organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1-(4-Hy­droxy­phen­yl)-1H-tetra­zol-5-ylsulfan­yl]acetic acid

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.edu.cn

(Received 7 November 2008; accepted 10 November 2008; online 26 November 2008)

The title compound, C9H8N4O3S, shows a layer structure constructed from inter­molecular O—H⋯O and O—H⋯N hydrogen bonds. Inter­atomic distances suggest that extensive, but not uniform, π-electron delocalization is present in the tetra­zole rings and extends over the exocyclic C—S bond.

Related literature

For related literature on tetra­zol-5-thione and its derivatives, see: Cea-Olivares et al. (1997[Cea-Olivares, R., Ebert, K. E., Silaghi-Dumitrescu, L. & Haiduc, I. (1997). Heteroatom. Chem. 8, 317-321.]); Kim et al. (2003[Kim, Y.-J., Han, J.-T., Kang, S., Han, W. S. & Lee, S. W. (2003). Dalton Trans. pp. 3357-3364.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N4O3S

  • Mr = 252.25

  • Orthorhombic, P b c a

  • a = 14.407 (3) Å

  • b = 7.3365 (16) Å

  • c = 21.107 (5) Å

  • V = 2231.0 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.28 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.95, Tmax = 0.97

  • 18595 measured reflections

  • 2550 independent reflections

  • 1834 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.106

  • S = 1.06

  • 2550 reflections

  • 160 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.835 (17) 1.953 (17) 2.787 (3) 177 (3)
O2—H2⋯N4ii 0.834 (17) 1.866 (17) 2.699 (3) 176 (3)
O2—H2⋯N3ii 0.834 (17) 2.60 (2) 3.369 (3) 154 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrazol-5-thione and its derivatives are interesting ligands from a structural point of view since they can display a wide range of coordination patterns with metal ions. Due to a variety of potential coordination sites, they can act as monodentate (–S or –N) or bidentate (–N, N or –N, S) ligands, forming polymers or interacting with metal ions (Cea-Olivares et al., 1997; Kim et al., 2003).

As shown in Fig.1, the bond lengths within the tetrazole ring exhibit the expected pattern of four long bonds (C7—N1, C7—N4, N3—N4 and N1—N2) together with a short one (N2—N3). In detail, C7—N1 [1.340 (2) Å] and C7—N4 [1.324 (2) Å] are typical for carbon-nitrogen single bonds from 1.336 Å to 1.420 Å, while N3—N4 [1.365 (2) Å] and N1—N2 [1.358 (2) Å] are between the single and double bonds. And the bond distance N2—N3 of 1.283 (2) Å is similar to that of a double bond of 1.25 Å. The bond length of S1—C7 [1.723 (2) Å9 also falls between the double and single bonds. All these interatomic distances suggest that extensive but not uniform π electron delocalization is present in the tetrazole rings and extends over the exocyclic C—S bond.

Related literature top

For related literature on tetrazol-5-thione and its derivatives, see: Cea-Olivares et al. (1997); Kim et al. (2003).

Experimental top

To an aqueous solution of 1-(4-hydroxyphenyl)-5-thiotetrazole (1.940 g, 10.0 mmol) and NaOH (0.80 g, 20.0 mmol) were sequentially added the aqueous solution of chloroactic acid (2.835 g, 30.0 mmol) and NaOH (1.400 g, 35.0 mmol). After stirring for 4 h at 353 K under nitrogen atmosphere, the mixture was cooled to room temperature slowly. Adjusted the pH to 2 by adding 1.0 mol/L HCl, the white deposit appeared rapidly. The solids were filtered and washed with water. The single crystals suitable for X-ray diffraction were obtained by the re-crystallization of sieved solid in the ethanol.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and treated as riding, [aromatic C—H = 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids
[1-(4-Hydroxyphenyl)-1H-tetrazol-5-ylsulfanyl]acetic acid top
Crystal data top
C9H8N4O3SF(000) = 1040
Mr = 252.25Dx = 1.502 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2531 reflections
a = 14.407 (3) Åθ = 2.4–27.5°
b = 7.3365 (16) ŵ = 0.29 mm1
c = 21.107 (5) ÅT = 293 K
V = 2231.0 (9) Å3Block, colourless
Z = 80.28 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2550 independent reflections
Radiation source: fine-focus sealed tube1834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.95, Tmax = 0.97k = 99
18595 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0144P)2 + 1.7635P]
where P = (Fo2 + 2Fc2)/3
2550 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H8N4O3SV = 2231.0 (9) Å3
Mr = 252.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.407 (3) ŵ = 0.29 mm1
b = 7.3365 (16) ÅT = 293 K
c = 21.107 (5) Å0.28 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2550 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1834 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.97Rint = 0.099
18595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.19 e Å3
2550 reflectionsΔρmin = 0.21 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51454 (4)0.15070 (9)0.09961 (3)0.05074 (19)
O10.15861 (13)0.3256 (3)0.28120 (9)0.0610 (5)
H10.177 (2)0.270 (4)0.3133 (11)0.073*
O20.75012 (12)0.0102 (3)0.01914 (8)0.0551 (5)
H20.8048 (13)0.010 (4)0.0322 (13)0.066*
O30.72494 (12)0.1471 (3)0.11139 (8)0.0645 (5)
N10.45507 (13)0.4915 (3)0.12461 (10)0.0468 (5)
N20.47350 (16)0.6679 (3)0.10961 (12)0.0637 (6)
N30.54403 (16)0.6653 (3)0.07237 (12)0.0619 (6)
N40.57366 (13)0.4912 (3)0.06208 (10)0.0480 (5)
C10.23393 (16)0.3617 (3)0.24421 (11)0.0441 (5)
C20.21686 (16)0.4284 (3)0.18436 (12)0.0470 (6)
H2A0.15610.44570.17080.056*
C30.28941 (16)0.4695 (3)0.14462 (12)0.0478 (6)
H3A0.27830.51520.10420.057*
C40.37920 (15)0.4418 (3)0.16560 (11)0.0436 (5)
C50.39734 (17)0.3749 (4)0.22511 (12)0.0509 (6)
H5A0.45820.35760.23860.061*
C60.32408 (17)0.3336 (4)0.26463 (12)0.0509 (6)
H6A0.33520.28700.30490.061*
C70.51693 (14)0.3855 (3)0.09473 (11)0.0402 (5)
C80.59818 (15)0.0925 (3)0.03998 (12)0.0465 (6)
H8A0.58260.02650.02310.056*
H8B0.59310.17970.00560.056*
C90.69718 (16)0.0887 (3)0.06206 (11)0.0429 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0418 (3)0.0418 (3)0.0686 (4)0.0030 (3)0.0098 (3)0.0001 (3)
O10.0472 (10)0.0753 (14)0.0607 (11)0.0032 (9)0.0128 (9)0.0151 (10)
O20.0389 (8)0.0757 (13)0.0508 (10)0.0116 (9)0.0034 (8)0.0121 (9)
O30.0490 (11)0.0903 (15)0.0542 (11)0.0078 (10)0.0099 (8)0.0217 (11)
N10.0421 (11)0.0421 (12)0.0563 (12)0.0009 (9)0.0080 (9)0.0042 (10)
N20.0611 (14)0.0407 (12)0.0894 (17)0.0025 (11)0.0171 (13)0.0099 (12)
N30.0520 (13)0.0486 (13)0.0850 (16)0.0031 (11)0.0140 (12)0.0113 (12)
N40.0375 (10)0.0481 (12)0.0584 (12)0.0027 (9)0.0030 (9)0.0048 (10)
C10.0426 (13)0.0412 (13)0.0484 (13)0.0017 (10)0.0062 (10)0.0012 (11)
C20.0389 (12)0.0491 (14)0.0529 (14)0.0016 (11)0.0015 (11)0.0025 (12)
C30.0486 (14)0.0487 (15)0.0460 (13)0.0035 (11)0.0012 (11)0.0050 (11)
C40.0414 (12)0.0392 (12)0.0502 (14)0.0007 (10)0.0080 (11)0.0005 (11)
C50.0391 (12)0.0588 (16)0.0547 (15)0.0029 (11)0.0014 (11)0.0016 (12)
C60.0515 (14)0.0555 (15)0.0456 (14)0.0018 (12)0.0002 (11)0.0041 (12)
C70.0319 (11)0.0428 (13)0.0458 (12)0.0020 (9)0.0000 (10)0.0000 (10)
C80.0394 (12)0.0443 (14)0.0558 (14)0.0005 (10)0.0043 (11)0.0080 (11)
C90.0408 (12)0.0445 (13)0.0435 (13)0.0040 (10)0.0030 (11)0.0003 (11)
Geometric parameters (Å, º) top
S1—C71.726 (2)C1—C21.377 (3)
S1—C81.794 (2)C1—C61.384 (3)
O1—C11.363 (3)C2—C31.374 (3)
O1—H10.835 (17)C2—H2A0.9300
O2—C91.317 (3)C3—C41.382 (3)
O2—H20.834 (17)C3—H3A0.9300
O3—C91.195 (3)C4—C51.374 (3)
N1—C71.341 (3)C5—C61.379 (3)
N1—N21.359 (3)C5—H5A0.9300
N1—C41.441 (3)C6—H6A0.9300
N2—N31.285 (3)C8—C91.501 (3)
N3—N41.364 (3)C8—H8A0.9700
N4—C71.321 (3)C8—H8B0.9700
C7—S1—C8100.49 (11)C3—C4—N1118.7 (2)
C1—O1—H1108 (2)C4—C5—C6119.1 (2)
C9—O2—H2109 (2)C4—C5—H5A120.5
C7—N1—N2108.24 (19)C6—C5—H5A120.5
C7—N1—C4129.8 (2)C5—C6—C1119.8 (2)
N2—N1—C4121.94 (19)C5—C6—H6A120.1
N3—N2—N1106.4 (2)C1—C6—H6A120.1
N2—N3—N4111.0 (2)N4—C7—N1108.4 (2)
C7—N4—N3105.86 (19)N4—C7—S1129.03 (18)
O1—C1—C2116.9 (2)N1—C7—S1122.53 (17)
O1—C1—C6122.7 (2)C9—C8—S1115.16 (17)
C2—C1—C6120.4 (2)C9—C8—H8A108.5
C3—C2—C1120.2 (2)S1—C8—H8A108.5
C3—C2—H2A119.9C9—C8—H8B108.5
C1—C2—H2A119.9S1—C8—H8B108.5
C2—C3—C4119.0 (2)H8A—C8—H8B107.5
C2—C3—H3A120.5O3—C9—O2124.2 (2)
C4—C3—H3A120.5O3—C9—C8125.6 (2)
C5—C4—C3121.6 (2)O2—C9—C8110.2 (2)
C5—C4—N1119.7 (2)
C7—N1—N2—N30.2 (3)C4—C5—C6—C10.7 (4)
C4—N1—N2—N3179.5 (2)O1—C1—C6—C5179.3 (2)
N1—N2—N3—N40.2 (3)C2—C1—C6—C50.9 (4)
N2—N3—N4—C70.5 (3)N3—N4—C7—N10.6 (3)
O1—C1—C2—C3179.4 (2)N3—N4—C7—S1177.64 (19)
C6—C1—C2—C30.7 (4)N2—N1—C7—N40.5 (3)
C1—C2—C3—C40.4 (4)C4—N1—C7—N4179.7 (2)
C2—C3—C4—C50.2 (4)N2—N1—C7—S1177.85 (18)
C2—C3—C4—N1177.7 (2)C4—N1—C7—S11.3 (3)
C7—N1—C4—C570.7 (3)C8—S1—C7—N47.9 (2)
N2—N1—C4—C5110.2 (3)C8—S1—C7—N1170.13 (19)
C7—N1—C4—C3111.7 (3)C7—S1—C8—C986.2 (2)
N2—N1—C4—C367.4 (3)S1—C8—C9—O312.3 (4)
C3—C4—C5—C60.3 (4)S1—C8—C9—O2167.39 (17)
N1—C4—C5—C6177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.84 (2)1.95 (2)2.787 (3)177 (3)
O2—H2···N4ii0.83 (2)1.87 (2)2.699 (3)176 (3)
O2—H2···N3ii0.83 (2)2.60 (2)3.369 (3)154 (3)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC9H8N4O3S
Mr252.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.407 (3), 7.3365 (16), 21.107 (5)
V3)2231.0 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.28 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.95, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
18595, 2550, 1834
Rint0.099
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.106, 1.06
No. of reflections2550
No. of parameters160
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.835 (17)1.953 (17)2.787 (3)177 (3)
O2—H2···N4ii0.834 (17)1.866 (17)2.699 (3)176 (3)
O2—H2···N3ii0.834 (17)2.60 (2)3.369 (3)154 (3)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+3/2, y1/2, z.
 

References

First citationBruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCea-Olivares, R., Ebert, K. E., Silaghi-Dumitrescu, L. & Haiduc, I. (1997). Heteroatom. Chem. 8, 317–321.  CSD CrossRef CAS Web of Science Google Scholar
First citationKim, Y.-J., Han, J.-T., Kang, S., Han, W. S. & Lee, S. W. (2003). Dalton Trans. pp. 3357–3364.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds