organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­­oxy)-3-iso­propyl-5,6,7,8-tetra­hydro-1-benzothieno[2,3-d]pyrimidin-4(3H)-one

aDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China
*Correspondence e-mail: zengken@126.com

(Received 9 November 2008; accepted 11 November 2008; online 22 November 2008)

In the title compound, C19H19BrN2O2S, the central thieno­pyrim­idine ring system is essentially planar, with a maximum displacement of 0.068 (3) Å. The attached cyclo­hexene ring adopts a half-chair conformation. The molecular conformation and crystal packing are stabilized by three intra­molecular C—H⋯O hydrogen bonds and two C—H⋯π inter­actions.

Related literature

For background to the use of pyrimidine derivatives as drugs, see: Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For a related structure, see: Zeng et al. (2006[Zeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731-o732.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19BrN2O2S

  • Mr = 418.32

  • Monoclinic, P 21

  • a = 13.3957 (7) Å

  • b = 5.7366 (3) Å

  • c = 13.3956 (7) Å

  • β = 115.5410 (10)°

  • V = 928.81 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.652, Tmax = 0.800

  • 5798 measured reflections

  • 3228 independent reflections

  • 2346 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.204

  • S = 1.07

  • 3228 reflections

  • 228 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 7.69 e Å−3

  • Δρmin = −2.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1424 Freidel pairs

  • Flack parameter: 0.00 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1 0.98 2.20 2.726 (10) 112
C12—H12B⋯O2 0.96 2.43 2.915 (13) 111
C13—H13A⋯O2 0.96 2.38 2.951 (10) 117
C12—H12ACg1i 0.96 2.92 3.854 (11) 165
C12—H12ACg2i 0.96 2.71 3.434 (11) 133
Symmetry code: (i) x, y-1, z. Cg1 and Cg2 are the centroids of the thiophene (S1/C5–C8) and pyrimidine (N1/N2/C7–C10) rings, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pyrimidine derivatives are attracting the increasing attention of synthetic community because of the important role played by such systems in many natural products, antibiotics and drugs (Ding et al., 2004). In recent years, we have been engaged in the preparation of the derivatives of heterocycles via aza-Wittig reaction. The title compound, (I), was synthesized and structurally characterized in this context.

The molecular structure indicates that the thieno[2,3-d]pyrimidine moiety is a conjugated system (Fig. 1). All ring atoms in thieno[2,3-d]pyrimidine are essentially coplanar (Zeng et al., 2006). The bond lengths and angles are within experimental error, in the ranges of values in previously reported structures in the Cambridge Structural Database (Version 5.26; Allen, 2002).

The cyclohexene ring adopts a half-chair conformation. The crystal packing is stabilized by three intramolecular C—H···O hydrogen bonds and two C—H···π interactions (Table 1). There exist no intermolecular hydrogen bonding interactions and no π-π stackings.

Related literature top

For background to the use of pyrimidine derivatives as drugs, see: Ding et al. (2004). For bond-length data, see: Allen (2002). For a related structure, see: Zeng et al. (2006).

Experimental top

To a solution of iminophosphorane (1.45 g, 3 mmol) in anhydrous dichloromethane (15 ml) was added iso-propyl isocyanate (3 mmol) under dry nitrogen at room temperature. After the reaction mixture was left unstirred for 48 h at room temperature, the solvent was removed off under reduced pressure and ether/petroleum ether (1:2 v/v, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed, and the residue was dissolved in CH3CN (15 ml). After adding 4-Br-PhOH (3.1 mmol) and excess K2CO3 to the solution of carbodiimide, The mixture was stirred for 24 h at room temperature, the solution was condensed and the residue was recrystallized by EtOH to give the title compound, (I), in yield of 80% (m.p. 478 K). Elemental analysis calculated for C19H19BrN2O2S: C 54.42, H 4.57, N 6.68. Found: C 54.56, H 4.42, N 6.53. Crystals suitable for single crystal X-ray diffraction were obtained by vapor diffusion of hexane and dichloromethane (1:3 v/v) at room temperature.

Refinement top

H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.93–0.98 Å, and Uiso(H) = 1.2Ueq(C) for CH or 1.5Ueq(C) for CH3.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H-atoms are represented by circles of arbitrary size.
2-(4-Bromo-phenoxy)-3-isopropyl-5,6,7,8-tetrahydro -benzothieno[2,3-d]pyrimidin-4(3H)-one top
Crystal data top
C19H19BrN2O2SF(000) = 428
Mr = 419.33Dx = 1.499 Mg m3
Monoclinic, P21Melting point: 478K K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 13.3957 (7) ÅCell parameters from 2048 reflections
b = 5.7366 (3) Åθ = 2.9–24.5°
c = 13.3956 (7) ŵ = 2.34 mm1
β = 115.541 (1)°T = 298 K
V = 928.81 (8) Å3Block, colorless
Z = 20.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3228 independent reflections
Radiation source: fine-focus sealed tube2346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1315
Tmin = 0.652, Tmax = 0.800k = 66
5798 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.1151P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3228 reflectionsΔρmax = 0.67 e Å3
228 parametersΔρmin = 0.63 e Å3
1 restraintAbsolute structure: Flack (1983), 1424 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (8)
Crystal data top
C19H19BrN2O2SV = 928.81 (8) Å3
Mr = 419.33Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.3957 (7) ŵ = 2.34 mm1
b = 5.7366 (3) ÅT = 298 K
c = 13.3956 (7) Å0.20 × 0.10 × 0.10 mm
β = 115.541 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3228 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2346 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.800Rint = 0.106
5798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.204Δρmax = 0.67 e Å3
S = 1.07Δρmin = 0.63 e Å3
3228 reflectionsAbsolute structure: Flack (1983), 1424 Friedel pairs
228 parametersAbsolute structure parameter: 0.00 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.84533 (6)0.7555 (2)0.71718 (7)0.0762 (4)
C10.0942 (6)1.2447 (18)0.8813 (6)0.0534 (18)
H1A0.04441.31570.81180.064*
H1B0.06501.09210.88530.064*
C20.0967 (9)1.390 (3)0.9738 (10)0.103 (5)
H2A0.02311.45140.95360.124*
H2B0.11521.29081.03800.124*
C30.1719 (9)1.578 (2)1.0038 (11)0.093 (4)
H3A0.17301.64641.07040.111*
H3B0.14161.69420.94590.111*
C40.2917 (7)1.537 (2)1.0246 (7)0.067 (3)
H4A0.32341.67971.01190.081*
H4B0.33511.48851.10060.081*
C50.2930 (6)1.3513 (13)0.9472 (6)0.0460 (19)
C60.2071 (5)1.2157 (15)0.8824 (5)0.046 (2)
C70.2363 (6)1.0548 (14)0.8163 (6)0.0405 (16)
C80.3446 (6)1.0816 (16)0.8335 (6)0.052 (2)
C90.1666 (6)0.9073 (15)0.7312 (6)0.0457 (18)
C100.3302 (6)0.8295 (14)0.7015 (6)0.047 (2)
C110.1472 (6)0.6545 (14)0.5719 (6)0.0459 (18)
H110.07260.66170.56830.055*
C120.1754 (9)0.3997 (19)0.5775 (8)0.079 (3)
H12A0.19060.34060.64970.119*
H12B0.23950.37960.56380.119*
H12C0.11420.31610.52280.119*
C130.1386 (8)0.767 (2)0.4657 (6)0.071 (2)
H13A0.21040.77070.46610.107*
H13B0.11120.92330.46080.107*
H13C0.08890.67840.40330.107*
C140.4794 (6)0.7242 (18)0.6612 (7)0.055 (2)
C150.5512 (8)0.553 (2)0.7233 (8)0.073 (3)
H150.52680.43200.75360.087*
C160.6596 (8)0.563 (2)0.7394 (9)0.074 (3)
H160.70960.44980.78150.088*
C170.6938 (5)0.741 (2)0.6934 (6)0.061 (2)
C180.6221 (7)0.9049 (19)0.6317 (8)0.066 (2)
H180.64581.02450.60020.079*
C190.5134 (8)0.895 (2)0.6152 (9)0.073 (3)
H190.46341.00730.57200.088*
N10.3955 (5)0.9634 (13)0.7793 (6)0.0527 (17)
N20.2193 (4)0.7931 (13)0.6717 (4)0.0415 (13)
O10.0683 (4)0.8637 (12)0.7061 (5)0.0664 (19)
O20.3666 (4)0.7053 (13)0.6384 (5)0.072 (2)
S10.41333 (15)1.2916 (5)0.93045 (17)0.0604 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0420 (4)0.1275 (10)0.0622 (5)0.0010 (6)0.0253 (4)0.0105 (6)
C10.048 (4)0.055 (5)0.061 (4)0.001 (5)0.027 (3)0.001 (5)
C20.063 (6)0.162 (13)0.089 (8)0.006 (7)0.037 (6)0.052 (8)
C30.079 (7)0.105 (10)0.106 (9)0.008 (7)0.051 (7)0.036 (8)
C40.059 (5)0.090 (7)0.043 (4)0.009 (5)0.013 (4)0.009 (5)
C50.045 (4)0.050 (5)0.038 (4)0.004 (3)0.014 (3)0.001 (3)
C60.039 (4)0.057 (6)0.036 (3)0.007 (4)0.011 (3)0.004 (4)
C70.032 (3)0.052 (4)0.033 (3)0.007 (3)0.010 (3)0.002 (3)
C80.033 (4)0.070 (6)0.043 (4)0.004 (4)0.006 (3)0.002 (4)
C90.037 (4)0.055 (5)0.040 (4)0.004 (4)0.012 (3)0.006 (3)
C100.038 (4)0.053 (5)0.049 (4)0.004 (3)0.018 (3)0.006 (3)
C110.037 (4)0.053 (5)0.044 (4)0.009 (3)0.013 (3)0.004 (3)
C120.100 (8)0.058 (6)0.061 (6)0.002 (6)0.016 (6)0.001 (5)
C130.083 (6)0.069 (6)0.044 (4)0.001 (6)0.011 (4)0.007 (5)
C140.039 (4)0.068 (6)0.061 (4)0.009 (4)0.024 (3)0.022 (5)
C150.054 (5)0.088 (8)0.076 (7)0.002 (5)0.028 (5)0.010 (6)
C160.050 (5)0.093 (8)0.076 (6)0.004 (5)0.027 (5)0.019 (6)
C170.034 (3)0.106 (7)0.043 (4)0.005 (6)0.016 (3)0.019 (6)
C180.049 (5)0.072 (6)0.074 (6)0.000 (5)0.023 (5)0.016 (5)
C190.048 (5)0.077 (7)0.084 (7)0.011 (5)0.019 (5)0.009 (5)
N10.034 (3)0.063 (5)0.057 (4)0.007 (3)0.016 (3)0.022 (4)
N20.031 (3)0.049 (4)0.043 (3)0.005 (3)0.013 (2)0.002 (3)
O10.033 (3)0.103 (6)0.062 (3)0.012 (3)0.018 (2)0.019 (3)
O20.039 (3)0.098 (6)0.079 (4)0.011 (3)0.025 (3)0.041 (4)
S10.0373 (9)0.0736 (16)0.0600 (11)0.0053 (11)0.0114 (8)0.0194 (12)
Geometric parameters (Å, º) top
Br1—C171.916 (7)C10—O21.347 (9)
C1—C21.481 (14)C10—N21.378 (8)
C1—C61.515 (9)C11—N21.497 (9)
C1—H1A0.9700C11—C121.504 (14)
C1—H1B0.9700C11—C131.521 (12)
C2—C31.410 (18)C11—H110.9800
C2—H2A0.9700C12—H12A0.9600
C2—H2B0.9700C12—H12B0.9600
C3—C41.523 (14)C12—H12C0.9600
C3—H3A0.9700C13—H13A0.9600
C3—H3B0.9700C13—H13B0.9600
C4—C51.492 (12)C13—H13C0.9600
C4—H4A0.9700C14—C191.336 (15)
C4—H4B0.9700C14—C151.377 (15)
C5—C61.350 (11)C14—O21.412 (9)
C5—S11.754 (8)C15—C161.374 (13)
C6—C71.445 (10)C15—H150.9300
C7—C81.375 (10)C16—C171.370 (15)
C7—C91.404 (11)C16—H160.9300
C8—N11.370 (10)C17—C181.342 (14)
C8—S11.719 (9)C18—C191.377 (12)
C9—O11.236 (9)C18—H180.9300
C9—N21.431 (10)C19—H190.9300
C10—N11.287 (10)
C2—C1—C6113.0 (7)N2—C11—C12114.8 (7)
C2—C1—H1A109.0N2—C11—C13111.6 (7)
C6—C1—H1A109.0C12—C11—C13112.1 (8)
C2—C1—H1B109.0N2—C11—H11105.8
C6—C1—H1B109.0C12—C11—H11105.8
H1A—C1—H1B107.8C13—C11—H11105.8
C3—C2—C1115.1 (10)C11—C12—H12A109.5
C3—C2—H2A108.5C11—C12—H12B109.5
C1—C2—H2A108.5H12A—C12—H12B109.5
C3—C2—H2B108.5C11—C12—H12C109.5
C1—C2—H2B108.5H12A—C12—H12C109.5
H2A—C2—H2B107.5H12B—C12—H12C109.5
C2—C3—C4120.1 (11)C11—C13—H13A109.5
C2—C3—H3A107.3C11—C13—H13B109.5
C4—C3—H3A107.3H13A—C13—H13B109.5
C2—C3—H3B107.3C11—C13—H13C109.5
C4—C3—H3B107.3H13A—C13—H13C109.5
H3A—C3—H3B106.9H13B—C13—H13C109.5
C5—C4—C3108.0 (8)C19—C14—C15121.0 (8)
C5—C4—H4A110.1C19—C14—O2120.1 (9)
C3—C4—H4A110.1C15—C14—O2118.6 (9)
C5—C4—H4B110.1C16—C15—C14118.6 (10)
C3—C4—H4B110.1C16—C15—H15120.7
H4A—C4—H4B108.4C14—C15—H15120.7
C6—C5—C4126.6 (7)C17—C16—C15119.9 (10)
C6—C5—S1112.4 (5)C17—C16—H16120.1
C4—C5—S1121.0 (6)C15—C16—H16120.1
C5—C6—C7112.3 (6)C18—C17—C16120.6 (7)
C5—C6—C1120.9 (7)C18—C17—Br1119.9 (8)
C7—C6—C1126.7 (7)C16—C17—Br1119.5 (8)
C8—C7—C9119.2 (7)C17—C18—C19119.7 (10)
C8—C7—C6111.8 (7)C17—C18—H18120.1
C9—C7—C6128.4 (6)C19—C18—H18120.1
N1—C8—C7125.8 (7)C14—C19—C18120.2 (9)
N1—C8—S1121.3 (5)C14—C19—H19119.9
C7—C8—S1112.8 (6)C18—C19—H19119.9
O1—C9—C7126.9 (7)C10—N1—C8113.9 (6)
O1—C9—N2118.7 (7)C10—N2—C9119.9 (6)
C7—C9—N2114.4 (6)C10—N2—C11122.7 (6)
N1—C10—O2121.4 (6)C9—N2—C11117.2 (5)
N1—C10—N2126.6 (7)C10—O2—C14117.8 (6)
O2—C10—N2112.0 (6)C8—S1—C590.6 (4)
C6—C1—C2—C336.3 (16)Br1—C17—C18—C19179.7 (8)
C1—C2—C3—C450.1 (18)C15—C14—C19—C181.6 (16)
C2—C3—C4—C534.6 (16)O2—C14—C19—C18175.9 (9)
C3—C4—C5—C69.8 (13)C17—C18—C19—C140.5 (16)
C3—C4—C5—S1169.1 (8)O2—C10—N1—C8178.4 (7)
C4—C5—C6—C7179.3 (8)N2—C10—N1—C81.7 (13)
S1—C5—C6—C70.4 (8)C7—C8—N1—C104.8 (13)
C4—C5—C6—C11.0 (12)S1—C8—N1—C10173.3 (6)
S1—C5—C6—C1177.9 (6)N1—C10—N2—C91.2 (12)
C2—C1—C6—C513.3 (13)O2—C10—N2—C9178.8 (7)
C2—C1—C6—C7168.6 (10)N1—C10—N2—C11173.0 (8)
C5—C6—C7—C81.3 (10)O2—C10—N2—C117.0 (10)
C1—C6—C7—C8176.9 (7)O1—C9—N2—C10176.8 (7)
C5—C6—C7—C9172.1 (8)C7—C9—N2—C101.2 (10)
C1—C6—C7—C96.1 (13)O1—C9—N2—C118.7 (10)
C9—C7—C8—N14.8 (13)C7—C9—N2—C11173.3 (7)
C6—C7—C8—N1176.6 (8)C12—C11—N2—C1066.0 (10)
C9—C7—C8—S1173.4 (6)C13—C11—N2—C1063.0 (10)
C6—C7—C8—S11.6 (9)C12—C11—N2—C9119.6 (9)
C8—C7—C9—O1179.4 (8)C13—C11—N2—C9111.4 (8)
C6—C7—C9—O110.4 (14)N1—C10—O2—C140.8 (13)
C8—C7—C9—N21.5 (11)N2—C10—O2—C14179.2 (7)
C6—C7—C9—N2171.7 (7)C19—C14—O2—C1086.5 (11)
C19—C14—C15—C161.5 (15)C15—C14—O2—C1099.1 (10)
O2—C14—C15—C16175.9 (9)N1—C8—S1—C5177.1 (8)
C14—C15—C16—C170.4 (16)C7—C8—S1—C51.2 (7)
C15—C16—C17—C180.6 (16)C6—C5—S1—C80.4 (6)
C15—C16—C17—Br1179.7 (8)C4—C5—S1—C8178.6 (7)
C16—C17—C18—C190.6 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O10.982.202.726 (10)112
C12—H12B···O20.962.432.915 (13)111
C13—H13A···O20.962.382.951 (10)117
C12—H12B···Cg10.962.923.854 (11)165
C12—H12B···Cg20.962.713.434 (11)133

Experimental details

Crystal data
Chemical formulaC19H19BrN2O2S
Mr419.33
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)13.3957 (7), 5.7366 (3), 13.3956 (7)
β (°) 115.541 (1)
V3)928.81 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.652, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
5798, 3228, 2346
Rint0.106
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.204, 1.07
No. of reflections3228
No. of parameters228
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.63
Absolute structureFlack (1983), 1424 Friedel pairs
Absolute structure parameter0.00 (8)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O10.982.202.726 (10)112.1
C12—H12B···O20.962.432.915 (13)110.7
C13—H13A···O20.962.382.951 (10)117.4
C12—H12B···Cg10.962.923.854 (11)165
C12—H12B···Cg20.962.713.434 (11)133
 

Acknowledgements

We gratefully acknowledge financial support of this work by the Research Foundation for Students and Teachers of Yunyang Medical College (grant Nos. 2007QDJ15, 2007ZQB19, 2007ZQB20).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731–o732.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds