3
2877 reflectionsΔρmin = 0.17 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14273 (18)0.3678 (2)1.20564 (17)0.0880 (7)
O10.1166 (2)0.34357 (19)1.27401 (14)0.1320 (9)
O20.1674 (2)0.45767 (19)1.18670 (15)0.1303 (9)
O30.11868 (11)0.05467 (12)0.99132 (8)0.0671 (5)
O40.07376 (11)0.23118 (12)1.05892 (9)0.0705 (5)
O50.1082 (2)0.5139 (2)0.82786 (17)0.1500 (12)
C10.09685 (14)0.23830 (18)0.97787 (13)0.0570 (5)
C20.09799 (15)0.33013 (19)0.93261 (15)0.0671 (6)
H20.08260.39500.95700.081*
C30.12223 (16)0.3267 (2)0.84953 (16)0.0739 (7)
C40.14582 (18)0.2313 (2)0.81422 (15)0.0772 (7)
H40.16260.22940.75920.093*
C50.14517 (17)0.1375 (2)0.85877 (14)0.0704 (7)
H50.16100.07300.83400.085*
C60.12076 (15)0.14069 (17)0.94062 (13)0.0572 (6)
C70.1230 (2)0.4259 (3)0.8018 (2)0.1087 (12)
H70.13610.41990.74630.130*
C80.0516 (2)0.3282 (2)1.10024 (16)0.0976 (10)
H8A0.10710.37471.09850.146*
H8B0.03540.31301.15600.146*
H8C0.00270.36231.07410.146*
C90.14047 (18)0.04690 (17)0.95782 (13)0.0680 (6)
H9A0.20330.04470.93090.082*
H9B0.09170.06600.91760.082*
C100.14211 (15)0.12841 (17)1.02476 (13)0.0562 (5)
C110.16208 (16)0.23375 (19)1.00431 (14)0.0665 (6)
H110.17460.25160.95020.080*
C120.16355 (17)0.31198 (19)1.06322 (16)0.0707 (7)
H120.17770.38241.04960.085*
C130.14380 (16)0.28411 (19)1.14254 (15)0.0637 (6)
C140.12433 (18)0.18140 (19)1.16476 (14)0.0709 (7)
H140.11170.16441.21900.085*
C150.12358 (17)0.10322 (19)1.10550 (14)0.0668 (6)
H150.11050.03291.12000.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0997 (17)0.0762 (17)0.0882 (18)0.0093 (13)0.0130 (14)0.0156 (14)
O10.212 (3)0.1117 (17)0.0727 (14)0.0042 (16)0.0010 (16)0.0221 (13)
O20.177 (2)0.0729 (15)0.141 (2)0.0080 (15)0.0028 (17)0.0271 (14)
O30.0910 (12)0.0563 (10)0.0541 (9)0.0010 (8)0.0058 (8)0.0018 (7)
O40.0939 (12)0.0657 (10)0.0520 (9)0.0107 (8)0.0013 (8)0.0026 (8)
O50.175 (3)0.1065 (19)0.169 (2)0.0499 (18)0.0663 (19)0.0703 (18)
C10.0525 (12)0.0661 (15)0.0524 (12)0.0001 (10)0.0015 (10)0.0039 (11)
C20.0595 (14)0.0662 (15)0.0757 (16)0.0055 (11)0.0020 (12)0.0117 (12)
C30.0561 (14)0.0888 (19)0.0768 (17)0.0040 (13)0.0062 (12)0.0297 (15)
C40.0726 (16)0.104 (2)0.0555 (14)0.0001 (15)0.0069 (12)0.0140 (15)
C50.0762 (16)0.0778 (17)0.0573 (14)0.0025 (13)0.0029 (12)0.0004 (13)
C60.0584 (13)0.0597 (14)0.0536 (13)0.0043 (10)0.0026 (10)0.0043 (11)
C70.090 (2)0.122 (3)0.114 (2)0.029 (2)0.0266 (18)0.057 (2)
C80.148 (3)0.0751 (19)0.0700 (16)0.0201 (18)0.0029 (17)0.0147 (14)
C90.0865 (17)0.0611 (15)0.0563 (13)0.0032 (12)0.0080 (12)0.0068 (11)
C100.0538 (12)0.0587 (14)0.0562 (13)0.0018 (10)0.0038 (10)0.0046 (10)
C110.0712 (15)0.0645 (16)0.0640 (14)0.0029 (12)0.0158 (11)0.0088 (12)
C120.0698 (15)0.0577 (15)0.0847 (18)0.0049 (11)0.0114 (13)0.0043 (13)
C130.0598 (13)0.0628 (15)0.0685 (15)0.0028 (11)0.0047 (12)0.0070 (12)
C140.0905 (18)0.0715 (17)0.0509 (13)0.0038 (13)0.0053 (12)0.0051 (12)
C150.0865 (17)0.0584 (14)0.0555 (14)0.0008 (12)0.0029 (12)0.0085 (11)
Geometric parameters (Å, º) top
N1—O11.215 (3)C7—H70.9300
N1—O21.216 (3)C8—H8A0.9600
N1—C131.472 (3)C8—H8B0.9600
O3—C61.361 (2)C8—H8C0.9600
O3—C91.418 (2)C9—C101.499 (3)
O4—C11.368 (2)C9—H9A0.9700
O4—C81.424 (3)C9—H9B0.9700
O5—C71.199 (4)C10—C151.384 (3)
C1—C21.369 (3)C10—C111.389 (3)
C1—C61.406 (3)C11—C121.376 (3)
C2—C31.402 (3)C11—H110.9300
C2—H20.9300C12—C131.373 (3)
C3—C41.367 (3)C12—H120.9300
C3—C71.468 (4)C13—C141.364 (3)
C4—C51.383 (3)C14—C151.379 (3)
C4—H40.9300C14—H140.9300
C5—C61.383 (3)C15—H150.9300
C5—H50.9300
O1—N1—O2123.3 (3)H8A—C8—H8B109.5
O1—N1—C13118.2 (3)O4—C8—H8C109.5
O2—N1—C13118.5 (3)H8A—C8—H8C109.5
C6—O3—C9118.02 (16)H8B—C8—H8C109.5
C1—O4—C8117.09 (18)O3—C9—C10109.34 (17)
O4—C1—C2125.7 (2)O3—C9—H9A109.8
O4—C1—C6114.77 (19)C10—C9—H9A109.8
C2—C1—C6119.5 (2)O3—C9—H9B109.8
C1—C2—C3120.2 (2)C10—C9—H9B109.8
C1—C2—H2119.9H9A—C9—H9B108.3
C3—C2—H2119.9C15—C10—C11118.9 (2)
C4—C3—C2119.6 (2)C15—C10—C9122.8 (2)
C4—C3—C7120.9 (3)C11—C10—C9118.28 (19)
C2—C3—C7119.5 (3)C12—C11—C10120.7 (2)
C3—C4—C5121.2 (2)C12—C11—H11119.6
C3—C4—H4119.4C10—C11—H11119.6
C5—C4—H4119.4C13—C12—C11118.7 (2)
C4—C5—C6119.3 (2)C13—C12—H12120.7
C4—C5—H5120.4C11—C12—H12120.7
C6—C5—H5120.4C14—C13—C12122.1 (2)
O3—C6—C5125.1 (2)C14—C13—N1118.8 (2)
O3—C6—C1114.76 (19)C12—C13—N1119.1 (2)
C5—C6—C1120.2 (2)C13—C14—C15118.9 (2)
O5—C7—C3126.0 (3)C13—C14—H14120.5
O5—C7—H7117.0C15—C14—H14120.5
C3—C7—H7117.0C14—C15—C10120.7 (2)
O4—C8—H8A109.5C14—C15—H15119.7
O4—C8—H8B109.5C10—C15—H15119.7
C8—O4—C1—C21.8 (3)C2—C3—C7—O53.3 (5)
C8—O4—C1—C6178.3 (2)C6—O3—C9—C10175.41 (18)
O4—C1—C2—C3179.5 (2)O3—C9—C10—C150.6 (3)
C6—C1—C2—C30.4 (3)O3—C9—C10—C11179.86 (19)
C1—C2—C3—C40.8 (3)C15—C10—C11—C120.1 (3)
C1—C2—C3—C7179.9 (2)C9—C10—C11—C12179.4 (2)
C2—C3—C4—C50.7 (4)C10—C11—C12—C130.7 (3)
C7—C3—C4—C5179.9 (2)C11—C12—C13—C141.0 (4)
C3—C4—C5—C60.4 (4)C11—C12—C13—N1178.4 (2)
C9—O3—C6—C51.8 (3)O1—N1—C13—C146.0 (4)
C9—O3—C6—C1179.01 (19)O2—N1—C13—C14174.4 (2)
C4—C5—C6—O3179.1 (2)O1—N1—C13—C12173.5 (3)
C4—C5—C6—C10.0 (3)O2—N1—C13—C126.1 (4)
O4—C1—C6—O31.0 (3)C12—C13—C14—C150.6 (4)
C2—C1—C6—O3179.12 (19)N1—C13—C14—C15178.8 (2)
O4—C1—C6—C5179.83 (19)C13—C14—C15—C100.1 (4)
C2—C1—C6—C50.1 (3)C11—C10—C15—C140.4 (3)
C4—C3—C7—O5176.1 (3)C9—C10—C15—C14178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O5i0.932.603.405 (3)146
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13NO5
Mr287.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)13.743 (3), 12.526 (3), 16.384 (3)
V3)2820.4 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
15172, 2877, 1540
Rint0.045
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 0.99
No. of reflections2877
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O5i0.932.603.405 (3)146
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds