metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(3,5-di­methyl-1H-pyrazole-κN2)(nitrato-κ2O,O′)cadmium(II) nitrate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 30 October 2008; accepted 6 November 2008; online 13 November 2008)

The title compound, [Cd(NO3)(C5H8N2)4]NO3, was prepared by reaction of cadmium nitrate and 3,5-dimethyl­pyrazole in ethanol solution. The Cd atom adopts a distorted cis-CdO2N4 octa­hedral geometry involving four dimethylpyrazole molecules and one bidentate nitrate anion. The mol­ecular structure and packing are stabilized by N—H⋯O and C—H⋯O inter- and intra­molecular hydrogen-bonding inter­actions.

Related literature

For background on the coordination chemistry of Cd(II) in biological systems, see: Dressing et al. (1982[Dressing, S. A., Mass, R. P. & Weiss, C. M. (1982). Bull. Environ. Contam. Toxicol. 28, 172-180.]). For related literature, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Vanrijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO3)(C5H8N2)4]NO3

  • Mr = 620.97

  • Triclinic, [P \overline 1]

  • a = 9.1790 (18) Å

  • b = 11.353 (2) Å

  • c = 13.669 (3) Å

  • α = 94.79 (3)°

  • β = 105.61 (3)°

  • γ = 90.68 (3)°

  • V = 1366.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7482 measured reflections

  • 5035 independent reflections

  • 4677 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.137

  • S = 1.06

  • 5035 reflections

  • 319 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.66 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H4A⋯O1i 0.86 2.13 2.943 (8) 157
N3—H4A⋯O3i 0.86 2.50 3.289 (16) 152
N4—H5A⋯O1i 0.86 1.92 2.771 (8) 171
N6—H7A⋯O6ii 0.86 2.33 3.131 (6) 156
N9—H10A⋯O4 0.86 2.50 3.106 (5) 128
C5—H5B⋯O4 0.96 2.59 3.530 (7) 166
C10—H10B⋯O5 0.96 2.29 3.157 (7) 150
C13—H13A⋯O1iii 0.93 2.49 3.375 (8) 159
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is also known that most of the Cd(II) in biological systems is not in the form of free Cd(II) ions, but is coordinated by the abundance of biological ligands (Dressing et al., 1982). Therefore the coordination chemistry of Cd(II) with ligands is of great interest. In this paper, we reported the synthesis and the crystal structure of tri(3,5-dimenthyl pyrazolyl)cadmium(II) nitrate (I).

In the molecule of (I) (Fig. 1), each Cd atoms is coordinated by four nitrogen atoms from four 3,5-dimethyl pyrazoles respectively and two oxygen atoms from nitrate anion. All the bond length and angle are in the normal range. Another nitrate anion exists in the crystal lattice.

The molecular structure and packing are stabilized by the N—H···O and C—H···O inter and intraintermolecular hydrogen-bonding intercations.

Related literature top

For background on the coordination chemistry

of Cd(II) in biological systems, see: Dressing et al. (1982). For related literature, see: Addison et al. (1984).

Experimental top

Solid 3,5-dimethyl pyrazole 0.96 g (0.01 mol) and cadmium nitrate 0.77 g (0.0025 mol) were added in 50 ml anhydrous alcohol under stirring. The mixture was refluxed for 3.5 h. The colourless solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, a colourless crystalline solid appeared three days later and was separated by filtration.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93 and 0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.
Tetrakis(3,5-dimethyl-1H-pyrazole-κN2)(nitrato-κ2O,O')cadmium(II) nitrate top
Crystal data top
[Cd(NO3)(C5H8N2)4]NO3Z = 2
Mr = 620.97F(000) = 636
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1790 (18) ÅCell parameters from 6067 reflections
b = 11.353 (2) Åθ = 2.3–28.2°
c = 13.669 (3) ŵ = 0.85 mm1
α = 94.79 (3)°T = 293 K
β = 105.61 (3)°Block, colourless
γ = 90.68 (3)°0.25 × 0.20 × 0.18 mm
V = 1366.2 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4677 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.5°, θmin = 2.3°
ϕ and ω scansh = 1011
7482 measured reflectionsk = 1313
5035 independent reflectionsl = 1611
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0885P)2 + 1.8569P]
where P = (Fo2 + 2Fc2)/3
5035 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 1.66 e Å3
1 restraintΔρmin = 0.87 e Å3
Crystal data top
[Cd(NO3)(C5H8N2)4]NO3γ = 90.68 (3)°
Mr = 620.97V = 1366.2 (5) Å3
Triclinic, P1Z = 2
a = 9.1790 (18) ÅMo Kα radiation
b = 11.353 (2) ŵ = 0.85 mm1
c = 13.669 (3) ÅT = 293 K
α = 94.79 (3)°0.25 × 0.20 × 0.18 mm
β = 105.61 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4677 reflections with I > 2σ(I)
7482 measured reflectionsRint = 0.016
5035 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 1.66 e Å3
5035 reflectionsΔρmin = 0.87 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.13316 (3)0.80806 (2)0.33031 (2)0.03976 (14)
O40.3597 (4)0.8966 (3)0.4877 (3)0.0559 (6)
O50.1497 (4)0.9850 (3)0.4459 (3)0.0538 (6)
O60.3174 (5)1.0465 (4)0.5840 (3)0.0679 (9)
N20.2219 (5)0.6381 (3)0.2677 (3)0.0492 (7)
N30.1348 (5)0.5493 (4)0.2059 (4)0.0600 (9)
H4A0.03770.54440.19180.072*
N40.2135 (4)0.7666 (4)0.1863 (3)0.0497 (7)
H5A0.20400.69190.19090.060*
N50.1073 (4)0.8506 (3)0.2393 (3)0.0451 (6)
N60.0798 (5)0.7578 (3)0.4743 (3)0.0491 (7)
H7A0.14260.80450.43970.059*
N70.0527 (5)0.7270 (3)0.4544 (3)0.0495 (6)
N80.2600 (4)0.9168 (3)0.2410 (3)0.0461 (6)
N90.3644 (4)1.0038 (3)0.2868 (3)0.0448 (7)
H10A0.40811.01200.35120.054*
N100.2779 (4)0.9758 (3)0.5082 (3)0.0464 (7)
C10.1461 (12)0.3654 (6)0.0977 (7)0.112 (3)
H1A0.22290.31870.07960.167*
H1B0.08000.39250.03730.167*
H1C0.08870.31830.13030.167*
C20.2191 (8)0.4702 (5)0.1697 (5)0.0705 (13)
C30.3657 (8)0.5085 (5)0.2081 (5)0.0731 (14)
H3A0.45030.47150.19670.088*
C40.3647 (6)0.6135 (4)0.2678 (4)0.0526 (9)
C50.4955 (6)0.6919 (6)0.3272 (5)0.0731 (16)
H5B0.45940.75720.36220.110*
H5C0.54800.72100.28160.110*
H5D0.56320.64780.37600.110*
C60.4658 (7)0.7409 (7)0.0621 (6)0.0848 (19)
H6A0.54060.79090.02490.127*
H6B0.50900.69670.10500.127*
H6C0.43270.68720.01510.127*
C70.3346 (5)0.8148 (5)0.1261 (4)0.0537 (9)
C80.3053 (6)0.9339 (5)0.1395 (4)0.0543 (9)
H8A0.36820.99120.10790.065*
C90.1645 (5)0.9538 (4)0.2091 (3)0.0464 (8)
C100.0833 (7)1.0697 (5)0.2516 (5)0.0689 (14)
H10B0.01281.05590.29790.103*
H10C0.14291.11600.28730.103*
H10D0.06761.11160.19690.103*
C110.2363 (8)0.7287 (5)0.5941 (5)0.0694 (13)
H11A0.30110.78120.55200.104*
H11B0.20420.76410.66300.104*
H11C0.29060.65530.59200.104*
C120.1004 (6)0.7059 (4)0.5551 (3)0.0509 (8)
C130.0213 (7)0.6372 (4)0.5865 (4)0.0572 (9)
H13A0.03830.58920.64010.069*
C140.1155 (6)0.6525 (4)0.5233 (3)0.0475 (7)
C150.2634 (6)0.5992 (5)0.5268 (5)0.0657 (12)
H15A0.30060.62510.47260.099*
H15B0.25100.51450.51890.099*
H15C0.33450.62340.59120.099*
C160.1073 (7)0.8553 (6)0.0647 (4)0.0666 (14)
H16A0.07270.79370.09790.100*
H16B0.15470.82080.01500.100*
H16C0.02280.89980.03140.100*
C170.2195 (5)0.9358 (4)0.1424 (3)0.0462 (8)
C180.2983 (6)1.0353 (4)0.1273 (4)0.0528 (9)
H18A0.28911.06790.06580.063*
C190.3919 (5)1.0756 (4)0.2202 (4)0.0459 (8)
C200.5065 (7)1.1759 (5)0.2532 (5)0.0652 (13)
H20A0.55151.17810.32540.098*
H20B0.45781.24900.23730.098*
H20C0.58351.16500.21800.098*
N10.7643 (6)0.4506 (5)0.1574 (5)0.0806 (16)
O10.8224 (7)0.5308 (6)0.2225 (5)0.1116 (18)*
O20.7028 (11)0.3695 (9)0.1665 (7)0.164 (3)*
O30.7830 (17)0.4749 (13)0.0795 (12)0.247 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0405 (2)0.0371 (2)0.0402 (2)0.00263 (12)0.00835 (13)0.00418 (12)
O40.0536 (12)0.0644 (18)0.0442 (11)0.0005 (9)0.0059 (9)0.0028 (10)
O50.0618 (15)0.0429 (11)0.0496 (14)0.0006 (11)0.0051 (9)0.0030 (9)
O60.079 (2)0.068 (2)0.0463 (17)0.0047 (17)0.0045 (13)0.0119 (13)
N20.0505 (12)0.0401 (10)0.0565 (19)0.0024 (10)0.0156 (13)0.0010 (10)
N30.0675 (15)0.0397 (16)0.070 (3)0.0119 (14)0.0175 (19)0.0051 (14)
N40.0429 (13)0.0510 (12)0.051 (2)0.0062 (11)0.0065 (11)0.0048 (14)
N50.0432 (9)0.0431 (12)0.0471 (15)0.0030 (8)0.0076 (8)0.0091 (11)
N60.0595 (18)0.0430 (19)0.0497 (19)0.0036 (14)0.0214 (15)0.0103 (13)
N70.0581 (15)0.0460 (15)0.0482 (16)0.0079 (11)0.0175 (12)0.0144 (12)
N80.0434 (14)0.0460 (14)0.0456 (10)0.0075 (11)0.0050 (10)0.0097 (11)
N90.0458 (18)0.0451 (18)0.0430 (12)0.0069 (11)0.0113 (12)0.0045 (12)
N100.0557 (16)0.0430 (17)0.0392 (15)0.0088 (11)0.0116 (10)0.0023 (9)
C10.148 (6)0.059 (4)0.116 (6)0.019 (4)0.031 (5)0.038 (3)
C20.093 (2)0.044 (2)0.072 (3)0.0035 (19)0.022 (3)0.0101 (18)
C30.0842 (19)0.053 (3)0.088 (4)0.004 (2)0.040 (3)0.012 (2)
C40.0555 (13)0.045 (2)0.059 (3)0.0029 (12)0.0205 (19)0.0004 (15)
C50.0479 (17)0.077 (3)0.086 (4)0.002 (2)0.010 (3)0.013 (3)
C60.054 (3)0.100 (3)0.082 (4)0.009 (2)0.010 (2)0.004 (3)
C70.0426 (17)0.0707 (17)0.045 (2)0.0005 (13)0.0080 (12)0.0024 (18)
C80.0503 (19)0.0663 (15)0.045 (2)0.0131 (14)0.0091 (14)0.0079 (18)
C90.0482 (17)0.0466 (11)0.045 (2)0.0081 (10)0.0124 (13)0.0054 (15)
C100.071 (3)0.0418 (14)0.085 (4)0.0075 (18)0.006 (3)0.005 (2)
C110.089 (3)0.066 (3)0.064 (3)0.009 (2)0.043 (3)0.000 (2)
C120.074 (2)0.039 (2)0.043 (2)0.0074 (16)0.0224 (17)0.0003 (14)
C130.081 (3)0.046 (2)0.044 (2)0.0043 (18)0.0141 (18)0.0110 (15)
C140.0612 (19)0.033 (2)0.044 (2)0.0021 (14)0.0061 (15)0.0065 (13)
C150.061 (2)0.051 (3)0.078 (4)0.0071 (19)0.003 (2)0.016 (2)
C160.067 (3)0.080 (3)0.0456 (19)0.015 (2)0.0061 (19)0.002 (2)
C170.047 (2)0.053 (2)0.0399 (11)0.0012 (14)0.0138 (13)0.0033 (13)
C180.060 (3)0.057 (2)0.0459 (14)0.0009 (16)0.0198 (16)0.0114 (15)
C190.047 (2)0.0426 (19)0.0525 (16)0.0011 (13)0.0213 (15)0.0070 (14)
C200.071 (3)0.055 (3)0.076 (3)0.0182 (19)0.032 (2)0.003 (2)
N10.074 (3)0.075 (3)0.085 (4)0.042 (3)0.008 (3)0.012 (3)
Geometric parameters (Å, º) top
Cd1—N72.278 (4)C6—C71.486 (7)
Cd1—N22.293 (4)C6—H6A0.9600
Cd1—N52.303 (4)C6—H6B0.9600
Cd1—N82.314 (4)C6—H6C0.9600
Cd1—O52.427 (3)C7—C81.362 (7)
Cd1—O42.673 (3)C8—C91.386 (7)
O4—N101.240 (5)C8—H8A0.9300
O5—N101.264 (5)C9—C101.497 (7)
O6—N101.225 (5)C10—H10B0.9600
N2—C41.343 (6)C10—H10C0.9600
N2—N31.358 (6)C10—H10D0.9600
N3—C21.341 (8)C11—C121.500 (7)
N3—H4A0.8600C11—H11A0.9600
N4—C71.346 (6)C11—H11B0.9600
N4—N51.365 (5)C11—H11C0.9600
N4—H5A0.8600C12—C131.363 (8)
N5—C91.341 (6)C13—C141.396 (7)
N6—C121.350 (6)C13—H13A0.9300
N6—N71.359 (6)C14—C151.483 (7)
N6—H7A0.8600C15—H15A0.9600
N7—C141.337 (6)C15—H15B0.9600
N8—C171.335 (6)C15—H15C0.9600
N8—N91.356 (5)C16—C171.500 (7)
N9—C191.342 (6)C16—H16A0.9600
N9—H10A0.8600C16—H16B0.9600
C1—C21.505 (8)C16—H16C0.9600
C1—H1A0.9600C17—C181.393 (7)
C1—H1B0.9600C18—C191.366 (7)
C1—H1C0.9600C18—H18A0.9300
C2—C31.357 (9)C19—C201.495 (7)
C3—C41.389 (7)C20—H20A0.9600
C3—H3A0.9300C20—H20B0.9600
C4—C51.490 (7)C20—H20C0.9600
C5—H5B0.9600N1—O21.108 (10)
C5—H5C0.9600N1—O31.176 (15)
C5—H5D0.9600N1—O11.226 (8)
N7—Cd1—N296.81 (14)C7—C6—H6B109.5
N7—Cd1—N593.80 (14)H6A—C6—H6B109.5
N2—Cd1—N5113.69 (15)C7—C6—H6C109.5
N7—Cd1—N8164.83 (15)H6A—C6—H6C109.5
N2—Cd1—N889.43 (14)H6B—C6—H6C109.5
N5—Cd1—N896.33 (13)N4—C7—C8105.9 (4)
N7—Cd1—O581.49 (13)N4—C7—C6121.7 (5)
N2—Cd1—O5154.81 (14)C8—C7—C6132.3 (5)
N5—Cd1—O591.50 (13)C7—C8—C9107.4 (4)
N8—Cd1—O586.98 (13)C7—C8—H8A126.3
N7—Cd1—O483.20 (13)C9—C8—H8A126.3
N2—Cd1—O4105.38 (13)N5—C9—C8109.8 (4)
N5—Cd1—O4140.88 (12)N5—C9—C10122.0 (4)
N8—Cd1—O481.82 (12)C8—C9—C10128.2 (4)
O5—Cd1—O449.43 (12)C9—C10—H10B109.5
N10—O4—Cd190.4 (2)C9—C10—H10C109.5
N10—O5—Cd1101.7 (3)H10B—C10—H10C109.5
C4—N2—N3105.2 (4)C9—C10—H10D109.5
C4—N2—Cd1128.6 (3)H10B—C10—H10D109.5
N3—N2—Cd1125.3 (3)H10C—C10—H10D109.5
C2—N3—N2111.5 (5)C12—C11—H11A109.5
C2—N3—H4A124.2C12—C11—H11B109.5
N2—N3—H4A124.2H11A—C11—H11B109.5
C7—N4—N5112.0 (4)C12—C11—H11C109.5
C7—N4—H5A124.0H11A—C11—H11C109.5
N5—N4—H5A124.0H11B—C11—H11C109.5
C9—N5—N4104.9 (4)N6—C12—C13106.1 (4)
C9—N5—Cd1130.1 (3)N6—C12—C11121.7 (5)
N4—N5—Cd1123.7 (3)C13—C12—C11132.2 (5)
C12—N6—N7111.5 (4)C12—C13—C14107.2 (4)
C12—N6—H7A124.2C12—C13—H13A126.4
N7—N6—H7A124.2C14—C13—H13A126.4
C14—N7—N6105.9 (4)N7—C14—C13109.2 (4)
C14—N7—Cd1132.7 (3)N7—C14—C15122.2 (5)
N6—N7—Cd1121.3 (3)C13—C14—C15128.6 (5)
C17—N8—N9105.2 (4)C14—C15—H15A109.5
C17—N8—Cd1129.0 (3)C14—C15—H15B109.5
N9—N8—Cd1122.8 (3)H15A—C15—H15B109.5
C19—N9—N8112.3 (4)C14—C15—H15C109.5
C19—N9—H10A123.9H15A—C15—H15C109.5
N8—N9—H10A123.9H15B—C15—H15C109.5
O6—N10—O4123.0 (4)C17—C16—H16A109.5
O6—N10—O5119.2 (4)C17—C16—H16B109.5
O4—N10—O5117.8 (4)H16A—C16—H16B109.5
C2—C1—H1A109.5C17—C16—H16C109.5
C2—C1—H1B109.5H16A—C16—H16C109.5
H1A—C1—H1B109.5H16B—C16—H16C109.5
C2—C1—H1C109.5N8—C17—C18109.8 (4)
H1A—C1—H1C109.5N8—C17—C16121.7 (4)
H1B—C1—H1C109.5C18—C17—C16128.5 (4)
N3—C2—C3106.9 (5)C19—C18—C17106.8 (4)
N3—C2—C1120.8 (6)C19—C18—H18A126.6
C3—C2—C1132.3 (6)C17—C18—H18A126.6
C2—C3—C4106.6 (5)N9—C19—C18105.9 (4)
C2—C3—H3A126.7N9—C19—C20121.6 (5)
C4—C3—H3A126.7C18—C19—C20132.5 (5)
N2—C4—C3109.8 (5)C19—C20—H20A109.5
N2—C4—C5121.6 (4)C19—C20—H20B109.5
C3—C4—C5128.7 (5)H20A—C20—H20B109.5
C4—C5—H5B109.5C19—C20—H20C109.5
C4—C5—H5C109.5H20A—C20—H20C109.5
H5B—C5—H5C109.5H20B—C20—H20C109.5
C4—C5—H5D109.5O2—N1—O3124.1 (11)
H5B—C5—H5D109.5O2—N1—O1128.2 (8)
H5C—C5—H5D109.5O3—N1—O1107.6 (9)
C7—C6—H6A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H4A···O1i0.862.132.943 (8)157
N3—H4A···O3i0.862.503.289 (16)152
N4—H5A···O1i0.861.922.771 (8)171
N6—H7A···O6ii0.862.333.131 (6)156
N9—H10A···O40.862.503.106 (5)128
C5—H5B···O40.962.593.530 (7)166
C10—H10B···O50.962.293.157 (7)150
C13—H13A···O1iii0.932.493.375 (8)159
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(NO3)(C5H8N2)4]NO3
Mr620.97
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1790 (18), 11.353 (2), 13.669 (3)
α, β, γ (°)94.79 (3), 105.61 (3), 90.68 (3)
V3)1366.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7482, 5035, 4677
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.06
No. of reflections5035
No. of parameters319
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.66, 0.87

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H4A···O1i0.862.132.943 (8)156.6
N3—H4A···O3i0.862.503.289 (16)152.2
N4—H5A···O1i0.861.922.771 (8)171.4
N6—H7A···O6ii0.862.333.131 (6)155.7
N9—H10A···O40.862.503.106 (5)128.4
C5—H5B···O40.962.593.530 (7)166.1
C10—H10B···O50.962.293.157 (7)149.7
C13—H13A···O1iii0.932.493.375 (8)159.4
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x+1, y+1, z+1.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Vanrijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDressing, S. A., Mass, R. P. & Weiss, C. M. (1982). Bull. Environ. Contam. Toxicol. 28, 172–180.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds