metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chlorido{1-[1-(4-hy­droxy­phen­yl)-1H-tetra­zol-5-ylsulfan­yl]acetato}(methanol)(1,10-phenanthroline)manganese(II)

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.edu.cn

(Received 3 November 2008; accepted 17 November 2008; online 22 November 2008)

The title complex, [Mn(C9H7N4O3S)Cl(C12H8N2)(CH4O)(H2O)], contains an MnII ion six-coordinated by one O atom from the 2-[1-(4-hydroxy­phen­yl)-1H-tetra­zol-5-ylsulfan­yl]­acetate ligand, two N atoms from a chelating 1,10-phenanthroline ligand, one O atom from a methanol mol­ecule, one Cl atom and one water mol­ecule in a distorted octa­hedral coordination geometry. The existence of O—H⋯Cl, O—H⋯N and O—H⋯O hydrogen bonds further produces a two-dimensional structure.

Related literature

For general background, see: Hu et al. (2006[Hu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. & Ribas, J. (2006). Inorg. Chem. 45, 162-173.]); Zhang et al. (2006[Zhang, L. Y., Zhang, J. P., Lin, Y. Y. & Chen, X. M. (2006). Cryst. Growth Des. 7, 1684-1689.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C9H7N4O3S)Cl(C12H8N2)(CH4O)(H2O)]

  • Mr = 571.90

  • Triclinic, [P \overline 1]

  • a = 10.5565 (3) Å

  • b = 11.4969 (2) Å

  • c = 11.5931 (2) Å

  • α = 114.362 (1)°

  • β = 96.841 (1)°

  • γ = 103.969 (1)°

  • V = 1205.17 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 296 (2) K

  • 0.34 × 0.23 × 0.11 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.806, Tmax = 0.916

  • 13742 measured reflections

  • 4186 independent reflections

  • 3802 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.081

  • S = 1.07

  • 4186 reflections

  • 337 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯Cl1i 0.805 (16) 2.334 (17) 3.1344 (16) 173 (2)
O4—H4B⋯O1ii 0.797 (16) 1.889 (17) 2.6788 (18) 171 (2)
O1W—H1WA⋯N4iii 0.804 (15) 2.006 (15) 2.808 (2) 175 (2)
O1W—H1WB⋯Cl1iii 0.815 (15) 2.376 (17) 3.1665 (15) 164 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently much interest has been focused on the design and synthesis of complexes based on rigid aromatic carboxylic acids (Hu et al., 2006; Zhang et al., 2006). However, the coordination chemistry and structural properties of complexes based on flexible heterocyclic acetate ligand have been rarely documented to date. 1-(4-hydroxyphenyl)-5-thioacetatetetrazole possesses one phenolic hydroxy group and one flexible thioacetate group, which has senven potential coordinated sites. As illustrated in Fig. 1, MnII ion is in a distorted octahedral coordination environment, coordinated by one O atom of 1-(4-hydroxyphenyl)-5-thioacetatetetrazole ligand, two N atoms from phen, one O atom from methanol molecule, one Cl atom and one water molecule.

The existence of O—H···Cl, O—H···N, and O—H···O three types of hydrogen bonds further produce two-dimensional structure.

Related literature top

For general background, see: Hu et al. (2006); Zhang et al. (2006).

Experimental top

Manganese chloride tetrahydrate 0.5 mmol (0.099 g), 1-(4-hydroxyphenyl)-5-thioacetatetetrazole 0.5 mmol (0.061 g), 1,10-phenanthroline 0.25 mmol (0.050 g), were mixed in 16 ml of 15:1 distilled water/methanol, and stirred for 2 h under 333 K. Then the reaction mixture was filtered and well shaped colourless crystals of the title compound, Mn(H2O)Cl(MeOH)(phen)(C9H7N4O3S), was obtained from the mother liquor by slow evaporation at room temperature for several days.

Refinement top

The H atoms bonded to C atoms were positioned geometrically [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)], and methyl group C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C). The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.82 and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level.
Aquachlorido{1-[1-(4-hydroxyphenyl)-1H-tetrazol-5- ylsulfanyl]acetato}(methanol)(1,10-phenanthroline)manganese(II) top
Crystal data top
[Mn(C9H7N4O3S)Cl(C12H8N2)(CH4O)(H2O)]Z = 2
Mr = 571.90F(000) = 586
Triclinic, P1Dx = 1.576 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5565 (3) ÅCell parameters from 5369 reflections
b = 11.4969 (2) Åθ = 2.0–25.0°
c = 11.5931 (2) ŵ = 0.79 mm1
α = 114.362 (1)°T = 296 K
β = 96.841 (1)°Block, colourless
γ = 103.969 (1)°0.34 × 0.23 × 0.11 mm
V = 1205.17 (5) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4186 independent reflections
Radiation source: fine-focus sealed tube3802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.806, Tmax = 0.916k = 1313
13742 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.2751P]
where P = (Fo2 + 2Fc2)/3
4186 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 0.33 e Å3
8 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Mn(C9H7N4O3S)Cl(C12H8N2)(CH4O)(H2O)]γ = 103.969 (1)°
Mr = 571.90V = 1205.17 (5) Å3
Triclinic, P1Z = 2
a = 10.5565 (3) ÅMo Kα radiation
b = 11.4969 (2) ŵ = 0.79 mm1
c = 11.5931 (2) ÅT = 296 K
α = 114.362 (1)°0.34 × 0.23 × 0.11 mm
β = 96.841 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
4186 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3802 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.916Rint = 0.019
13742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0278 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.33 e Å3
4186 reflectionsΔρmin = 0.27 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.19580 (2)0.37914 (3)0.39006 (2)0.03039 (10)
S10.41984 (5)0.76432 (5)0.90045 (5)0.03782 (13)
O10.22915 (13)0.76112 (13)0.71081 (14)0.0432 (3)
O20.20363 (13)0.56470 (13)0.54313 (13)0.0433 (3)
O30.30543 (16)1.00580 (15)1.46112 (16)0.0506 (4)
H3B0.322 (3)1.0813 (18)1.469 (3)0.061*
O40.01155 (13)0.25511 (15)0.41066 (15)0.0459 (3)
H4B0.0559 (19)0.259 (2)0.375 (2)0.055*
O1W0.36180 (14)0.49567 (15)0.34462 (15)0.0436 (3)
H1WA0.378 (2)0.461 (2)0.2748 (16)0.052*
H1WB0.4312 (19)0.551 (2)0.3980 (18)0.052*
Cl10.34450 (5)0.30009 (5)0.50090 (5)0.04618 (14)
N10.55547 (16)0.73208 (15)1.09287 (15)0.0371 (4)
N20.63935 (18)0.66518 (18)1.11195 (17)0.0454 (4)
N30.65952 (17)0.59784 (17)0.99986 (17)0.0443 (4)
N40.59187 (15)0.61830 (16)0.90566 (16)0.0376 (4)
N50.17387 (14)0.21255 (14)0.18296 (15)0.0327 (3)
N60.05314 (15)0.40551 (15)0.24743 (15)0.0331 (3)
C10.37482 (19)0.94561 (19)1.37606 (18)0.0371 (4)
C20.3594 (2)0.8111 (2)1.34184 (19)0.0401 (4)
H2A0.30790.76791.38110.048*
C30.4201 (2)0.74207 (19)1.25000 (19)0.0394 (4)
H3A0.40830.65151.22550.047*
C40.49903 (19)0.80822 (18)1.19405 (18)0.0352 (4)
C50.5208 (2)0.94331 (19)1.23160 (19)0.0389 (4)
H5A0.57680.98771.19610.047*
C60.45784 (19)1.01185 (19)1.32297 (19)0.0382 (4)
H6A0.47141.10291.34890.046*
C70.52702 (18)0.70145 (17)0.96571 (18)0.0326 (4)
C80.38078 (19)0.64340 (19)0.72948 (18)0.0371 (4)
H8A0.45810.65970.69400.045*
H8B0.35870.55260.72040.045*
C90.26138 (17)0.65837 (18)0.65563 (18)0.0325 (4)
C100.00740 (19)0.4990 (2)0.2799 (2)0.0405 (4)
H10A0.00800.55850.36780.049*
C110.0932 (2)0.5116 (2)0.1878 (2)0.0487 (5)
H11A0.13470.57780.21440.058*
C120.1158 (2)0.4263 (2)0.0587 (2)0.0497 (5)
H12A0.17320.43360.00350.060*
C130.05201 (19)0.3272 (2)0.0198 (2)0.0419 (5)
C140.0662 (2)0.2360 (2)0.1134 (2)0.0544 (6)
H14A0.12140.24040.17930.065*
C150.0016 (2)0.1441 (2)0.1458 (2)0.0538 (6)
H15A0.01170.08730.23350.065*
C160.0824 (2)0.1320 (2)0.04811 (19)0.0419 (5)
C170.1503 (2)0.0364 (2)0.0762 (2)0.0495 (5)
H17A0.14350.02250.16240.059*
C180.2257 (2)0.0301 (2)0.0226 (2)0.0481 (5)
H18A0.27080.03320.00500.058*
C190.23497 (19)0.11972 (19)0.1513 (2)0.0404 (4)
H19A0.28670.11400.21840.048*
C200.09807 (17)0.21888 (18)0.08438 (18)0.0322 (4)
C210.03157 (17)0.32046 (18)0.11916 (18)0.0328 (4)
C220.0099 (3)0.1695 (3)0.4730 (3)0.0630 (6)
H22A0.10490.13140.46150.095*
H22B0.03310.22150.56460.095*
H22C0.02760.09840.43460.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02964 (16)0.03098 (16)0.02770 (17)0.01230 (12)0.00583 (12)0.00973 (13)
S10.0417 (3)0.0368 (3)0.0306 (3)0.0196 (2)0.0053 (2)0.0085 (2)
O10.0404 (7)0.0346 (7)0.0434 (8)0.0181 (6)0.0034 (6)0.0060 (6)
O20.0435 (8)0.0426 (8)0.0310 (7)0.0208 (6)0.0029 (6)0.0030 (6)
O30.0562 (9)0.0466 (9)0.0550 (10)0.0260 (8)0.0250 (8)0.0208 (8)
O40.0320 (7)0.0576 (9)0.0558 (10)0.0166 (7)0.0104 (7)0.0320 (8)
O1W0.0395 (8)0.0434 (8)0.0362 (8)0.0050 (6)0.0130 (6)0.0109 (7)
Cl10.0447 (3)0.0375 (3)0.0495 (3)0.0167 (2)0.0039 (2)0.0159 (2)
N10.0453 (9)0.0353 (8)0.0324 (9)0.0192 (7)0.0084 (7)0.0140 (7)
N20.0535 (10)0.0471 (10)0.0423 (10)0.0269 (8)0.0104 (8)0.0212 (8)
N30.0470 (10)0.0459 (10)0.0438 (10)0.0239 (8)0.0125 (8)0.0189 (8)
N40.0385 (8)0.0383 (9)0.0371 (9)0.0172 (7)0.0115 (7)0.0152 (7)
N50.0294 (7)0.0296 (8)0.0324 (7)0.0095 (6)0.0048 (6)0.0088 (6)
N60.0310 (7)0.0340 (8)0.0352 (9)0.0120 (6)0.0084 (6)0.0158 (7)
C10.0378 (10)0.0397 (10)0.0308 (10)0.0171 (8)0.0039 (8)0.0121 (8)
C20.0460 (11)0.0391 (10)0.0372 (11)0.0127 (9)0.0102 (9)0.0198 (9)
C30.0520 (11)0.0306 (9)0.0347 (11)0.0151 (8)0.0080 (9)0.0138 (8)
C40.0431 (10)0.0341 (10)0.0269 (9)0.0162 (8)0.0060 (8)0.0112 (8)
C50.0470 (11)0.0357 (10)0.0350 (11)0.0134 (8)0.0100 (9)0.0171 (9)
C60.0455 (11)0.0297 (9)0.0375 (11)0.0151 (8)0.0054 (9)0.0132 (8)
C70.0333 (9)0.0297 (9)0.0310 (10)0.0089 (7)0.0077 (8)0.0111 (8)
C80.0369 (10)0.0389 (10)0.0308 (10)0.0178 (8)0.0069 (8)0.0088 (8)
C90.0290 (9)0.0331 (10)0.0315 (10)0.0105 (7)0.0088 (8)0.0104 (8)
C100.0394 (10)0.0386 (10)0.0475 (12)0.0165 (8)0.0145 (9)0.0202 (9)
C110.0410 (11)0.0507 (12)0.0704 (16)0.0237 (10)0.0162 (11)0.0370 (12)
C120.0379 (11)0.0564 (13)0.0622 (15)0.0126 (10)0.0027 (10)0.0382 (12)
C130.0335 (10)0.0460 (11)0.0443 (12)0.0050 (8)0.0006 (8)0.0257 (10)
C140.0513 (13)0.0608 (14)0.0402 (13)0.0046 (11)0.0061 (10)0.0250 (11)
C150.0590 (13)0.0531 (13)0.0291 (11)0.0032 (11)0.0011 (10)0.0109 (10)
C160.0390 (10)0.0368 (10)0.0334 (11)0.0004 (8)0.0062 (8)0.0081 (9)
C170.0508 (12)0.0381 (11)0.0390 (12)0.0061 (9)0.0152 (10)0.0021 (9)
C180.0422 (11)0.0338 (11)0.0557 (14)0.0133 (9)0.0162 (10)0.0072 (10)
C190.0358 (10)0.0341 (10)0.0458 (12)0.0132 (8)0.0090 (9)0.0125 (9)
C200.0271 (8)0.0306 (9)0.0318 (10)0.0036 (7)0.0057 (7)0.0111 (8)
C210.0271 (8)0.0348 (10)0.0339 (10)0.0050 (7)0.0048 (7)0.0168 (8)
C220.0745 (16)0.0582 (15)0.0655 (17)0.0219 (13)0.0239 (13)0.0347 (12)
Geometric parameters (Å, º) top
Mn1—O22.1128 (13)C3—H3A0.9300
Mn1—O1W2.1937 (13)C4—C51.379 (3)
Mn1—O42.2195 (14)C5—C61.384 (3)
Mn1—N62.2659 (15)C5—H5A0.9300
Mn1—N52.3121 (15)C6—H6A0.9300
Mn1—Cl12.4725 (5)C8—C91.523 (3)
S1—C71.7370 (18)C8—H8A0.9700
S1—C81.8129 (19)C8—H8B0.9700
O1—C91.242 (2)C10—C111.395 (3)
O2—C91.252 (2)C10—H10A0.9300
O3—C11.357 (2)C11—C121.360 (3)
O3—H3B0.805 (16)C11—H11A0.9300
O4—C221.435 (3)C12—C131.405 (3)
O4—H4B0.797 (16)C12—H12A0.9300
O1W—H1WA0.804 (15)C13—C211.405 (3)
O1W—H1WB0.815 (15)C13—C141.429 (3)
N1—C71.343 (2)C14—C151.343 (3)
N1—N21.359 (2)C14—H14A0.9300
N1—C41.438 (2)C15—C161.427 (3)
N2—N31.284 (2)C15—H15A0.9300
N3—N41.366 (2)C16—C171.404 (3)
N4—C71.322 (2)C16—C201.406 (3)
N5—C191.325 (2)C17—C181.353 (3)
N5—C201.353 (2)C17—H17A0.9300
N6—C101.326 (2)C18—C191.395 (3)
N6—C211.353 (2)C18—H18A0.9300
C1—C61.386 (3)C19—H19A0.9300
C1—C21.390 (3)C20—C211.447 (2)
C2—C31.373 (3)C22—H22A0.9600
C2—H2A0.9300C22—H22B0.9600
C3—C41.387 (3)C22—H22C0.9600
O2—Mn1—O1W86.83 (6)N4—C7—N1108.36 (16)
O2—Mn1—O496.20 (6)N4—C7—S1128.91 (15)
O1W—Mn1—O4172.42 (6)N1—C7—S1122.72 (13)
O2—Mn1—N690.89 (5)C9—C8—S1108.62 (12)
O1W—Mn1—N687.38 (6)C9—C8—H8A110.0
O4—Mn1—N685.63 (5)S1—C8—H8A110.0
O2—Mn1—N5161.07 (6)C9—C8—H8B110.0
O1W—Mn1—N583.48 (5)S1—C8—H8B110.0
O4—Mn1—N591.61 (6)H8A—C8—H8B108.3
N6—Mn1—N572.49 (5)O1—C9—O2125.37 (17)
O2—Mn1—Cl1102.48 (4)O1—C9—C8118.10 (16)
O1W—Mn1—Cl193.64 (4)O2—C9—C8116.53 (15)
O4—Mn1—Cl192.49 (4)N6—C10—C11122.7 (2)
N6—Mn1—Cl1166.62 (4)N6—C10—H10A118.6
N5—Mn1—Cl194.35 (4)C11—C10—H10A118.6
C7—S1—C899.25 (8)C12—C11—C10119.42 (19)
C9—O2—Mn1148.24 (12)C12—C11—H11A120.3
C1—O3—H3B106.1 (18)C10—C11—H11A120.3
C22—O4—Mn1133.01 (14)C11—C12—C13119.71 (19)
C22—O4—H4B114.4 (17)C11—C12—H12A120.1
Mn1—O4—H4B112.6 (17)C13—C12—H12A120.1
Mn1—O1W—H1WA118.9 (16)C12—C13—C21117.14 (19)
Mn1—O1W—H1WB124.4 (16)C12—C13—C14123.71 (19)
H1WA—O1W—H1WB108.7 (19)C21—C13—C14119.14 (19)
C7—N1—N2108.33 (15)C15—C14—C13121.5 (2)
C7—N1—C4128.64 (15)C15—C14—H14A119.3
N2—N1—C4122.67 (15)C13—C14—H14A119.3
N3—N2—N1106.35 (16)C14—C15—C16121.3 (2)
N2—N3—N4111.19 (15)C14—C15—H15A119.4
C7—N4—N3105.76 (15)C16—C15—H15A119.4
C19—N5—C20117.63 (16)C17—C16—C20117.17 (19)
C19—N5—Mn1126.95 (13)C17—C16—C15123.71 (19)
C20—N5—Mn1115.21 (11)C20—C16—C15119.11 (19)
C10—N6—C21118.22 (16)C18—C17—C16119.83 (19)
C10—N6—Mn1125.14 (13)C18—C17—H17A120.1
C21—N6—Mn1116.62 (11)C16—C17—H17A120.1
O3—C1—C6123.01 (17)C17—C18—C19119.14 (19)
O3—C1—C2117.16 (17)C17—C18—H18A120.4
C6—C1—C2119.83 (17)C19—C18—H18A120.4
C3—C2—C1119.98 (18)N5—C19—C18123.4 (2)
C3—C2—H2A120.0N5—C19—H19A118.3
C1—C2—H2A120.0C18—C19—H19A118.3
C2—C3—C4119.58 (17)N5—C20—C16122.84 (17)
C2—C3—H3A120.2N5—C20—C21117.54 (16)
C4—C3—H3A120.2C16—C20—C21119.62 (17)
C5—C4—C3121.15 (17)N6—C21—C13122.75 (17)
C5—C4—N1120.23 (16)N6—C21—C20117.93 (16)
C3—C4—N1118.59 (16)C13—C21—C20119.32 (17)
C4—C5—C6118.93 (18)O4—C22—H22A109.5
C4—C5—H5A120.5O4—C22—H22B109.5
C6—C5—H5A120.5H22A—C22—H22B109.5
C5—C6—C1120.40 (17)O4—C22—H22C109.5
C5—C6—H6A119.8H22A—C22—H22C109.5
C1—C6—H6A119.8H22B—C22—H22C109.5
O1W—Mn1—O2—C977.1 (2)N2—N1—C7—N40.5 (2)
O4—Mn1—O2—C9109.8 (2)C4—N1—C7—N4173.59 (17)
N6—Mn1—O2—C9164.5 (2)N2—N1—C7—S1178.75 (13)
N5—Mn1—O2—C9136.3 (2)C4—N1—C7—S15.7 (3)
Cl1—Mn1—O2—C915.9 (3)C8—S1—C7—N418.08 (19)
O2—Mn1—O4—C2299.15 (19)C8—S1—C7—N1161.03 (16)
N6—Mn1—O4—C22170.4 (2)C7—S1—C8—C9166.78 (13)
N5—Mn1—O4—C2298.12 (19)Mn1—O2—C9—O1177.25 (16)
Cl1—Mn1—O4—C223.69 (19)Mn1—O2—C9—C82.8 (3)
C7—N1—N2—N30.1 (2)S1—C8—C9—O114.7 (2)
C4—N1—N2—N3173.67 (17)S1—C8—C9—O2165.34 (14)
N1—N2—N3—N40.4 (2)C21—N6—C10—C110.9 (3)
N2—N3—N4—C70.7 (2)Mn1—N6—C10—C11179.25 (14)
O2—Mn1—N5—C19149.03 (17)N6—C10—C11—C120.7 (3)
O1W—Mn1—N5—C1989.35 (15)C10—C11—C12—C130.3 (3)
O4—Mn1—N5—C1996.44 (15)C11—C12—C13—C211.0 (3)
N6—Mn1—N5—C19178.65 (16)C11—C12—C13—C14177.97 (19)
Cl1—Mn1—N5—C193.82 (15)C12—C13—C14—C15179.1 (2)
O2—Mn1—N5—C2025.6 (2)C21—C13—C14—C150.1 (3)
O1W—Mn1—N5—C2085.32 (12)C13—C14—C15—C161.1 (3)
O4—Mn1—N5—C2088.88 (12)C14—C15—C16—C17178.9 (2)
N6—Mn1—N5—C203.98 (11)C14—C15—C16—C200.4 (3)
Cl1—Mn1—N5—C20178.50 (11)C20—C16—C17—C180.7 (3)
O2—Mn1—N6—C1010.40 (15)C15—C16—C17—C18178.6 (2)
O1W—Mn1—N6—C1097.18 (15)C16—C17—C18—C190.3 (3)
O4—Mn1—N6—C1085.75 (15)C20—N5—C19—C180.5 (3)
N5—Mn1—N6—C10178.83 (16)Mn1—N5—C19—C18174.03 (14)
Cl1—Mn1—N6—C10168.12 (13)C17—C18—C19—N50.4 (3)
O2—Mn1—N6—C21167.97 (12)C19—N5—C20—C160.1 (3)
O1W—Mn1—N6—C2181.19 (12)Mn1—N5—C20—C16175.10 (13)
O4—Mn1—N6—C2195.88 (12)C19—N5—C20—C21179.93 (15)
N5—Mn1—N6—C212.80 (11)Mn1—N5—C20—C214.72 (19)
Cl1—Mn1—N6—C2113.5 (3)C17—C16—C20—N50.5 (3)
O3—C1—C2—C3175.91 (18)C15—C16—C20—N5178.84 (17)
C6—C1—C2—C33.7 (3)C17—C16—C20—C21179.34 (17)
C1—C2—C3—C41.4 (3)C15—C16—C20—C211.3 (3)
C2—C3—C4—C51.8 (3)C10—N6—C21—C130.1 (3)
C2—C3—C4—N1176.58 (17)Mn1—N6—C21—C13178.56 (13)
C7—N1—C4—C565.4 (3)C10—N6—C21—C20179.92 (15)
N2—N1—C4—C5122.4 (2)Mn1—N6—C21—C201.4 (2)
C7—N1—C4—C3113.0 (2)C12—C13—C21—N60.9 (3)
N2—N1—C4—C359.2 (3)C14—C13—C21—N6178.17 (17)
C3—C4—C5—C62.6 (3)C12—C13—C21—C20179.12 (16)
N1—C4—C5—C6175.72 (17)C14—C13—C21—C201.8 (3)
C4—C5—C6—C10.3 (3)N5—C20—C21—N62.3 (2)
O3—C1—C6—C5176.73 (18)C16—C20—C21—N6177.54 (16)
C2—C1—C6—C52.9 (3)N5—C20—C21—C13177.72 (15)
N3—N4—C7—N10.7 (2)C16—C20—C21—C132.5 (2)
N3—N4—C7—S1178.50 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···Cl1i0.81 (2)2.33 (2)3.1344 (16)173 (2)
O4—H4B···O1ii0.80 (2)1.89 (2)2.6788 (18)171 (2)
O1W—H1WA···N4iii0.80 (2)2.01 (2)2.808 (2)175 (2)
O1W—H1WB···Cl1iii0.82 (2)2.38 (2)3.1665 (15)164 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C9H7N4O3S)Cl(C12H8N2)(CH4O)(H2O)]
Mr571.90
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.5565 (3), 11.4969 (2), 11.5931 (2)
α, β, γ (°)114.362 (1), 96.841 (1), 103.969 (1)
V3)1205.17 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.34 × 0.23 × 0.11
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.806, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
13742, 4186, 3802
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.081, 1.07
No. of reflections4186
No. of parameters337
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···Cl1i0.805 (16)2.334 (17)3.1344 (16)173 (2)
O4—H4B···O1ii0.797 (16)1.889 (17)2.6788 (18)171 (2)
O1W—H1WA···N4iii0.804 (15)2.006 (15)2.808 (2)175 (2)
O1W—H1WB···Cl1iii0.815 (15)2.376 (17)3.1665 (15)164 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

References

First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. & Ribas, J. (2006). Inorg. Chem. 45, 162–173.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L. Y., Zhang, J. P., Lin, Y. Y. & Chen, X. M. (2006). Cryst. Growth Des. 7, 1684–1689.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds