metal-organic compounds
Pentacarbonyl-2κ5C-chlorido-1κCl-bis[1(η5)-cyclopentadienyl](μ-α-oxidobenzylidene-1:2κ2O:C)titanium(IV)tungsten(0)
aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: ce@sun.ac.za
The title compound, [TiW(C5H5)2(C7H5O)Cl(CO)5], consists of two metal centres, with a (tungstenpentacarbonyl)oxyphenylcarbene unit coordinated by a titanocene chloride. The oxycarbene group is nearly planar, with the phenyl ring twisted by an angle of 39.1 (2)° with respect to this plane. One of the cyclopentadienyl rings undergoes an offset face-to-face π–π interaction [3.544 (6) Å] with the symmetry-related cyclopentadienyl ring of a neighbouring molecule.
Related literature
For related literature regarding anionic Fischer-type ). For information regarding the of similar complexes, see: Luruli et al. (2004, 2006); Sinn et al. (1980). For comparable structures, see: Esterhuysen et al. (2008); Balzer et al. (1992). For related literature, see: Orpen et al. (1989).
see: Barluenga & Fañanás (2000Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808036465/at2672sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808036465/at2672Isup2.hkl
A solution of LiCH3 (31.0 ml, 1.6M, 50.2 mmol) in 50 ml of diethylether was added to a well stirred suspension of W(CO)6 (17.80 g, 50.6 mmol) in 100 ml of diethylether. After solvent removal in vacuo, dissolution of the residue in 150 ml of cold water and filtration, a solution of Et4NCl (8.72 g, 52.6 mmol) in 50 ml of cold water was added to the filtrate. Upon further filtration 1.13 g (2.0 mmol) of the product {[W(CO)5C(C6H5)O][NEt4]} was dissolved in 70 ml of dichloromethane and added to a solution of Cp2TiCl2 (0.51 g, 2.0 mmol) in 40 ml of dichloromethane. After stirring for 30 min at -40°C AgBF4 (0.39 g, 2.0 mmol) was added. The red concentrate, stripped of solvent, was purified by
at -20°C on silica with 400 ml of dichloromethane-pentane (2:1) followed by 200 ml of diethyl ether-hexane (2:1) (column 15 × 2 cm). The was dried in vacuo, and the residue dissolved in toluene, layered with pentane and kept at -6°C, whereupon brown crystals of the title compound suitable for X-ray were obtained in 38% yield.H atoms were positioned geometrically, with C—H = 0.95 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks were located 1.05 and 0.86 Å, respectively from the W atom.
Data collection: COLLECT (Nonius, 1998); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN(Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).Fig. 1. The molecular structure of (I) showing the atomic labelling scheme and displacement ellipsoids drawn at the 50% probability level. |
[TiW(C5H5)2(C7H5O)Cl(CO)5] | F(000) = 1232 |
Mr = 642.54 | Dx = 1.967 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3701 reflections |
a = 8.553 (1) Å | θ = 1.9–26.0° |
b = 12.268 (1) Å | µ = 5.83 mm−1 |
c = 20.789 (3) Å | T = 173 K |
β = 95.903 (1)° | Prism, brown |
V = 2169.8 (3) Å3 | 0.17 × 0.14 × 0.12 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 4270 independent reflections |
Radiation source: fine-focus sealed tube | 3701 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ϕ and ω scans to fill Ewald sphere | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | h = −10→10 |
Tmin = 0.438, Tmax = 0.542 | k = −12→15 |
12664 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0268P)2 + 1.3791P] where P = (Fo2 + 2Fc2)/3 |
4270 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 1.05 e Å−3 |
0 restraints | Δρmin = −1.28 e Å−3 |
[TiW(C5H5)2(C7H5O)Cl(CO)5] | V = 2169.8 (3) Å3 |
Mr = 642.54 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.553 (1) Å | µ = 5.83 mm−1 |
b = 12.268 (1) Å | T = 173 K |
c = 20.789 (3) Å | 0.17 × 0.14 × 0.12 mm |
β = 95.903 (1)° |
Nonius KappaCCD diffractometer | 4270 independent reflections |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | 3701 reflections with I > 2σ(I) |
Tmin = 0.438, Tmax = 0.542 | Rint = 0.048 |
12664 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.05 e Å−3 |
4270 reflections | Δρmin = −1.28 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
W | −0.040028 (18) | 0.614346 (12) | 0.673068 (7) | 0.02272 (7) | |
Ti | 0.30368 (8) | 0.78191 (5) | 0.53935 (3) | 0.02177 (16) | |
Cl | 0.55600 (14) | 0.83949 (10) | 0.58007 (5) | 0.0410 (3) | |
O1 | 0.2431 (3) | 0.7285 (2) | 0.62039 (11) | 0.0245 (6) | |
O2 | −0.1363 (4) | 0.6408 (3) | 0.52255 (14) | 0.0404 (8) | |
O3 | −0.3832 (4) | 0.5174 (3) | 0.67496 (16) | 0.0509 (9) | |
O4 | −0.0034 (5) | 0.6032 (3) | 0.82667 (14) | 0.0521 (10) | |
O5 | 0.0917 (5) | 0.3753 (3) | 0.65428 (18) | 0.0569 (10) | |
O6 | −0.1413 (5) | 0.8615 (3) | 0.69147 (17) | 0.0505 (9) | |
C1 | 0.1989 (4) | 0.6800 (3) | 0.66995 (16) | 0.0207 (8) | |
C2 | −0.0937 (5) | 0.6307 (3) | 0.5758 (2) | 0.0282 (9) | |
C3 | −0.2601 (5) | 0.5542 (3) | 0.67555 (19) | 0.0326 (10) | |
C4 | −0.0115 (5) | 0.6062 (3) | 0.7719 (2) | 0.0331 (10) | |
C5 | 0.0453 (5) | 0.4607 (4) | 0.66182 (19) | 0.0340 (10) | |
C6 | −0.1093 (5) | 0.7727 (4) | 0.68423 (19) | 0.0332 (10) | |
C21 | 0.3261 (4) | 0.6812 (3) | 0.72524 (16) | 0.0227 (8) | |
C22 | 0.3483 (5) | 0.5921 (3) | 0.76655 (17) | 0.0261 (9) | |
H22 | 0.2780 | 0.5321 | 0.7615 | 0.031* | |
C23 | 0.4726 (5) | 0.5901 (4) | 0.81522 (19) | 0.0337 (10) | |
H23 | 0.4888 | 0.5281 | 0.8424 | 0.040* | |
C24 | 0.5731 (5) | 0.6791 (4) | 0.82394 (18) | 0.0359 (11) | |
H24 | 0.6580 | 0.6779 | 0.8572 | 0.043* | |
C25 | 0.5499 (5) | 0.7688 (4) | 0.7844 (2) | 0.0378 (10) | |
H25 | 0.6173 | 0.8302 | 0.7912 | 0.045* | |
C26 | 0.4280 (5) | 0.7699 (3) | 0.73471 (17) | 0.0300 (9) | |
H26 | 0.4141 | 0.8314 | 0.7070 | 0.036* | |
C31 | 0.0676 (5) | 0.8817 (3) | 0.5469 (2) | 0.0321 (10) | |
H31 | −0.0155 | 0.8518 | 0.5683 | 0.039* | |
C32 | 0.0882 (5) | 0.8697 (3) | 0.4812 (2) | 0.0337 (10) | |
H32 | 0.0225 | 0.8290 | 0.4503 | 0.040* | |
C33 | 0.2228 (5) | 0.9284 (4) | 0.4690 (2) | 0.0362 (10) | |
H33 | 0.2646 | 0.9343 | 0.4285 | 0.043* | |
C34 | 0.2847 (5) | 0.9768 (3) | 0.5274 (2) | 0.0335 (10) | |
H34 | 0.3745 | 1.0227 | 0.5330 | 0.040* | |
C35 | 0.1924 (5) | 0.9463 (3) | 0.57560 (19) | 0.0319 (10) | |
H35 | 0.2101 | 0.9654 | 0.6200 | 0.038* | |
C41 | 0.2059 (6) | 0.6425 (4) | 0.4682 (2) | 0.0424 (12) | |
H41 | 0.0960 | 0.6397 | 0.4555 | 0.051* | |
C42 | 0.2865 (7) | 0.5904 (4) | 0.5223 (2) | 0.0439 (12) | |
H42 | 0.2405 | 0.5442 | 0.5519 | 0.053* | |
C43 | 0.4452 (7) | 0.6184 (3) | 0.5251 (2) | 0.0458 (13) | |
H43 | 0.5260 | 0.5968 | 0.5573 | 0.055* | |
C44 | 0.4629 (6) | 0.6842 (4) | 0.4713 (2) | 0.0432 (12) | |
H44 | 0.5593 | 0.7138 | 0.4604 | 0.052* | |
C45 | 0.3183 (6) | 0.6991 (4) | 0.43667 (19) | 0.0399 (11) | |
H45 | 0.2983 | 0.7406 | 0.3981 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
W | 0.02340 (10) | 0.02525 (10) | 0.01927 (9) | −0.00116 (7) | 0.00104 (7) | 0.00126 (6) |
Ti | 0.0253 (4) | 0.0243 (4) | 0.0157 (3) | 0.0017 (3) | 0.0022 (3) | 0.0023 (3) |
Cl | 0.0411 (7) | 0.0424 (6) | 0.0388 (6) | −0.0064 (5) | 0.0013 (5) | 0.0034 (5) |
O1 | 0.0297 (16) | 0.0257 (14) | 0.0179 (12) | −0.0016 (12) | 0.0008 (11) | 0.0041 (11) |
O2 | 0.045 (2) | 0.0505 (19) | 0.0231 (15) | −0.0082 (16) | −0.0072 (14) | 0.0014 (13) |
O3 | 0.0308 (19) | 0.066 (2) | 0.057 (2) | −0.0159 (18) | 0.0105 (16) | −0.0051 (18) |
O4 | 0.060 (2) | 0.075 (3) | 0.0213 (17) | 0.0082 (19) | 0.0064 (15) | 0.0073 (15) |
O5 | 0.072 (3) | 0.037 (2) | 0.056 (2) | 0.0205 (18) | −0.018 (2) | −0.0063 (16) |
O6 | 0.065 (2) | 0.0354 (19) | 0.051 (2) | 0.0102 (17) | 0.0045 (18) | −0.0071 (16) |
C1 | 0.024 (2) | 0.0187 (19) | 0.0199 (17) | 0.0039 (16) | 0.0048 (15) | 0.0006 (15) |
C2 | 0.026 (2) | 0.028 (2) | 0.030 (2) | −0.0050 (17) | 0.0034 (18) | −0.0016 (17) |
C3 | 0.033 (3) | 0.034 (3) | 0.030 (2) | 0.000 (2) | 0.0032 (19) | 0.0010 (19) |
C4 | 0.034 (3) | 0.039 (3) | 0.028 (2) | −0.0027 (19) | 0.0086 (19) | 0.0048 (18) |
C5 | 0.035 (3) | 0.036 (3) | 0.028 (2) | 0.001 (2) | −0.0089 (18) | 0.0017 (19) |
C6 | 0.036 (3) | 0.037 (3) | 0.026 (2) | 0.000 (2) | 0.0020 (18) | −0.0027 (19) |
C21 | 0.024 (2) | 0.027 (2) | 0.0166 (16) | 0.0010 (17) | 0.0020 (15) | 0.0004 (15) |
C22 | 0.028 (2) | 0.028 (2) | 0.0224 (18) | 0.0026 (17) | 0.0045 (16) | 0.0019 (16) |
C23 | 0.033 (2) | 0.044 (3) | 0.024 (2) | 0.008 (2) | 0.0022 (18) | 0.0088 (19) |
C24 | 0.027 (2) | 0.058 (3) | 0.022 (2) | 0.007 (2) | −0.0016 (17) | −0.004 (2) |
C25 | 0.031 (2) | 0.047 (3) | 0.034 (2) | −0.011 (2) | −0.0023 (19) | 0.001 (2) |
C26 | 0.032 (2) | 0.038 (2) | 0.0194 (18) | −0.0063 (19) | 0.0004 (17) | 0.0061 (17) |
C31 | 0.029 (2) | 0.031 (2) | 0.038 (2) | 0.0088 (19) | 0.0072 (19) | 0.0127 (18) |
C32 | 0.035 (3) | 0.036 (3) | 0.027 (2) | 0.010 (2) | −0.0108 (19) | 0.0062 (17) |
C33 | 0.041 (3) | 0.040 (3) | 0.029 (2) | 0.006 (2) | 0.0071 (19) | 0.0161 (19) |
C34 | 0.037 (3) | 0.021 (2) | 0.043 (2) | −0.0007 (19) | 0.004 (2) | 0.0065 (18) |
C35 | 0.041 (3) | 0.024 (2) | 0.031 (2) | 0.0067 (19) | 0.0072 (19) | −0.0009 (17) |
C41 | 0.049 (3) | 0.044 (3) | 0.035 (2) | −0.003 (2) | 0.004 (2) | −0.022 (2) |
C42 | 0.070 (4) | 0.027 (2) | 0.038 (2) | −0.003 (2) | 0.018 (2) | −0.010 (2) |
C43 | 0.063 (4) | 0.034 (3) | 0.041 (3) | 0.021 (2) | 0.007 (2) | −0.005 (2) |
C44 | 0.046 (3) | 0.049 (3) | 0.038 (2) | 0.012 (2) | 0.018 (2) | −0.007 (2) |
C45 | 0.055 (3) | 0.043 (3) | 0.023 (2) | 0.010 (2) | 0.010 (2) | −0.0064 (19) |
W—C3 | 2.028 (5) | C22—H22 | 0.9500 |
W—C2 | 2.038 (4) | C23—C24 | 1.389 (7) |
W—C5 | 2.043 (5) | C23—H23 | 0.9500 |
W—C4 | 2.047 (4) | C24—C25 | 1.375 (6) |
W—C6 | 2.051 (5) | C24—H24 | 0.9500 |
W—C1 | 2.204 (4) | C25—C26 | 1.391 (5) |
Ti—O1 | 1.927 (2) | C25—H25 | 0.9500 |
Ti—Cl | 2.3446 (14) | C26—H26 | 0.9500 |
Ti—C41 | 2.358 (4) | C31—C32 | 1.404 (6) |
Ti—C32 | 2.358 (4) | C31—C35 | 1.411 (6) |
Ti—C33 | 2.374 (4) | C31—H31 | 0.9500 |
Ti—C43 | 2.377 (4) | C32—C33 | 1.402 (6) |
Ti—C42 | 2.378 (4) | C32—H32 | 0.9500 |
Ti—C45 | 2.379 (4) | C33—C34 | 1.406 (6) |
Ti—C31 | 2.381 (4) | C33—H33 | 0.9500 |
Ti—C35 | 2.385 (4) | C34—C35 | 1.389 (5) |
Ti—C44 | 2.385 (4) | C34—H34 | 0.9500 |
Ti—C34 | 2.408 (4) | C35—H35 | 0.9500 |
O1—C1 | 1.280 (4) | C41—C45 | 1.403 (6) |
O2—C2 | 1.135 (5) | C41—C42 | 1.410 (7) |
O3—C3 | 1.144 (5) | C41—H41 | 0.9500 |
O4—C4 | 1.134 (5) | C42—C43 | 1.395 (7) |
O5—C5 | 1.138 (5) | C42—H42 | 0.9500 |
O6—C6 | 1.137 (5) | C43—C44 | 1.399 (6) |
C1—C21 | 1.499 (5) | C43—H43 | 0.9500 |
C21—C22 | 1.391 (5) | C44—C45 | 1.377 (7) |
C21—C26 | 1.396 (5) | C44—H44 | 0.9500 |
C22—C23 | 1.390 (6) | C45—H45 | 0.9500 |
C3—W—C2 | 86.90 (16) | C21—C1—W | 125.7 (2) |
C3—W—C5 | 90.63 (17) | O2—C2—W | 174.3 (4) |
C2—W—C5 | 91.35 (16) | O3—C3—W | 177.2 (4) |
C3—W—C4 | 88.38 (17) | O4—C4—W | 176.6 (4) |
C2—W—C4 | 173.19 (17) | O5—C5—W | 178.6 (4) |
C5—W—C4 | 93.62 (16) | O6—C6—W | 177.1 (4) |
C3—W—C6 | 93.55 (17) | C22—C21—C26 | 118.8 (4) |
C2—W—C6 | 88.91 (16) | C22—C21—C1 | 120.5 (3) |
C5—W—C6 | 175.82 (17) | C26—C21—C1 | 120.6 (3) |
C4—W—C6 | 86.47 (16) | C23—C22—C21 | 120.6 (4) |
C3—W—C1 | 179.75 (15) | C23—C22—H22 | 119.7 |
C2—W—C1 | 92.86 (14) | C21—C22—H22 | 119.7 |
C5—W—C1 | 89.45 (15) | C24—C23—C22 | 119.8 (4) |
C4—W—C1 | 91.85 (15) | C24—C23—H23 | 120.1 |
C6—W—C1 | 86.37 (15) | C22—C23—H23 | 120.1 |
O1—Ti—Cl | 96.14 (8) | C25—C24—C23 | 120.1 (4) |
O1—Ti—C41 | 101.07 (14) | C25—C24—H24 | 120.0 |
Cl—Ti—C41 | 134.35 (14) | C23—C24—H24 | 120.0 |
O1—Ti—C32 | 109.71 (14) | C24—C25—C26 | 120.2 (4) |
Cl—Ti—C32 | 133.57 (12) | C24—C25—H25 | 119.9 |
C41—Ti—C32 | 78.56 (17) | C26—C25—H25 | 119.9 |
O1—Ti—C33 | 135.06 (13) | C25—C26—C21 | 120.5 (4) |
Cl—Ti—C33 | 101.17 (12) | C25—C26—H26 | 119.8 |
C41—Ti—C33 | 95.76 (17) | C21—C26—H26 | 119.8 |
C32—Ti—C33 | 34.46 (15) | C32—C31—C35 | 107.7 (4) |
O1—Ti—C43 | 90.49 (14) | C32—C31—Ti | 71.9 (2) |
Cl—Ti—C43 | 80.67 (15) | C35—C31—Ti | 72.9 (2) |
C41—Ti—C43 | 57.43 (19) | C32—C31—H31 | 126.1 |
C32—Ti—C43 | 134.63 (17) | C35—C31—H31 | 126.1 |
C33—Ti—C43 | 132.96 (16) | Ti—C31—H31 | 120.8 |
O1—Ti—C42 | 77.09 (13) | C33—C32—C31 | 108.0 (4) |
Cl—Ti—C42 | 113.08 (15) | C33—C32—Ti | 73.4 (2) |
C41—Ti—C42 | 34.65 (17) | C31—C32—Ti | 73.6 (2) |
C32—Ti—C42 | 109.99 (18) | C33—C32—H32 | 126.0 |
C33—Ti—C42 | 130.25 (17) | C31—C32—H32 | 126.0 |
C43—Ti—C42 | 34.13 (18) | Ti—C32—H32 | 118.9 |
O1—Ti—C45 | 133.08 (14) | C32—C33—C34 | 107.7 (4) |
Cl—Ti—C45 | 108.73 (13) | C32—C33—Ti | 72.1 (2) |
C41—Ti—C45 | 34.45 (16) | C34—C33—Ti | 74.2 (2) |
C32—Ti—C45 | 81.11 (16) | C32—C33—H33 | 126.2 |
C33—Ti—C45 | 79.00 (16) | C34—C33—H33 | 126.2 |
C43—Ti—C45 | 56.85 (17) | Ti—C33—H33 | 119.4 |
C42—Ti—C45 | 56.82 (16) | C35—C34—C33 | 108.5 (4) |
O1—Ti—C31 | 79.09 (13) | C35—C34—Ti | 72.3 (2) |
Cl—Ti—C31 | 125.21 (12) | C33—C34—Ti | 71.6 (2) |
C41—Ti—C31 | 99.57 (17) | C35—C34—H34 | 125.8 |
C32—Ti—C31 | 34.47 (14) | C33—C34—H34 | 125.8 |
C33—Ti—C31 | 57.05 (14) | Ti—C34—H34 | 122.1 |
C43—Ti—C31 | 152.69 (18) | C34—C35—C31 | 108.0 (4) |
C42—Ti—C31 | 118.56 (17) | C34—C35—Ti | 74.1 (2) |
C45—Ti—C31 | 113.73 (16) | C31—C35—Ti | 72.6 (2) |
O1—Ti—C35 | 81.89 (12) | C34—C35—H35 | 126.0 |
Cl—Ti—C35 | 90.79 (11) | C31—C35—H35 | 126.0 |
C41—Ti—C35 | 133.17 (17) | Ti—C35—H35 | 119.2 |
C32—Ti—C35 | 57.28 (15) | C45—C41—C42 | 107.1 (5) |
C33—Ti—C35 | 56.94 (15) | C45—C41—Ti | 73.6 (3) |
C43—Ti—C35 | 167.92 (17) | C42—C41—Ti | 73.5 (3) |
C42—Ti—C35 | 149.50 (17) | C45—C41—H41 | 126.4 |
C45—Ti—C35 | 134.76 (15) | C42—C41—H41 | 126.4 |
C31—Ti—C35 | 34.43 (14) | Ti—C41—H41 | 118.5 |
O1—Ti—C44 | 124.66 (14) | C43—C42—C41 | 108.4 (4) |
Cl—Ti—C44 | 78.77 (13) | C43—C42—Ti | 72.9 (2) |
C41—Ti—C44 | 56.67 (18) | C41—C42—Ti | 71.9 (3) |
C32—Ti—C44 | 112.91 (16) | C43—C42—H42 | 125.8 |
C33—Ti—C44 | 99.40 (16) | C41—C42—H42 | 125.8 |
C43—Ti—C44 | 34.17 (16) | Ti—C42—H42 | 121.1 |
C42—Ti—C44 | 56.31 (17) | C42—C43—C44 | 107.1 (5) |
C45—Ti—C44 | 33.62 (16) | C42—C43—Ti | 73.0 (3) |
C31—Ti—C44 | 146.91 (16) | C44—C43—Ti | 73.2 (2) |
C35—Ti—C44 | 152.05 (16) | C42—C43—H43 | 126.5 |
O1—Ti—C34 | 113.94 (12) | C44—C43—H43 | 126.5 |
Cl—Ti—C34 | 77.75 (11) | Ti—C43—H43 | 119.3 |
C41—Ti—C34 | 129.81 (17) | C45—C44—C43 | 109.2 (5) |
C32—Ti—C34 | 56.81 (15) | C45—C44—Ti | 72.9 (2) |
C33—Ti—C34 | 34.20 (15) | C43—C44—Ti | 72.6 (2) |
C43—Ti—C34 | 148.78 (17) | C45—C44—H44 | 125.4 |
C42—Ti—C34 | 164.43 (16) | C43—C44—H44 | 125.4 |
C45—Ti—C34 | 109.94 (15) | Ti—C44—H44 | 120.7 |
C31—Ti—C34 | 56.44 (14) | C44—C45—C41 | 108.1 (4) |
C35—Ti—C34 | 33.69 (13) | C44—C45—Ti | 73.4 (2) |
C44—Ti—C34 | 118.36 (16) | C41—C45—Ti | 72.0 (2) |
C1—O1—Ti | 171.7 (2) | C44—C45—H45 | 125.9 |
O1—C1—C21 | 111.2 (3) | C41—C45—H45 | 125.9 |
O1—C1—W | 123.0 (3) | Ti—C45—H45 | 120.4 |
Experimental details
Crystal data | |
Chemical formula | [TiW(C5H5)2(C7H5O)Cl(CO)5] |
Mr | 642.54 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 8.553 (1), 12.268 (1), 20.789 (3) |
β (°) | 95.903 (1) |
V (Å3) | 2169.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.83 |
Crystal size (mm) | 0.17 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.438, 0.542 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12664, 4270, 3701 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.062, 1.04 |
No. of reflections | 4270 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.05, −1.28 |
Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN(Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003), publCIF (Westrip, 2008).
Acknowledgements
We thank the NRF and the University of Stellenbosch for financial support.
References
Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8. Web of Science CrossRef CAS Google Scholar
Balzer, B. L., Cazanoue, M., Sabat, M. & Finn, M. G. (1992). Organometallics, 11, 1759–1761. CSD CrossRef CAS Web of Science Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Barluenga, J. & Fañanás, F. J. (2000). Tetrahedron, 56, 4597–4628. Web of Science CrossRef CAS Google Scholar
Esterhuysen, C., Nel, I. B. J. & Cronje, S. (2008). Acta Cryst. E64, m1150. Web of Science CSD CrossRef IUCr Journals Google Scholar
Luruli, N., Grumel, V., Brüll, R., Du Toit, A., Pasch, H., Van Reenen, A. J. & Raubenheimer, H. G. (2004). J. Polym. Sci. A1, 5121–5133. CrossRef Google Scholar
Luruli, N., Heinz, L. C., Grumel, V., Brüll, R., Pasch, H. & Raubenheimer, H. G. (2006). Polymer, 47, 56–66. Web of Science CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83. CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sinn, H., Kaminsky, W., Vollmer, H. J. & Woldt, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 390–392. CrossRef Web of Science Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Anionic Fischer-type carbene ligands are known to act as monodentate ligands towards transition metals like Ti and Zr (Barluenga and Fañanás, 2000). We have shown that such zirconocene complexes, Cp2Zr(Cl)OC(R)W(CO)5, catalyze the oligomerization of 1-pentene, as well as the copolymerization of ethene and 1-pentene, in the presence of MAO (Luruli et al., 2004; Luruli et al., 2006). Since Cp2TiCl2 has been shown to polymerize ethylene when activated by methylaluminoxane, MAO (Sinn et al., 1980), the title complex (I) was synthesized as part of our investigation into improved Ziegler-Natta catalysts for polymerization of ethene.
In the title compound (Fig. 1), the W=Ccarbene and Ccarbene—C distances are similar to those found in the equivalent hafnocene complex [2.177 (6) and 1.291 (6) Å, respectively; Esterhuysen et al., 2008], while the Ti—O distance is similar to the related compound Cp2Ti(Cl)OC(C6H5)Mn(CO)2(C5H4CH3) (Balzer et al., 1992). The Ti—O—C angle deviates slightly from linearity, which is similar to the related hafnocene complex [171.4 (3)°], but more linear than the manganese complex [160.8 (5)°]. These results are indicative of π delocalization through the Ti—O—C=W unit. As a result, the Cl/Ti/O1/C1/W/C3/O3 moiety is approximately planar, with the phenyl ring (C21/C22/C23/C24/C25/C26) twisted at an angle of 39.1 (2)° with respect to this plane.
The C31/C32/C33/C34/C35 Cp ring [with centroid Cg(1)] undergoes offset face-to-face π–π interactions with the symmetry related Cp ring on a neighbouring molecule [Cg(1)···Cg(1)i = 3.544 (6) Å; Symmetry code: (i) - x, 2 - y, 1 - z)].