organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)imino­meth­yl]phenyl 4-bromo­benzene­sulfonate

aCollege of Sciences, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
*Correspondence e-mail: li_mei999@163.com

(Received 29 October 2008; accepted 9 November 2008; online 13 November 2008)

In the title compound, C24H20BrN3O4S, the central benzene ring makes dihedral angles of 24.55 (8), 49.52 (12) and 59.65 (7)°, respectively, with the pyrazolone ring, the bromo­benzene ring and the terminal phenyl ring. The packing is stabilized by weak non-classical inter­molecular C—H⋯O=C hydrogen bonds that form inversion-related dimers.

Related literature

For general background to Schiff base ligands, see: Chen & Yu (2006[Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4592-o4593.]); Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]); Zhao et al. (2006[Zhao, Y.-L., Zhang, Q.-Z., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4590-o4591.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]);

[Scheme 1]

Experimental

Crystal data
  • C24H20BrN3O4S

  • Mr = 526.40

  • Triclinic, [P \overline 1]

  • a = 9.3152 (17) Å

  • b = 10.1223 (18) Å

  • c = 13.472 (3) Å

  • α = 94.507 (3)°

  • β = 109.034 (3)°

  • γ = 102.953 (3)°

  • V = 1154.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 294 (2) K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.623, Tmax = 0.826

  • 6027 measured reflections

  • 4035 independent reflections

  • 3133 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.02

  • 4035 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O4 0.93 2.40 3.056 (3) 127
C21—H21⋯O4i 0.93 2.57 3.290 (4) 135
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-base ligands have received a good deal of attention in biology and chemistry (Kahwa et al., 1986). Many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-5-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yliminomethyl)-2-methoxyphenyl benzenesulfonate (Chen & Yu, 2006) and (E)-4-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yliminomethyl)-2-methoxyphenyl benzenesulfonate (Zhao et al., 2006) have been reported. Structural information is useful when investigating the coordination properties of Schiff bases functioning as ligands. We report here the synthesis and molecular structure of the title Schiff base compound, (I), (Fig. 1)

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). The pyrazolone ring (C14—C16/N1—N3/O4) is almost planar, with an r.m.s. deviation for fitted atoms of 0.0345 Å. It makes a dihedral angle of 42.12 (8)° with the attached phenyl ring (C19—C24). The central benzene ring (C7—C13/O3) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0264 Å. This group makes dihedral angles of 24.55 (8)°, 49.52 (12)° and 59.65 (7)°, respectively, with the the pyrazolone ring (C14—C16/N1—N3/O4), the bromobenzene ring (C1—C6) and the terminal phenyl ring (C19—C24).

An intramolecular C13—H13···O4C15 hydrogen bond is found in (I) (Table 1), which helps to stabilize the conformation of the molecule. Packing is stabilized by weak, non-classical intermolecular C21—H21···O4C15 hydrogen bonds that form inversion related dimers (Table 1, Fig. 2).

Related literature top

For general background on Schiff base ligands, see: Chen & Yu (2006); Kahwa et al. (1986); Santos et al. (2001); Zhao et al. (2006). For bond-length data, see: Allen et al. (1987);

Experimental top

An anhydrous ethanol solution (50 ml) of 3-formylphenyl 4-bromobenzenesulfonate (3.41 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture stirred at 350 K for 3 h under N2, giving a yellow precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give pure compound (I) in 81% yield. Yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H and N—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I), with hydrogen bonds drawn as dashed lines.
(E)-3-[(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4- yl)iminomethyl]phenyl 4-bromobenzenesulfonate top
Crystal data top
C24H20BrN3O4SZ = 2
Mr = 526.40F(000) = 536
Triclinic, P1Dx = 1.515 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3152 (17) ÅCell parameters from 2541 reflections
b = 10.1223 (18) Åθ = 2.4–26.1°
c = 13.472 (3) ŵ = 1.91 mm1
α = 94.507 (3)°T = 294 K
β = 109.034 (3)°Block, yellow
γ = 102.953 (3)°0.20 × 0.18 × 0.10 mm
V = 1154.3 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4035 independent reflections
Radiation source: fine-focus sealed tube3133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 611
Tmin = 0.623, Tmax = 0.826k = 1211
6027 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.038P)2 + 0.609P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4035 reflectionsΔρmax = 0.27 e Å3
301 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0475 (19)
Crystal data top
C24H20BrN3O4Sγ = 102.953 (3)°
Mr = 526.40V = 1154.3 (4) Å3
Triclinic, P1Z = 2
a = 9.3152 (17) ÅMo Kα radiation
b = 10.1223 (18) ŵ = 1.91 mm1
c = 13.472 (3) ÅT = 294 K
α = 94.507 (3)°0.20 × 0.18 × 0.10 mm
β = 109.034 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4035 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3133 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.826Rint = 0.018
6027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
4035 reflectionsΔρmin = 0.37 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.29069 (4)0.88146 (3)0.88042 (3)0.05949 (16)
S11.23680 (9)0.25329 (8)0.93033 (8)0.0591 (3)
N10.6951 (3)0.4506 (2)0.71737 (18)0.0415 (6)
N20.4487 (3)0.6559 (2)0.57841 (19)0.0422 (6)
N30.5999 (3)0.7481 (2)0.61946 (19)0.0434 (6)
O11.1993 (3)0.2290 (2)1.02189 (19)0.0751 (7)
O21.3668 (3)0.2167 (3)0.9141 (3)0.0903 (10)
O31.0922 (2)0.1687 (2)0.82766 (17)0.0521 (5)
O40.3384 (2)0.4347 (2)0.59904 (17)0.0511 (5)
C11.1929 (4)0.5050 (3)0.9740 (2)0.0508 (8)
H11.15010.46791.02230.061*
C21.2014 (3)0.6396 (3)0.9614 (2)0.0481 (7)
H21.16200.69350.99960.058*
C31.2687 (3)0.6936 (3)0.8917 (2)0.0429 (7)
C41.3231 (5)0.6147 (4)0.8332 (3)0.0708 (10)
H41.36740.65250.78580.085*
C51.3127 (5)0.4803 (4)0.8442 (3)0.0718 (11)
H51.34910.42620.80400.086*
C61.2479 (3)0.4251 (3)0.9152 (2)0.0466 (7)
C70.9359 (3)0.1566 (3)0.8247 (2)0.0411 (7)
C80.8593 (3)0.2500 (3)0.7803 (2)0.0408 (7)
H80.91150.32390.75720.049*
C90.7025 (3)0.2331 (3)0.7700 (2)0.0402 (7)
C100.6279 (4)0.1203 (3)0.8041 (2)0.0477 (7)
H100.52240.10680.79630.057*
C110.7077 (4)0.0283 (3)0.8491 (2)0.0511 (8)
H110.65620.04610.87210.061*
C120.8633 (4)0.0457 (3)0.8604 (2)0.0459 (7)
H120.91810.01580.89120.055*
C130.6187 (3)0.3337 (3)0.7256 (2)0.0423 (7)
H130.50940.31180.70330.051*
C140.6199 (3)0.5460 (3)0.6704 (2)0.0386 (6)
C150.4552 (3)0.5307 (3)0.6145 (2)0.0380 (6)
C160.7007 (3)0.6739 (3)0.6675 (2)0.0414 (7)
C170.8746 (3)0.7324 (3)0.7076 (3)0.0617 (9)
H17A0.92360.68040.75890.093*
H17B0.90030.82640.74060.093*
H17C0.91210.72820.64930.093*
C180.6390 (4)0.8479 (3)0.5533 (3)0.0575 (9)
H18A0.72880.92110.59620.086*
H18B0.55090.88480.52290.086*
H18C0.66280.80350.49730.086*
C190.3137 (3)0.7097 (3)0.5527 (2)0.0424 (7)
C200.1735 (3)0.6289 (3)0.4787 (2)0.0513 (8)
H200.16740.54200.44680.062*
C210.0424 (4)0.6802 (4)0.4531 (3)0.0666 (10)
H210.05330.62650.40450.080*
C220.0526 (5)0.8098 (5)0.4988 (4)0.0758 (12)
H220.03550.84410.47970.091*
C230.1922 (5)0.8887 (4)0.5725 (3)0.0729 (11)
H230.19850.97610.60370.087*
C240.3232 (4)0.8382 (3)0.6003 (3)0.0575 (8)
H240.41760.89080.65100.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0675 (3)0.03803 (19)0.0694 (3)0.00752 (14)0.02286 (17)0.01353 (15)
S10.0468 (5)0.0447 (4)0.0819 (6)0.0191 (4)0.0097 (4)0.0255 (4)
N10.0401 (13)0.0415 (13)0.0438 (14)0.0172 (11)0.0109 (11)0.0109 (11)
N20.0332 (12)0.0372 (12)0.0536 (15)0.0124 (10)0.0087 (11)0.0134 (11)
N30.0360 (13)0.0368 (12)0.0551 (15)0.0087 (10)0.0122 (11)0.0136 (11)
O10.0811 (17)0.0595 (15)0.0663 (16)0.0108 (12)0.0024 (13)0.0320 (12)
O20.0494 (15)0.0619 (16)0.161 (3)0.0314 (12)0.0258 (16)0.0295 (17)
O30.0504 (13)0.0454 (12)0.0675 (14)0.0236 (9)0.0218 (11)0.0122 (10)
O40.0360 (11)0.0454 (12)0.0679 (14)0.0091 (9)0.0120 (10)0.0196 (10)
C10.0534 (19)0.0499 (18)0.0507 (19)0.0076 (14)0.0228 (15)0.0153 (15)
C20.0526 (18)0.0402 (16)0.0526 (19)0.0080 (13)0.0237 (15)0.0040 (14)
C30.0439 (16)0.0379 (15)0.0430 (17)0.0076 (12)0.0123 (13)0.0074 (13)
C40.103 (3)0.055 (2)0.082 (3)0.024 (2)0.063 (2)0.0270 (19)
C50.101 (3)0.056 (2)0.092 (3)0.037 (2)0.064 (2)0.022 (2)
C60.0444 (17)0.0411 (16)0.0542 (19)0.0139 (13)0.0136 (14)0.0167 (14)
C70.0419 (16)0.0369 (15)0.0437 (17)0.0155 (12)0.0109 (13)0.0056 (12)
C80.0464 (17)0.0360 (15)0.0417 (16)0.0116 (12)0.0158 (13)0.0121 (12)
C90.0413 (16)0.0382 (15)0.0383 (16)0.0113 (12)0.0092 (12)0.0082 (12)
C100.0425 (17)0.0459 (17)0.0507 (18)0.0088 (13)0.0127 (14)0.0102 (14)
C110.057 (2)0.0392 (16)0.0540 (19)0.0058 (14)0.0182 (15)0.0143 (14)
C120.0564 (19)0.0313 (14)0.0466 (18)0.0143 (13)0.0107 (14)0.0123 (13)
C130.0385 (16)0.0458 (17)0.0433 (17)0.0142 (13)0.0118 (13)0.0126 (13)
C140.0361 (15)0.0405 (15)0.0410 (16)0.0153 (12)0.0115 (12)0.0107 (12)
C150.0372 (16)0.0386 (15)0.0411 (16)0.0137 (13)0.0137 (12)0.0121 (12)
C160.0366 (15)0.0414 (16)0.0468 (17)0.0143 (12)0.0120 (13)0.0111 (13)
C170.0378 (17)0.0502 (19)0.087 (3)0.0096 (14)0.0105 (17)0.0128 (17)
C180.0542 (19)0.0484 (18)0.070 (2)0.0110 (15)0.0201 (17)0.0249 (16)
C190.0411 (16)0.0506 (17)0.0445 (17)0.0204 (13)0.0182 (13)0.0221 (14)
C200.0414 (17)0.065 (2)0.0489 (19)0.0165 (15)0.0136 (14)0.0203 (16)
C210.0413 (19)0.097 (3)0.068 (2)0.0250 (19)0.0174 (17)0.039 (2)
C220.062 (3)0.102 (3)0.098 (3)0.054 (2)0.042 (2)0.058 (3)
C230.084 (3)0.070 (2)0.094 (3)0.049 (2)0.047 (2)0.035 (2)
C240.060 (2)0.0531 (19)0.064 (2)0.0269 (16)0.0192 (17)0.0161 (16)
Geometric parameters (Å, º) top
Br1—C31.890 (3)C9—C101.390 (4)
S1—O11.412 (3)C9—C131.467 (4)
S1—O21.419 (3)C10—C111.376 (4)
S1—O31.594 (2)C10—H100.9300
S1—C61.751 (3)C11—C121.376 (4)
N1—C131.270 (3)C11—H110.9300
N1—C141.390 (3)C12—H120.9300
N2—C151.399 (3)C13—H130.9300
N2—N31.408 (3)C14—C161.355 (4)
N2—C191.432 (3)C14—C151.437 (4)
N3—C161.364 (3)C16—C171.488 (4)
N3—C181.462 (4)C17—H17A0.9600
O3—C71.420 (3)C17—H17B0.9600
O4—C151.232 (3)C17—H17C0.9600
C1—C21.375 (4)C18—H18A0.9600
C1—C61.376 (4)C18—H18B0.9600
C1—H10.9300C18—H18C0.9600
C2—C31.373 (4)C19—C241.374 (4)
C2—H20.9300C19—C201.383 (4)
C3—C41.363 (4)C20—C211.385 (4)
C4—C51.366 (5)C20—H200.9300
C4—H40.9300C21—C221.374 (6)
C5—C61.378 (4)C21—H210.9300
C5—H50.9300C22—C231.372 (6)
C7—C81.368 (4)C22—H220.9300
C7—C121.380 (4)C23—C241.380 (5)
C8—C91.391 (4)C23—H230.9300
C8—H80.9300C24—H240.9300
O1—S1—O2121.47 (17)C10—C11—H11119.8
O1—S1—O3108.79 (13)C11—C12—C7118.3 (3)
O2—S1—O3102.68 (16)C11—C12—H12120.8
O1—S1—C6109.11 (16)C7—C12—H12120.8
O2—S1—C6109.41 (15)N1—C13—C9120.1 (3)
O3—S1—C6103.86 (13)N1—C13—H13119.9
C13—N1—C14121.9 (2)C9—C13—H13119.9
C15—N2—N3109.4 (2)C16—C14—N1122.1 (2)
C15—N2—C19125.0 (2)C16—C14—C15108.3 (2)
N3—N2—C19119.0 (2)N1—C14—C15129.5 (2)
C16—N3—N2106.3 (2)O4—C15—N2123.9 (2)
C16—N3—C18121.9 (2)O4—C15—C14131.5 (2)
N2—N3—C18116.9 (2)N2—C15—C14104.6 (2)
C7—O3—S1119.49 (18)C14—C16—N3110.7 (2)
C2—C1—C6120.0 (3)C14—C16—C17127.6 (3)
C2—C1—H1120.0N3—C16—C17121.7 (2)
C6—C1—H1120.0C16—C17—H17A109.5
C3—C2—C1119.1 (3)C16—C17—H17B109.5
C3—C2—H2120.4H17A—C17—H17B109.5
C1—C2—H2120.4C16—C17—H17C109.5
C4—C3—C2121.0 (3)H17A—C17—H17C109.5
C4—C3—Br1120.0 (2)H17B—C17—H17C109.5
C2—C3—Br1119.0 (2)N3—C18—H18A109.5
C3—C4—C5120.1 (3)N3—C18—H18B109.5
C3—C4—H4120.0H18A—C18—H18B109.5
C5—C4—H4120.0N3—C18—H18C109.5
C4—C5—C6119.7 (3)H18A—C18—H18C109.5
C4—C5—H5120.2H18B—C18—H18C109.5
C6—C5—H5120.2C24—C19—C20120.9 (3)
C1—C6—C5120.1 (3)C24—C19—N2120.9 (3)
C1—C6—S1120.3 (2)C20—C19—N2118.2 (3)
C5—C6—S1119.6 (3)C19—C20—C21118.6 (3)
C8—C7—C12122.4 (3)C19—C20—H20120.7
C8—C7—O3118.9 (2)C21—C20—H20120.7
C12—C7—O3118.6 (2)C22—C21—C20120.5 (3)
C7—C8—C9119.3 (3)C22—C21—H21119.7
C7—C8—H8120.4C20—C21—H21119.7
C9—C8—H8120.4C23—C22—C21120.3 (3)
C10—C9—C8118.7 (3)C23—C22—H22119.9
C10—C9—C13120.8 (3)C21—C22—H22119.9
C8—C9—C13120.5 (2)C22—C23—C24119.9 (4)
C11—C10—C9121.0 (3)C22—C23—H23120.1
C11—C10—H10119.5C24—C23—H23120.1
C9—C10—H10119.5C19—C24—C23119.8 (3)
C12—C11—C10120.4 (3)C19—C24—H24120.1
C12—C11—H11119.8C23—C24—H24120.1
C15—N2—N3—C168.2 (3)O3—C7—C12—C11174.7 (3)
C19—N2—N3—C16161.0 (2)C14—N1—C13—C9176.4 (2)
C15—N2—N3—C18148.2 (3)C10—C9—C13—N1163.9 (3)
C19—N2—N3—C1858.9 (3)C8—C9—C13—N115.1 (4)
O1—S1—O3—C737.5 (2)C13—N1—C14—C16175.7 (3)
O2—S1—O3—C7167.5 (2)C13—N1—C14—C157.4 (5)
C6—S1—O3—C778.6 (2)N3—N2—C15—O4173.4 (3)
C6—C1—C2—C31.6 (5)C19—N2—C15—O422.5 (4)
C1—C2—C3—C41.7 (5)N3—N2—C15—C145.7 (3)
C1—C2—C3—Br1176.5 (2)C19—N2—C15—C14156.6 (3)
C2—C3—C4—C50.7 (6)C16—C14—C15—O4177.8 (3)
Br1—C3—C4—C5177.5 (3)N1—C14—C15—O45.0 (5)
C3—C4—C5—C60.4 (6)C16—C14—C15—N21.2 (3)
C2—C1—C6—C50.5 (5)N1—C14—C15—N2176.0 (3)
C2—C1—C6—S1179.7 (2)N1—C14—C16—N3178.6 (2)
C4—C5—C6—C10.5 (6)C15—C14—C16—N34.0 (3)
C4—C5—C6—S1179.2 (3)N1—C14—C16—C172.4 (5)
O1—S1—C6—C112.4 (3)C15—C14—C16—C17175.1 (3)
O2—S1—C6—C1147.5 (3)N2—N3—C16—C147.5 (3)
O3—S1—C6—C1103.5 (3)C18—N3—C16—C14145.0 (3)
O1—S1—C6—C5167.3 (3)N2—N3—C16—C17171.7 (3)
O2—S1—C6—C532.3 (3)C18—N3—C16—C1734.1 (4)
O3—S1—C6—C576.8 (3)C15—N2—C19—C24124.7 (3)
S1—O3—C7—C893.0 (3)N3—N2—C19—C2423.7 (4)
S1—O3—C7—C1291.3 (3)C15—N2—C19—C2055.3 (4)
C12—C7—C8—C90.2 (4)N3—N2—C19—C20156.3 (3)
O3—C7—C8—C9175.3 (2)C24—C19—C20—C210.2 (4)
C7—C8—C9—C100.9 (4)N2—C19—C20—C21179.8 (3)
C7—C8—C9—C13178.2 (3)C19—C20—C21—C221.3 (5)
C8—C9—C10—C111.3 (4)C20—C21—C22—C231.6 (5)
C13—C9—C10—C11177.8 (3)C21—C22—C23—C240.4 (6)
C9—C10—C11—C120.6 (5)C20—C19—C24—C231.3 (5)
C10—C11—C12—C70.4 (4)N2—C19—C24—C23178.7 (3)
C8—C7—C12—C110.9 (4)C22—C23—C24—C191.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O40.932.403.056 (3)127
C21—H21···O4i0.932.573.290 (4)135
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H20BrN3O4S
Mr526.40
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.3152 (17), 10.1223 (18), 13.472 (3)
α, β, γ (°)94.507 (3), 109.034 (3), 102.953 (3)
V3)1154.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.623, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
6027, 4035, 3133
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.02
No. of reflections4035
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O40.932.403.056 (3)127
C21—H21···O4i0.932.573.290 (4)135
Symmetry code: (i) x, y+1, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. & Yu, M. (2006). Acta Cryst. E62, o4592–o4593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y.-L., Zhang, Q.-Z., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4590–o4591.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds